Math 627A: Modern Algebra I

Homework 5

Problem 1: Let A_1, A_2, B_1, B_2 be normal subgroups of a group G with $B_1 \leq A_1$ and $B_2 \leq A_2$ and finally $A_1 \cap A_2 = \{1\}$. Then B_1B_2 is normal subgroup in A_1A_2 and there holds

$$(A_1A_2)/(B_1B_2) \cong (A_1/B_1) \oplus (A_2/B_2).$$

Problem 2: If G is a free Abelian group of ranks r and s, then r = s.

Prove this in the following way: Let $\varphi : \mathbb{Z}^r \longrightarrow \mathbb{Z}^s$ be an isomorphism, and let α and β be the natural embeddings of \mathbb{Z}^r (resp. \mathbb{Z}^s) into the respective direct sums of copies of \mathbb{Q} .

- (a) Show that for every $x \in \mathbb{Q}^n$ there exists $z \in \mathbb{Z}$ such that $zx \in \mathbb{Z}^n$.
- (b) Define $\overline{\varphi} : \mathbb{Q}^r \longrightarrow \mathbb{Q}^s$ by $x \mapsto \frac{1}{z} \varphi(zx)$ where z is the number that you found in (a). Show that this mapping is well-defined.
- (c) Show that $\overline{\varphi}$ is additive and (hence) \mathbb{Z} -linear; then show that $\overline{\varphi}$ is \mathbb{Q} -linear.
- (d) Show that $\overline{\varphi}$ is one-to-one. Show that $\overline{\varphi}$ is onto.
- (e) Conclude that r = s.

Problem 3: Let G be a group. For $a, b \in G$ define the commutator $[a, b] := aba^{-1}b^{-1}$ of a and b. For arbitrary subgroups U, V of G define $[U, V] := \langle [u, v] | u \in U, v \in V \rangle$. Now show the following:

- (a) If U, V are normal subgroups of G, then so is [U, V].
- (b) [G,G] is the smallest normal subgroup of G for which the quotient group is abelian.
- (c) Setting $G^{(0)} := G$ and $G^{(i)} := [G^{(i-1)}, G^{(i-1)}]$ for all $i \in \mathbb{N}$, we find that G is solvable if and only if there exists $n \in \mathbb{N}$ such that $G^{(n)} = \{1\}$.
- (d) For $n \ge 5$ let U be a subgroup of S_n and N a normal subgroup of U for which U/N is abelian. Show that if U contains all 3-cycles of S_n , then also N will contain these.

<u>Hint:</u> If $a, b, c, d, e \in \{1, \ldots, n\}$ are distinct elements, then there holds the equation

$$(a, b, c) = (a, b, d)(c, e, a)(d, b, a)(a, e, c).$$

(e) Show that this implies that the symmetric group S_n is not solvable for $n \ge 5$.

Due: Monday, November 14, class time. You are encouraged to work together to analyze and solve the problem, but please write your solutions individually.