Math 627A: Modern Algebra I

Homework I

Problem 1: (see Rotman ex. 26)

- (a) If $\phi: R \to S$ is an isomorphism of rings, then $\phi^{-1}: S \to R$ is also.
- (b) If $\phi : R \to S$ and $\psi : S \to T$ are ring homomorphisms, then so is their composite, $\psi \circ \phi : R \to T$.

Problem 2: (see Rotman ex. 32)

In a ring R, we say s is an associate of r when there is a unit $u \in R$ such that s = ur.

- (a) Show that the relation of being associates is an equivalence relation.
- (b) What is the equivalence class of 1_R under the associate relation?
- (c) For $r \in R$, and u a unit in R, $\langle r \rangle = \langle ur \rangle$. Conclude that
 - If an ideal I contains a unit u then I = R.
 - If r and s are associates, they generate the same principal ideal.
- (d) If R is a domain and $r, s \in R$, then $\langle r \rangle = \langle s \rangle$ if and only if s = ur for some unit $u \in R$.
- (e) For the ring $\mathbb{Z}/30$, find two elements, such that $\langle r \rangle = \langle s \rangle$, but s and r are not associates.

Problem 3:

Let R be an integral domain. Let M be a subset of $R \setminus \{0\}$ that contains 1 and is closed under multiplication.

We discussed the following in class:

1. The relation on $R \times M$ defined by

 $(a_1, m_1) \sim (a_2, m_2)$ when $a_1 m_2 = a_2 m_1$

is an equivalence relation.

- 2. Let [a, m] denote the equivalence class of (a, m). The operations
 - $[a_1, m_1] + [a_2, m_2] := [a_1m_2 + a_2m_1, m_1m_2]$, and
 - $[a_1, m_1] \star [a_2, m_2] := [a_1 a_2, m_1 m_2],$

are well defined.

3. The set $R \times M/\sim$ with these operations is a ring with additive identity [0, 1] and multiplicative identity [1, 1]. We denote this ring $M^{-1}R$.

The ring $M^{-1}R$ is often called a localization of R. In this exercise we characterize all localizations of \mathbb{Z} .

- (a) Let $A = \{a_1, a_2, \ldots, a_t\} \subset \mathbb{Z} \setminus \{0\}$. What is the smallest multiplicatively closed subset of \mathbb{Z} containing A and 1? What if A is an infinite subset of $\mathbb{Z} \setminus \{0\}$? We will abuse notation and write $A^{-1}\mathbb{Z}$ for the localization due to the smallest multiplicatively closed subset of $\mathbb{Z} \setminus \{0\}$ containing A.
- (b) Suppose $M \subset N \subset \mathbb{Z} \setminus \{0\}$. Show that there is an injective ring homomorphism $M^{-1}\mathbb{Z} \to N^{-1}\mathbb{Z}$.
- (c) Any localization of \mathbb{Z} is of the form $P^{-1}\mathbb{Z}$ where P is a subset of the set of primes in \mathbb{N} . [You need to identify the set P for a given M and show that $P^{-1}\mathbb{Z} \cong M^{-1}\mathbb{Z}$].

Due: Friday, September 23rd. You are encouraged to work together to analyze and solve the problem, but please write your solutions individually.