Math 627A: Modern Algebra I

Homework 4

Problem 1: (Rotman 63, 64, 67)

- (a) Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots a_2 x^2 + a_1 x + a_0$ be a polynomial with integer coefficients. If r/s is a rational root of f(x) with r/s in lowest terms, then $r \mid a_0$ and $s \mid a_n$.
- (b) What can you conclude in each of the following special cases?
 - $a_n = 1$.
 - $a_0 = 1$.
 - $a_{n-1} = 0$.
- (c) Let $f(x) = x^4 + Ax^2 + B$. Give necessary and sufficient conditions for f(x) to have a nontrivial factor. Consider the case when f(x) has a linear factor and the case when it has quadratic factors separately.

Problem 2: (Rotman 64) Test whether the following polynomials factor over the rationals.

- (a) $6x^3 3x 18$
- (b) $3x^2 7x + 5$.
- (c) $x^3 9x 9$.
- (d) $16x^2 + 5x + 32$
- (e) $2x^6 + 5x + 35$.

Problem 3: (Rotman 70, 71a)

(a) Let $g(x) = x^3 + qx + r$ and define $R = r^2 + 4q^3/27$. Recall that we wrote a root u of g(x) as u = y + z and found that $y^3 = (-r + \sqrt{R})/2$ and z = -3q/y. Prove that

$$z^3 = \frac{1}{2} \left(-r - \sqrt{R} \right)$$

(b) Find the roots of the polynomial $f(x) = x^3 - 3x + 1$.

Problem 4: (Rotman 76) Prove that a field of characteristic p is perfect if and only if each element has a p th root.

Problem 5: (Rotman 72)

- (a) Let E/F be an extension of fields and let $\alpha, \beta \in E$ be algebraic over F. Prove that $F(\alpha, \beta)$ is an algebraic extension over F. (This shows that $\alpha + \beta$, $\alpha\beta$ and α^{-1} are all algebraic over F.)
- (b) Let E/F be an extension of fields and let

 $K = \{ \alpha \in E \mid \alpha \text{ is algebraic over } F \}$

Show that K is a subfield of E containing F.

(c) Let $\overline{\mathbb{Q}}$ be the set of elements of \mathbb{C} which are algebraic over \mathbb{Q} . These are called the algebraic numbers. Show that $\overline{\mathbb{Q}}$ is infinite dimensional over F. (Hint: $\sqrt[n]{2} \in \overline{\mathbb{Q}}$.)

Due: Wednesday, October 26, class time. You are encouraged to work together to analyze and solve the problem, but please write your solutions individually.