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1 Review of Properties of the Integers

In this section we will review the main theorems that lead to the unique factorization
of integers. We will establish analogous results for polynomials over a field in the next
section. I recommend Rosen’s Chapter 3 for a more detailed treatment of this material.

Theorem 1.1 (Division). Given integers a, b with b > 0 there exist unique integers q, r
such that

1. a = bq + r, and

2. 0 ≤ r < b.

Proof: For existence, use well ordering of the integers. Take the smallest nonnegative
integer of the form a − bq with q ∈

�
. For uniqueness, suppose there are two, take the

difference and show the two must be equal.

Theorem 1.2. Given integers a, b, not both 0, the greatest common divisor of a and b
may be written as a linear combination of a and b.

Proof: Choose the smallest positive element of {ra + sb : r, s ∈
�
}, call it d. It is clear

that any common divisor of a and b divides d. Show that the remainder when either a
or b is divided by d must be 0, otherwise the definition of d is violated. Thus d must be
gcd(a, b).

The preceeding result simply says that the gcd of two integers can be written as
a linear combination of the two. The next result—2500 years old—describes how to
compute the gcd.

Theorem 1.3. The Euclidean algorithm may be used to find the greatest common divisor

of two integers, and to find the the linear combination that gives the greatest common

divisor.

Definition 1.4. Let p be a positive integer. We say p is irreducible if for any factorization
p = ab either a or b is a ±1. We say p is prime if whenever p divides ab, p divides either
a or b.

1



In a first course in number theory one normally defines a prime as we have defined
an irreducible. The reason for the switch here is to conform with the more modern usage
in commutative algebra.

If you look for the following theorem in a number theory book it will say: “Suppose
p is prime, then if p divides ab either p divides a or p divides b.”

Theorem 1.5. Let p ∈
�

be irreducible. Then p is prime.

Proof: Suppose p is irreducible and p|ab. If p 6 |a then the gcd(p, a) = 1, so there are
integers r and s such that pr + as = 1. Multiplying by b we have prb + asb = b. Now p
divides the left hand side, so p|b.

Now we have unique factorization!

Theorem 1.6. Given any n ∈
�

there is a unique way to write n as a product of primes

pi such that pi ≤ pi+1:

n =
∏

i=1

pi

Proof: I will just sketch the proof of uniqueness not existence. Suppose that all integers
less than n have unique factorization. Suppose that n has two factorizations p1p2 · · · pr =
n = q1q2 · · · qs with the pi and qj in increasing order. By the previous theorem p1|qj for
some j. But since qj is prime, p1 = qj. Since the qj are in increasing order, q1 ≤ p1.
Similarly one show that p1 < q1. So in fact p1 = q1. Thus we have p2p3 · · · pr = q2q3 · · · qs.
This integer is smaller than n so is factorable in a unique way. Thus r = s and pi = qi.

Another important concept from number theory is modular arithmetic. I will skip
the definition of Z/n and the justification for the arithmetic in

�
/n. One new bit of

terminology: we call
�
/n a quotient ring. The main result we need is:

Theorem 1.7. Let p be a prime number. Then
�
/p is a field.

Proof: Let a be an integer whose congruence class is nonzero mod p. Then a is not
divisible by p, so in fact it must be coprime to p. By Theorem 1.2 there exist r and s
such that ar + ps = 1. This means that ar ≡ 1 mod p, so a is a unit mod p. Thus every
nonzero element of

�
/p is invertible, and

�
/p is a field.

Exercises 1.8.
1. Find solution(s) if they exist to 3x + 7 ≡ 5 mod 7
2. Find solution(s) if they exist to 3x2 + 7x + 5 ≡ 0 mod 7.
3. Find soultions if they exist to 7x4 + 3x2 + x + 15 ≡ 0 mod 31. Use Maple!

2 Polynomials over a field

In this section we will show that the polynomial ring over a field F behaves very much
like the integers. In particular, we establish unique factorization and show that F [x]/p(x)
is a field when p(x) is irreducible. [The analogy is so strong that I wrote this section by
pasting the previous one here and then editing a bit!]
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Theorem 2.1 (Division). Given polynomials a(x), b(x) ∈ F [x] with b(x) 6= 0 there

exist unique polynomials q(x), r(x) such that

1. a(x) = b(x)q(x) + r(x), and

2. deg r(x) < b(x).

Proof: Existence: Take the smallest degree polynomial of the form a(x) − b(x)q(x)
with q(x) ∈ F [x]. (You also have to show that this polynomial has degree < deg b(x)).

Uniqueness: Suppose that a(x) = b(x)q(x)+ r(x) with deg r(x) < b(x). Suppose also
that a(x) = b(x)q′(x) + r′(x) with deg r′(x) < b(x). Taking the difference of the two
equations, 0 = b(x)(q(x)− q′(x)) + r(x)− r′(x). Then r′(x)− r(x) = b(x)(q(x) − q′(x)).
Now the degree of the left had side is strictly less than deg b(x), but the degree of the
right hand side is at least deg b(x) unless it is zero. Therefore both sides must be zero
and we have q(x) = q′(x) and r(x) = r′(x).

Theorem 2.2. Given polynomials a(x), b(x) ∈ F [x], the greatest common divisor of a(x)
and b(x) may be written as a linear combination of a(x) and b(x).

Proof: Choose the smallest degree element of {r(x)a(x)+s(x)b(x) : r(x), s(x) ∈ F [x]},
call it d(x). It is clear that any common divisor of a(x) and b(x) divides d(x). Show
that the remainder when either a(x) or b(x) is divided by d(x) must be 0, otherwise the
definition of d(x) is violated. Thus d(x) must be gcd(a(x), b(x)).

The preceeding result simply says that the gcd of two polynomials can be written as
a linear combination of the two. The next result says that the Euclidean algorithm can
be extended to polynomials. You should implement it using Maple!

Theorem 2.3. The Euclidean algorithm may be used to find the greatest common divisor

of two polynomials, and to find the the linear combination that gives the greatest common

divisor.

Definition 2.4. Let p(x) ∈ F [x] have positive degree. We say p(x) is irreducible if for
any factorization p = a(x)b(x) either a(x) or b(x) is an element of F . We say p(x) is
prime if whenever p(x) divides a(x)b(x), p(x) divides either a(x) or b(x).

Theorem 2.5. Let p(x) ∈ F [x] be irreducible. Then p(x) is prime.

Proof: Suppose p(x) is irreducible and p(x)|a(x)b(x). If p(x) 6 |a(x) then the gcd(p(x), a(x)) =
1, so there are polynomials r(x) and s(x) such that p(x)r(x)+a(x)s(x) = 1. Multiplying
by b(x) we have p(x)r(x)b(x)+a(x)s(x)b(x) = b(x). Now p(x) divides the left hand side,
so p(x)|b(x).

Now we have unique factorization!

Theorem 2.6. Given any f(x) ∈ F [x] there exists an element α ∈ F , a nonnegative

integer r, and for each i = 1, . . . , r, distinct monic irreducibles pi(x) and integers ai > 0
such that

f(x) = α
r∏

i=1

pai

i

The element α and the integer r are unique and the polynomials and there powers are

unique, up to reordering.
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Proof: I will just sketch the inductive step in the proof of uniqueness. Suppose that
all polynomials of degree less than n have a unique factorization as described in the
statement of the theorem. Suppose that f(x) has degree n and two factorizations. Since
irreducibles are prime, any irreducible factor of one side, say p(xP , must divide one
of the irreducible factors of the other, say q(x). Since the polynomials are all monic,
p(x) = q(x). Since F [x] is an integral domain, we can cancel this factor and get two
factorizations for some polynomial g(x) of degree less than n. By assumption, g(x)
satisfies the theorem so the two factorizations must be the same. Therefore the two
factorizations of f(x) are the same (up to reordering).

Since the product of two polynomials over F has degree equal to the sum of the
degrees of the factors we get the following.

Proposition 2.7. Let f(x) have the factorization in the Theorem. Then deg f(x) =
∑r

i=1 ai deg pi(x).

Another consequence of unique factorization is that a polynomial of degree d has at
most d roots.

Definition 2.8. Let f(x) ∈ F [x] and let f(x) =
∑n

i=1 aix
i with ai ∈ F . For α ∈ F we

define f(α) to be
∑n

i=1 aiα
i, which is an element of F . We say that α is a root of f(x)

if f(α) = 0.

From the division theorem we see that finding a root of f(x) corresponds to finding
a factor of f .

Proposition 2.9. Let f(x) ∈ F [x] and let α ∈ F . Then α is a root of f(x) if and only

if (x − α) is a factor of f(x).

Proof: Show that the remainder when f(x) is divided by x−α is f(α). The remainder
is 0 if and only if x− α divides f(x).

Proposition 2.10. If deg f(x) = d then f(x) has at most d distinct roots.

Proof: Each root gives a factor of f(x), so n distinct roots give n distinct linear factors
of f(x). By unique factorization the product of these roots, which has degree n, divides
f(x). Thus n ≤ d.

Example 2.11. Suppose that F is the field
�

p =
�
/p. Fermat’s little theorem says that

1, 2, 3 . . . , p− 1 are all roots of xp−1 − 1. Therefore the unique factorization of xp−1 − 1
is (x − 1)(x − 2) · · · (x − (p− 1)).

I’m sure you are well aware that

(y − 1)(ye−1 + ye−2 + · · · + y2 + y + 1) = ye − 1

Substitute xd for y and we get

(xd − 1)(xd(e−1) + xd(e−2) + · · · + x2d + xd + 1) = xde − 1

In the following result we use this factorization of polynomials in the case where p− 1 =
de. The result will be useful in our study of finite fields.
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Proposition 2.12. Let p be prime. If d divides p− 1 then xd − 1 has d distinct roots in
�

p.

Proof: Let e = (p − 1)/d. From the example above we know that xp−1 − 1 has p − 1
distinct roots. From the factorization (xd − 1)(xd(e−1) + xd(e−2) + · · · + x2d + xd + 1) =
xp−1 − 1, and the fact that (xd(e−1) + xd(e−2) + · · · + x2d + xd + 1) has at most d(e− 1)
roots, we know that xd − 1 must have at least p − 1 − d(e − 1) = d distinct roots. Of
course it can have no more than that.

We now extend the concept of modular arithmetic to polynomial rings. We will only
work modulo a prime polynomial. You will soon see why.

The first thing to do is to establish the equivalence relation to define the quotient
ring F [x]/p(x). Next we show that arithmetic is well defined. I will just state the results.
The proofs are exact analogues of those for integers.

Definition 2.13. Let p(x) ∈ F [x] with F a field. We say f(x), g(x) are congruent
modulo p(x), written f(x) ≡ g(x) mod p(x), if p(x) divides f(x)− g(x).

Proposition 2.14. Congruence modulo p(x) is an equivalence relation.

If two unequal polynomials have degree less than deg p(x) then they cannot be con-
gruent mod p(x). Clearly, every polynomial is equivalent to its remainder when divided
by p(x), and the remainder has degree less than deg p(x). Thus the set of polynomials
of degree less than p(x) form a complete system of residues mod p(x).

Proposition 2.15. If f(x) ≡ g(x) mod p(x) and a(x) ≡ b(x) mod p(x) then

• a(x) + f(x) ≡ b(x) + g(x) mod p(x).

• a(x)f(x) ≡ b(x)g(x) mod p(x).

Suppose that p(x) has degree d. Then the discussion above shows that a complete
system of representatives for F [x]/p(x) is {a0 + a1x + · · · ad−1x

d−1 : ai ∈ F}. The
addition of these polynomials is done component-wise. Multiplication by an element of
F is also component-wise. Consequently, F [x]/p(x) is a vector space of dimension d over
F . Our next theorem concerns the multiplicative structure.

Theorem 2.16. Let p(x) be an irreducible polynomial over a field F . Then F [x]/p(x)
is a field.

Proof: Let a(x) be a polynomial whose congruence class is nonzero mod p(x). Then
a(x) is not divisible by p(x), so in fact it must be coprime to p(x). Then by Theorem 2.2
there exist r(x) and s(x) such that a(x)r(x)+p(x)s(x) = 1. This means that a(x)r(x) ≡ 1
mod p(x). Consequently a(x) is a unit mod p(x), and F [x]/p(x) is a field.

Exercises 2.17.
1. What is

�
[x]/(x2 + 1)? Can you find any other extensions of the reals?

2. What is � [x]/(x2 + 1). Construct other extensions of Q of degree 2. Give an
example of an extension of degree 3. Does x3 + 1 work?

3. Find an irreducible polynomial of degree 2, one of degree 3, and one of degree 4
over

�
2. For each, find a system of representatives for

�
2[x]/p(x). Find a polynomial of

degree 4 over
�

2 which has no roots but is not irreducible.
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3 Finite Fields

The last section ended with the result that for a field F and irreducible polynomial p(x)
over F , F [x]/p(x) is a field. We are interested in the case when F is

�
p =

�
/p. We will

use P (x) for an irreducible polynomial to eliminate confusion with the prime p.
The main result of this section is the following theorem. We will prove it in stages.

Theorem 3.1. Let F be a field with a finite number of elements.

1. F has pn elements where p is a prime.

2. F is isomorphic to
�

p[x]/P (x) for some irreducible polynomial P (x) over
�

p.

For any prime p and any positive integer n,

1. There exists a field with pn elements.

2. Any two fields with pn elements are isomorphic.

As a first step we prove

Proposition 3.2. A finite field is a vector space over
�

p for some prime p. Consequently,

the number of elements of F is a power of p.

Proof: Suppose that F is a finite field. Consider the additive subgroup generated by
1, i.e. 1, 1 + 1, 1 + 1 + 1. Let m be the smallest positive integer such that the sum of m
1’s is 0. If m where composite, m = ab, then we would have

0 = 1 + 1 + 1 + · · · + 1 + 1
︸ ︷︷ ︸

m terms

= (1 + 1 + · · · + 1
︸ ︷︷ ︸

a terms

)(1 + 1 + · · · + 1
︸ ︷︷ ︸

b terms

)

The two factors on the right would then be zero-divisors, contradicting the assumption
that F is a field. Thus m is in fact a prime, which we will now call p. We may think
of F as containing a copy of

�
p. From the field axioms we see immediately that F is a

vector space over
�

p. If its dimension over
�

p is n then F must have pn elements. Thus
any field has a prime power number of elements.

The prime p is called the characteristic of the field. Now we have the Freshman’s
dream:

Proposition 3.3. Let α, β be elements of a field of characteristic p. Then (α + β)p =
αp + βp.

Proof: Expand (α + β)p using the binomial theorem and we get terms like

(
p

k

)

αkβp−k

The binomial coefficient really means 1 added to itself
(
p
k

)
times. Since p divides the

binomial coefficient when 1 < k < p the coefficient is 0 unless k = 1 or k = p. That gives
the result.
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Suppose that q = pn is the number of elements in F . By the field axioms, the set of
nonzero elements of F is a group under multiplication. There are q−1 nonzero elements,
so LaGrange’s theorem says that for any α ∈ F , αq−1 = 1 in F . In other words, α is a
root of the polynomial xq−1 − 1. We know that this polynomial can have at most q − 1
distinct roots. But, we have just shown that all the q − 1 nonzero elements of F are
roots. Therefore xq−1 − 1 factors into distinct linear factors over F . We have therefore
established the following proposition.

Definition 3.4. A splitting field for a polynomial f(x) defined over a field F is an
extension field of F in which the f(x) factors into linear factors and the field is generated
by the roots of the linear factors.

Proposition 3.5. A field of q = pn elements is a splitting field of xq−1 − 1 over
�

p.

We can now justify the final two items of the main theorem. One can show fairly
easily that a splitting field for a polynomial always exists. Thus a splitting field for
xq−1 − 1 exists. In fact, the splitting field has q elements, just 0 and the q − 1 roots of
xq−1 − 1. One can show this by showing that the product of two roots of xq−1 − 1 is
a another root, and, using the Freshman’s dream, the sum of two roots is also a root.
Thus for any q = pn there exists a finite field with q elements.

It is a bit harder, but one can also show that a splitting field for a polynomial is
unique up to isomorphism. This means that any two finite fields with the same number
of elements are isomorphic. Henceforth we will use the symbol

�
q to denote this unique

field. For the details on splitting fields I refer you to [1, §10.4, 6], [2, Ch. 20], [3, VII.3].
It remains to justify the statement that a field with q = pn elements is isomorphic to

Fp[x]/P (x) for some irreducible polynomial. Let me make the problem more precise, by
giving an example.

Example 3.6. Suppose that n = 6. Perhaps our field
�

p6 is obtained by taking an
extension of degree 2, and then following it by an extension of degree 3. In other words,
�

p2 = Fp[x]/P (x) where P (x) is quadratic and
�

p6 =
�

p2 [y]/Q(y) where Q(y) is cubic
with coefficients in

�

p2 . This is in fact the case;
�

p6 can be constructed this way. BUT,
it is also true that there exists an element α ∈

�

p6 such that 1, α, α2, α3, α4, α5 are
all linearly independent over

�
p. Remember that

�

p6 is a vector space of dimension
6 over

�
p, so 1, α, α2, α3, α4, α5 is therefore a basis for

�

p6 . That implies that α6 is a
linear combination of 1, α, α2, α3, α4, α5. This linear combination then gives a polynomial
R(x) of degree 6 for which α is a root. Furthermore, R(x) must be irreducible, for
otherwise α would be a root of one of the factors, and that would mean that some linear
combination of 1, α, α2, α3, α4, α5 would be zero, contradicting what I stated above. Thus
�

p6 =
�

p[x]/R(x).

We want to show that every finite field
�

pn has an element α such that 1, α, . . . , αn−1

are linearly independent over
�

p. This implies that α is a root of a degree n polynomial
R(x) with coefficients in

�
p and therefore

�
pn =

�
p[x]/R(x). We will prove this as a

corollary of Theorem 3.9.

Proposition 3.7. Let F be a finite field with q elements. If d divides q − 1 then xd − 1
has d distinct roots in F .
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Proof: The proof is identical to the proof of Proposition 2.12

We now show that the multiplicative group of a finite field is cyclic.

Definition 3.8. Let F be a finite field with q elements. For α ∈ F , the order of α is the
smallest positive integer r such that αr = 1 (its order in the multiplicative group of F ).
We say α is primitive if ordα = q − 1.

Theorem 3.9. Let
�

q be the finite field with q elements. Then for each d dividing q−1,
�

q has φ(d) elements of order d. In particular,
�

q has φ(q − 1) primitive elements.

Consequently, the multiplicative group of
�

q is cyclic.

Proof: Let g(d) be the number of elements of order d in F . By LaGrange’s Theorem,
every element of F has order dividing q − 1, so g(d) is zero for d not a divisor of q. One
can readily show that if α has order d then αk for k = 1 . . . d are all distinct, and they
must be all the roots of xd − 1 in F . Furthermore, ordαk = d/ gcd(d, k). Therefore
if F has an element of order d then it has φ(d) of them, namely αk for gcd(k, d) = 1.
Summarizing, g(d) is either 0 or φ(d).

Now every element of F has some order dividing q − 1 so

q − 1 =
∑

d|q−1

g(d) ≤
∑

d|q−1

φ(d)

There is a result in number theory [4, Theorem 7.7] that
∑

d|n φ(n) = n. This tells us
that the ≤ in the equation above must be an equality. the only way this can hold is if
g(d) = φ(d). Which is want we wanted to prove.

Corollary 3.10. For q = pn,
�

q is isomorphic to
�

p[x]/P (x) for some irreducible poly-

nomial of degree n.

Proof: Let α be a primitive element of
�

q. Let P (x) be the minimal polynomial for α
over

�
p. If deg P (x) = r then the field

�
p[x]/P (x) has pr elements and is isomorphic to

the the subfield of
�

q generated by α. But α generates all of
�

q, so q = pr and therefore
r = n.

Exercises 3.11.
1. Construct

�

26 in three ways:
a) by constructing

�
4 using an irreducible polynomial of degree 2 over

�
2 and then by

constructing
�

6 using an irreducbile polynomial of degree 3 over
�

4.
b) by constructing

�
8 using an irreducible polynomial of degree 3 over

�
2 and then by

constructing
�

6 using an irreducbile polynomial of degree 2 over
�

8.
c) by using an irreducible polynomial of degree 6 over

�
2.

Show that the three representation are isomorphic.
2. Construct

�
81 in two ways (why just two?). You may notice that x2 + 2x + 1 and

x2 + x + 2 are both irreducible over
�

3. Can you construct
�

81 by using one of these
polynomials and then the other?

3. Prove that if r|n then
�

qr is a subfield of
�

qn .
4. Factor x15 − 1 over

�
2. Construct

�
16 in three ways as a degree 4 extension of

�
2

and show isomorphisms between the three representations.
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