Math 623: Matrix Analysis Homework 7

Problem 1: Gershgorin disks. Do Bob Grone's three problems.

Problem from Horn 1.2.P7 Tridiagonal matrices.

(a) Use the formula for the characteristic polynomial of A in terms of the $E_k(A)$ to determine the characteristic polynomial of the tridiagonal matrices

Г1	1	0	٦٦		Γ1	1	0	0	0
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1	1	$\begin{array}{c} 0\\ 0\\ 1\\ 1\end{array}$		1	1	1	0	0
	1	1		and	0	1	1	1	0
	1	1			0	0	1	1	1
ΓO	0	1	Ţ		0	0	0	1	0 0 0 1 1

(b) Generalize to $n \times n$ tridiagonal matrices.

Problem from Horn 1.2.P22 A twist on circulant matrices. Let C_n be the $n \times n$ matrix with entry 1 in each (i, i+1)-position and in the (n, 1)-position and entry 0 elsewhere. Let $C_n(\epsilon)$ let be the matrix obtained from C_n by replacing the 1 in position (n, 1) with $\epsilon > 0$.

- (a) Show that the characteristic polynomial of $C_n(eps)$ is $t^n \epsilon$.
- (b) Find the spectrum and spectral radius of $C_n(\epsilon)$.

Problem from Horn 1.2.P23 If A is singular and has distinct eigenvalues, show that it has a nonsingular $(n-1) \times (n-1)$ principal minor.