Math 623: Matrix Analysis Homework 3

Problem 1: Find the dimension of the subspace of $\mathcal{M}_{3,3}$ spanned by the permutation matrices.

Problem 2: Define the generalized nullspace of a matrix $A \in \mathcal{M}_{n,n}(F)$ to be the set of $x \in F^n$ such that $A^k x = 0$ for some integer k. Show that the generalized nullspace of A is a subspace of F^n .

Problem 3: Show that the simple generalization of the inclusion-exclusion principle to 3 subspaces does not hold, (sadly). Find an example in \mathbb{R}^2 and in \mathbb{R}^3 where

$$\dim(U+V+W) \neq \dim(U) + \dim(V) + \dim(W)$$
$$-\dim(U \cap V) - \dim(V \cap W) - \dim(W \cap U) + \dim(U \cap V \cap W)$$

Problem 4: Idempotents and projections. An $n \times n$ matrix A is idempotent when $A^2 = I$.

- (a) Prove the following theorem.

 Theorem The following are equivalent (TFAE).
 - (1) A is idempotent.
 - (2) I A is idempotent.
 - (3) A(I-A) = 0.
 - (4) For $x \in \operatorname{colsp} A$, Ax = x.
- (b) Show that if A is idempotent then $\mathbb{R}^n = \operatorname{colsp}(A) \oplus \operatorname{rtnull}(A)$.