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Let’s start with a very fundamental result about polynomial rings.

Theorem 1. Let φ : R −→ S be a homomorphism of rings and let s ∈ S.
There is a unique homomorphism of rings φ̃ : R[x] −→ S which extends φ
and takes x to s. The homomorphism is defined by

φ̃(
∑

i

rix
i) =

∑
i

φ(ri)si

I won’t prove this here, but notice the following: (1) the constants in R[x] form
a subring which is isomorphic to R. When we say φ̃ extends φ we just mean
that φ̃(r) = φ(r) for r a constant polynomial. (2) Since φ̃ is a homomor-
phism, and we want φ̃(x) = s the only possibility for the definition of φ̃
is the one given above. (3) The proof of the theorem just boils down to
justifying that this definition does indeed give a homomorphism.

We are interested in the case where R is a field, which we call F , and S is a bigger
field containing F . That is, we have F a subfield of K and α ∈ K. We let
F (α) be the smallest field containing F and α (this plays the role of S). The
theorem above says that there is a homomorphism φ̃ : F [x] −→ F (α) that
is the identity on F and takes x to α.

φ̃(
∑

i

fix
i) =

∑
i

fiα
i

In particular the image of φ̃ is φ̃(F [x]) ⊆ F (α). Now apply The First
Isomorphism Theorem, Theorem 6.13: φ̃ is a surjective homomorphism onto
its image φ̃(F [x]), so

F [x]
/
p(x) ∼= φ̃(F [x])

where p(x) is the minimal polynomial of α. We’ve shown that p(x) is ir-
reducible, so F [x]/p(x) is a field. Thus φ̃(F [x]) is also a field contained in
F (α). But, by definition, F (α) is the smallest field containing F and α.
Thus F (α) = φ̃(F [x]) and this is isomorphic to F [x]/p(x). Thus we have
the theorem.
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Theorem 2. Let F be a subfield of K. Let α ∈ K be algebraic over F with
minimal polynomial p(x). Then F (α) ∼= F [x]/p(x).

This has some consequences that are not obvious. Let ω = −1+
√

3i
2 and note that

ω is a cube root of 1. We see that 3
√

2 and 3
√

2ω are both cube roots of 2, so
they have the same minimal polynomial, x3− 2. Therefore the fields Q( 3

√
2)

and Q( 3
√

2ω) are isomorphic. Both are isomorphic to Q[x]/〈x3 − 2〉. This is
a bit surprising, since Q( 3

√
2) is contained in the Real numbers and Q( 3

√
2ω)

is not.

The assignment also includes a problem on splitting fields.

Given an irreducible polynomial, p(x) ∈ F [x] we can create a new field F (α),
which has a root of p(x). We make the extension field F [x]/p(x) and we
denote the class of x by α. As we discussed in class, there is some abuse of
notation. We continue to think about x as an indeterminate in the polyno-
mial ring F (α)[x]. Then p(x) now has a root, namely α. Let us continue
this process with an irreducible factor of p(x). Make a new field in which
this factor has a root. Continue this process until p(x) factors completely.
The field you arrive at is called a splitting field for p(x). We are going to
skip over the technical theory, but the main result is easy to understand.
For any p(x) ∈ F [x], there is an extension field of F in which p(x) factors
into linear factors. Any two fields in which this happens (and which are as
small as possible) are isomorphic. This field is called the splitting field of
p(x) over F .

As an example, consider x3 − 2. We can form Q( 3
√

2) and factor

x3 − 2 = (x− 3
√

2)(x2 + 3
√

2x+ 3
√

4)

The roots of the quadratic are 3
√

2ω and 3
√

2ω2. So we have to do another
extension to factor x3 − 2 completely. In Q( 3

√
2, 3
√

2ω) we have

x3 − 2 = (x− 3
√

2)(x− 3
√

2ω)(x− 3
√

2ω2)

It is also worth noting that Q( 3
√

2, 3
√

2ω) = Q(ω, 3
√

2). To show this prove
that each contains the other! Notice that we can think about Q(ω, 3

√
2) as

adjoining a root of x3 − 2 to the field Q(ω). The field Q(ω) is built from Q
by adjoining a cube root of unity and is isomorphic to Q[x]/〈x2 + x+ 1〉.
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