Math 623: Matrix Analysis Homework 2

Problem 1: Factor A into the form A = PLDU, with P a permutation matrix, L lower triangular with 1 on the diagonal, D diagonal, and U upper echelon.

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 2 & 4 & 2 & 7 \\ 3 & 6 & 4 & 8 \\ -2 & -4 & -1 & -4 \end{bmatrix}$$

Problem 2: Some subspaces.

- (a) Show that the nullspace of a matrix $A \in \mathcal{M}_{m,n}$ is a subspace of \mathbb{R}^n .
- (b) Suppose that V is the direct sum of subspaces U_1, \ldots, U_t : $V = U_1 \oplus U_2 \oplus \cdots \oplus U_t$ Show that dim $V = \sum_{i=1}^t \dim U_i$.

Problem 3: Let $\mathcal{U} = \begin{bmatrix} u_1 & u_2 & \dots & u_n \end{bmatrix}$, $\mathcal{W} = \begin{bmatrix} w_1 & w_2 & \dots & w_n \end{bmatrix}$ and $\mathcal{Y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}$ be bases for vector space V. Let S be the change of basis matrix from \mathcal{U} to \mathcal{W} and let T be the change of basis matrix from \mathcal{U} to \mathcal{Y} . Find the change of basis matrix from \mathcal{W} to \mathcal{Y} and vice-versa. Briefly justify your answer.

Problem 4: Change of basis

- (a) Let $w_1 = \begin{bmatrix} 2\\3\\1 \end{bmatrix}$ and $w_2 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Show $u_1 = \begin{bmatrix} -1\\-3\\-8 \end{bmatrix}$ $u_2 = \begin{bmatrix} 5\\8\\5 \end{bmatrix}$ is also a basis for $\langle w_1, w_2 \rangle$ and find the matrix A such that $\begin{bmatrix} u_1 & u_2 \end{bmatrix} = \begin{bmatrix} w_1 & w_2 \end{bmatrix} A$.
- (b) Find the coordinates $\begin{bmatrix} 3 \\ 2 \end{bmatrix}_{\mathcal{U}}$ in the \mathcal{W} basis. Check that your result is correct by computing in the ambient \mathbb{R}^3 .
- (c) Find the coordinates $\begin{bmatrix} 2 \\ -1 \end{bmatrix}_{\mathcal{W}}$ in the \mathcal{U} basis. Check that your result is correct by computing in the ambient \mathbb{R}^3 .

Problem 5: Define a relation on $\mathcal{M}_{m,n}$ as follows

 $A \sim B$ if there exist invertible matrices $S \in \mathcal{M}_m$ and $T \in \mathcal{M}_n$ such that A = SBT

- (a) Show that this is an equivalence relation.
- (b) Show that an $n \times n$ matrix A is invertible iff A is equivalent to the identity.
- (c) Can you find a set of representatives for this equivalence relation? Explain your answer. [Hint: Gaussian elimination on both sides.]