Modern Algebra II Math 627B, Spring 2005

Michael E. O'Sullivan

Some Maple commands.

Plotting curves and surfaces: You may want to use the command with(plots);. Then you can issue commands without the plots[...].

- plot of plot3d for plotting a function.
- plots[implicitplot] of plots[implicitplot3d] for plotting the solutions of an equation.
- plot[parametricplot] for plotting a parametrized curve in the plane.
- plots[spacecurve] for plotting a parametrically defined space curve.
- algcurves[plot_real_curve] plotting the variety defined by a polynomial in two variables. Compare with plots[implicitplot].

Handling polynomials

- degree, ldegree give the degree of the highest degree term and the lowest degree term.
- lcoeff, tcoeff give the coefficients of the highest degree term (leading term) and the lowest degree term (trailing term).
- expand
- collect
- sort
- simplify
- convert(f, Horner)

Computations with polynomials:

- gcd, gcdex, lcm
- divide, rem, quo
- subs evaluates a polynomial (or other expression at a value).
- sum for adding several polynomials.
- See Help:Contents:Polynomials:entering for a good overview.

Factorization of polynomials:

- irreduc
- sqrfree and Sqrfree
- factor and Factor
- factors and Factors
- solve, isolve (solutions in integers), msolve (solutions mod m), fsolve (for floating point solutions).
- roots
- DistDeg

Handling rational polynomials:

- numer, denom
- normal to simplify
- convert(f, parfrac,x) converting to a partial fraction, see
 Help:Contents:Polynomials:Rational Expressions:partial fractions

Creating different fields:

- RootOf for adjoining a root of a polynomial to a field to form an extension field. The base field can either be the rationals or \mathbb{Z}/p or an extension thereof. I think this is the simplest way to handle finite fields.
- evala is used to evaluate expressions in algebraic extensions created using RootOf.
- AFactor to compute the factorization of a field over an algebraically closed field like C. Used also in conjunction with evala
- GF for creating a finite field, see
 Help:Contents:Packages:GF. See also
 Help:Contents:Packages:Domains (fairly advanced).
- diffalg[fieldextension] for field extensions of the rationals (fairly advanced).

Functions for some important problems in computational algebraic geometry

- \bullet ${\tt algcurves[implicitize]}$ seems to work for hypersurfaces as well.
- algcurves[parametrization] for a plane curve.
- algcurves[singularities]
- diff to compute the partial derivative.

- discrim to compute the discriminant of a polynomial.
- resultant to compute the resultant of two polynomials.
- linalg[sylvester] and LinearAlgebra[SylvesterMatrix]
- linalg[bezout] and LinearAlgebra[BezoutMatrix]

Some Maple packages that may be of use

- 1. Grobner
- 2. algcurves
 - implicitize, parametrization, singularities are discussed above and plot_real_curve in the discussion of plots.
 - genus, differentials.
 - Weierstraussform, is_hyperelliptic, j_invariant for handling elliptic and hyperelliptic curves.
 - integral_basis, algfun_series_sol, puiseaux, monodromy. These have to do with maps of curves, or branches of curves (advanced!)
- 3. CurveFitting see Spline, Bspine, and Bsplinecurve
- $4. \ {\tt PolynomialTools}$
 - Translate just translates by a constant.
 - Sort, Shorten, Shorter. These use Mobius transformations to simplify.
 - Splits gives the complete factorization, and the extension field needed.
- $5. \ {\tt Matrix\ PolynomialAlgebra}$
- 6. SNAP has symbolic numerical algorithms for polynomials.