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1 The Integers, k[x]: Foundations and Big Questions

This section summarizes 5 key theorems about the integers, and their analogues
for the polynomial ring k[x] over a field k. It elaborates on other analogous results
between Z and k[x] including some major conjectures about the integers.

Key properties of the integers

Theorem 1.1 (Quotient-Remainder). Let a and b be integers with b > 0. There
exist unique integers q, r such that

(1) a = bq + r, and

(2) 0 ≤ r < b

Theorem 1.2 (GCD). Let a and b be integers, at least one of them nonzero. The
gcd of a and b is the smallest positive linear combination of a and b. In particular,
gcd(a, b) = au+ bv for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of
gcd(a, b).

There is an efficient algorithm to compute the gcd of two integers.

Theorem 1.3 (Euclidean Algorithm). Let a, b be integers with b 6= 0. The fol-
lowing algorithm outputs gcd(a, b) in at most 1 + log2 b/ logα steps, where α =
(1+
√

5)/2 is the golden ratio. The Extended Euclidean Algorithm outputs integers
u, v with |u| < b and |v| < a such that au+ bv = gcd(a, b).

Let’s assume a ≥ b ≥ 0. Set r−1 = a and r0 = b, and define inductively qk and
rk+1 by applying the Quotient-Remainder Theorem to rk−1 and rk (while rk 6= 0),
so rk = rk−1qk + rk+1.

qk = rk−1//rk the integer quotient

rk+1 = rk−1%rk, the remainder

rk+1 = rk−1 − qkrk

The rk are a strictly decreasing sequence of nonnegative integers, so the process
must terminate: for some n, rn+1 = 0. The following lemma shows that

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, rn+1) = gcd(rn, 0) = rn

Lemma 1.4. For integers a, b, c, s such that a = bs + c, we have gcd(a, b) =
gcd(b, c).
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In the following Sage code we only keep two of the remainders at any time, not
the whole sequence: after the kth pass through the while loop, r in the algorithm
is rk−1 and s is rk.

def euclid_alg(a,b):

if b == 0:

print "division by zero"

return false

else:

r = a

s = b

while s != 0:

rem = r %s

r = s

s = rem

return r

The Extended Euclidean algorithm produces two integers u, v such that au +
bv = gcd(a, b). I like the following matrix version of the algorithm. Let

Qk =

[
−qk 1

1 0

]
and Rk =

[
rk
rk−1

]
where the sequence rk and qk are the same as used above in the Euclidean algo-
rithm. The following exercise finishes the discussion.

Exercises 1.5. Show that the Extended Euclidean Algorithm produces a linear
combination of a and b that gives gcd(a, b).

(a) Verify that Rk+1 = QkRk.

(b) Let R0 =

[
b
a

]
. Show that Rn+1 =

[
0
rn

]
= QnQn−1 · · ·Q0R0.

(c) Let M = QnQn−1 · · ·Q0. Show that M2,1b+M2,2a = rn = gcd(a, b).

(d) Show that the determinant of M is ±1.

Definition 1.6. Let r be an integer with |r| > 1. We say r is irreducible when
r = ab implies that either a = ±1 or b = ±1 (and the other is ±p). We say r is
prime when r|ab implies r|a or r|b.

Theorem 1.7 (Prime-Irreducible). A nonzero integer is irreducible if and only it
is prime.

The previous theorem is the key ingredient to establishing unique factorization.
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Theorem 1.8 (Unique Factorization). Let a be a nonzero integer. There is a non-
negative integer t, positive prime numbers p1, . . . , pt, and positive integers e1, . . . et
and choice of unit, u = 1 or −1, such that

a = upe11 · · · p
et
t

Each of t, pi, ei and u is uniquely determined up to reordering of the peii .

Key properties of k[x]

Theorem 1.9 (Quotient-Remainder). Let a(x) and b(x) be in F [x] with b(x) 6= 0.
There exist unique q(x), r(x) such that

(1) a(x) = b(x)q(x) + r(x), and

(2) deg r(x) < deg b(x)

Theorem 1.10 (GCD). Let a(x), b(x) ∈ F [x] with at least one of them nonzero.
There is a unique polynomial d(x) satisfying

(1) d(x) is a common divisor of a(x) and b(x),

(2) d(x) is monic,

(3) d(x) is divisible by all other common divisors of a(x) and b(x) (so it is the
greatest common divisor).

Furthermore, there exist u(x), v(x) ∈ F [x] such that d(x) = a(x)u(x) + b(x)v(x).
The set of all polynomial combinations of a(x) and b(x) equals the set of multiples
of d(x).

The discussion of the Euclidean algorithm for integers carries over almost ver-
batim to the polynomial ring. Assume deg(a(x)) ≥ deg(b(x)). Set r−1(x) = a(x)
and r0(x) = b(x), and define inductively (while rk(x) 6= 0)

qk(x) = rk−1(x)//rk(x)

rk+1(x) = rk−1(x)%rk(x), so that

rk+1(x) = rk−1(x)− qk(x)rk(x)

Then deg(rk(x)) is a sequence of polynomials of strictly decreasing degree so the
process must terminate: for some n, rn+1(x) = 0 and rn is the gcd of a(x) and
b(x).

Theorem 1.11 (Prime-Irreducible). Any nonconstant element of F [x] is irre-
ducible if and only if it is prime.
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Theorem 1.12 (Unique Factorization). Let a(x) ∈ F [x] be nonzero. There is a
nonnegative integer t, a constant u ∈ F , distinct monic irreducible polynomials
p1(x), . . . , pt(x), and positive integers e1, . . . et such that

a(x) = u
(
p1(x)

)e1(p2(x)
)e2 · · · (pt(x)

)et
Each of t, pi(x), ei and u is uniquely determined, up to reordering of the

(
pi(x)

)ei.
The analogies between Z and k[x]

The fundamental theorems listed above show that there are strong parallels be-
tween the integers and the univariate polynomial ring over a field. It extends to
the comparison of number fields and function fields of curves.

Definition 1.13. Let D = Z \ {0}. The rational numbers are Q = D−1Z. A
number field is a finite extension of the rational numbers. Each number field
K is defined (although not uniquely) by an irreducible polynomial m(x) ∈ Q[x].
K = Q[x]/m(x).

Definition 1.14. Let k be a field and let D = k[x] \ {0}. The rational poly-
nomials are k(x) = D−1(k[x]). A curve is defined by a polynomial in y with
coefficients in k(x) that is irreducible. The function field of the curve defined by
m(y) = an(x)yn + an−1(x)yn−1 + · · ·+ a1(x)y + a0(x) is

K = k(x)[y]/m(y)

The field k(x) is itself a function field. Here is another example.

Example 1.15. Let m(y) = y3 − (x3 − x). Trust me, this is irreducible (you can
use Eisenstein’s criteria as we will see later). The function field from m(y) is

K = k(x)[y]/y3 − (x3 − x))

Each element of K is uniquely represented as a polynomial in y of degree at most
2 with coefficients from k(x).

The analogy between number fields and function fields of curves is particularly
strong for the specific case when the base field is finite.

Riemann Hypothesis

The Riemann zeta function is a very important tool in analytic number theory
that is related to the distribution of prime numbers. More specifically, through
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various transformations it gives information about the number of primes less than
a given integer.

ζ(s) =

∞∑
n=1

1

ns

=
∏

p prime

(1 + p−s + p−2s + p−3s + · · · )

=
∏

p prime

1

1− p−s

The Riemann zeta function can be extended to the complex plane through an-
alytic continuation, and it has poles at the even negative integers. The Rie-
mann hypothesis states that the only other poles are at complex numbers s
with Re(s) = 1/2. This has implications for the distribution of primes, but they
are not easy to spell out succinctly.

The relationship to the distribution of primes, the analytic continuation of ζ,
and related topics are well beyond what we will study, but the interesting thing is
that there are analogous zeta functions for Fq[x]. In fact, number theorists consider
not only the zeta function above but the generalized zeta functions for number
fields (algebraic extensions of the rational numbers). The Weil conjectures are
the geometric analogue. They deal with zeta functions for curves (and projective
varieties of higher dimension) over finite fields.

The rather amazing thing is that the Weil conjectures, including the analogue of
the Riemann hypothesis, have been proven, while the original Riemann hypothesis
has not been proven.

The abc conjecture

Definition 1.16. Let n be an integer with unique factorization n = upe11 p
e2
2 · · · pe

t

t .
The radical of n is the square free positive integer rad(n) = p1p2 · · · pt.

The abc conjecture is relatively simple to state. From a very high level one
can say that it relates the sum of two numbers with the factorizations of the two
numbers and of their sum.

Conjecture 1.17 (abc). Let ε > 0. There exist only finitely many triples of
coprime positive integers a, b, c with c = a+ b such that

c > rad(abc)1+ε

SDSU Fall 2022 January 19, 20237

https://en.wikipedia.org/wiki/Weil_conjectures
https://en.wikipedia.org/wiki/Abc_conjecture


Math 620: Groups, Rings, and Fields Michael E. O’Sullivan

One way to gain intuition about this conjecture is to take the extreme case
when a and b are large powers of a small prime (or a small number of small
primes). The conjecture says that the situations in which the sum a + b is also a
product of small primes is very rare.

Example 1.18. Suppose a = 2s and b = 3t. Let’s take ε = 1 (the conjecture is
interesting as ε goes to zero, but 1 is adequate for this example.) Let c = 2s + 3t

and factor c = pe11 p
e2
2 · · · pe

t

t with each ei ≥ 1. Note that none of the pi is equal to
2 or 3. The conjecture states that except for a finite number of cases

2s + 3t <
(
2 · 3 · rad(2s + 3t)

)2
Simplifying the right hand side and substituting for c,

pe11 p
e2
2 · · · p

et
t < 36(p1p2 · · · pt)2

Consequently,

pe1−2
1 pe2−2

2 · · · pet−2
t < 36

Note that some of the ei − 2 may be negative so it is hard to draw more specific
conclusions. You will in an exercise.

There is an analogous statement for the polynomial ring k[x]. In place of an
inequality about the size of integers we have an inequality about the degree of
polynomials. The radical is defined in analogy to the radical of an integer.

rad
(
u
(
p1(x)

)e1(p2(x)
)e2 · · · (pt(x)

)et) = p1(x)p2(x) · · · pt(x)

This theorem has been proven, and it is not difficult to prove, so we will do it
later in the course.

Theorem 1.19 (Mason-Stothers). Let a(x), b(x), and c(x) be coprime polynomials
over a field k such that a(x)+b(x) = c and such that not all of them have vanishing
derivative. Then

max{deg(a(x)),deg(b(x)),deg(c(x))} ≤ deg
(

rad(a(x)b(x)c(x))
)
− 1.

Fermat’s last theorem

Fermat’s last theorem became an actual theorem in 1995, many years after it was
proposed in 1637.
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Theorem 1.20 (Fermat-Wiles). For an integer n ≥ 3. There is no triple of
positive integers a, b, c such that an + bn = cn.

The proof of this result definitely does not fit in the margin of a piece of paper.
Wiles used sophisticated algebra, number theory and algebraic geometry to prove
it.

There is an analogue for polynomials over a field

Theorem 1.21. Let k be a field of characteristic 0 and let n ≥ 3 be an integer.
Suppose that a(x), b(x), and c(x) are three coprime polynomials in k(x) satisfying
a(x)n + b(x)n = c(x)n. Then all three polynomials are constants.

The result can be extended to the case of finite characteristic, but that requires
a subtle additional restriction. The proof of the result for polynomials is one of
your assigned problems.

Why?

We have just listed three conjectures for the integers (well, one, Fermat’s last
theorem is now proven) that have analogues for polynomials that are proven. Two
of the polynomial theorems are within our ability to prove. What makes the
polynomial versions easier than the integer versions?

Assignment 1: Due Thursday 1/26.

Do Exercise 1.5 on your own.

Exercises 1.22. Let R be an integral domain. We would like to formulate a
Quotient-Remainder Theorem and a Euclidean Algorithm for R[x].

(a) Show that the Quotient-Remainder theorem holds with no change, provided
the divisor is monic.

(b) In Z[x] let f(x) = 3x3 + 5x2 + x+ 6 and g(x) = 2x+ 5. Show that there is
a integer m, a Q(x) ∈ Z[x] and an R ∈ Z such that mf(x) = g(x)Q(x) +R.
What is special about m? What kind of uniqueness statement can you
make?.

(c) Same exercise with g(x) = 3x2 + 2x+ 1.

(d) With these exercises as motivation, can you formulate a QR theorem for an
arbitrary R[x] with R an integral domain?

Exercises 1.23. We consider positive integers s, t and c such that 2s + 3t = c.
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(a) Assuming the abc conjecture, show that there are only a finite number of
such triples satisfying c/ rad(c) > 7(rad(c))ε.

Exercises 1.24.

(a) Use the Mason-Stother theorem to prove the analogue of Fermat’s last theo-
rem for polynomials. To make the proof simpler, assume (WLOG) that a(x)
has degree ≥ to the degrees of b(x), c(x).
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2 Geometry and Polynomials

Let k be a field. One important difference between polynomials and integers is that
each polynomial in k[x] can be considered as a function: it determines a function
from k to k. Let f(x) ∈ k[x] with f(x) = fnx

n + fn−1x
n−1 + · · ·+ f1x+ f0. The

function defined by f(x) is

f : k −→ k

a 7−→ f(a) = fna
n + fn−1a

n−1 + · · ·+ f1a+ f0

We can think about this geometrically by “graphing” the function in k2. (For
k = R this is the usual notion of graphing, but for C or finite fields we will have
to be more schematic.)

We explore and expand on this geometry in this section. We also make use of
the universal property of polynomial rings.

Theorem [Universal Property of k[x]] Let k be contained in some ring R. For
any a ∈ R there is a unique homomorphism from k[x] to R that takes x to a,
namely

ϕa : k[x] −→ R∑
i

fix
i 7−→

∑
i

fia
i

This map will be called the evaluation at a homomorphism.
It is important to observe the distinction between the two functions we have

just introduced. The first: given an f(x) ∈ k[x] we have a function that takes k
to k that evaluates a fixed f(x) at all elements of k. It is not a homomorphism
(except for a very special case). The second: given a ∈ k there is a homomorphism
from F [x] to k. It evaluates all f(x) at a fixed a ∈ k.

The Roots-Factors Theorem

Let’s now think of a fixed f(x) and the graph of f(x) in k2. That is, in the x-y
plane the points (x, f(x)) form the graph of f(x). The intersection of this graph
with the line y = 0 is the set of roots of f(x).

Definition 2.1. Let f(x) ∈ k[x]. An element a ∈ k is a root of f(x) when
f(a) = 0.

Theorem 2.2. Let f(x) ∈ k[x]. Then a is a root of f(x) if and only if (x− a) is
a factor of f(x). Consequently, if f(x) has degree n then f has at most n distinct
roots.
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Proof. From the Quotient-Remainder theorem f(x) = (x−a)q(x)+r(x) for unique
polynomials q(x) and r(x). We also have deg(r(x)) < deg(x−a) so r(x) is actually
a constant, r ∈ k. Now appy the evaluate at a homomorphism. We get

f(a) = (a− a)q(a) + r = r

In particular, a is a root of f(x) if and only if f(a) = 0, which is true if and only
if r = 0.

If f(x) has t distinct roots, a1, . . . , at, then it has t distinct factors (x− ai) for
i = 1, . . . , t. Then, by unique factorization, (x − a1)(x − a2) · · · (x − at) divides
f(x). Thus degree f(x) ≥ t.

Definition 2.3. We say that a is a root of multiplicity t for f(x) ∈ k[x] when
(x− a)t divides f(x) but (x− a)t+1 does not.

Let’s briefly consider the evaluation at a homomorphism for a fixed a ∈ k.

ϕa : k[x] −→ k

f(x) 7−→ f(a)

The homomorphism is surjective. By the roots-factors theorem, the kernel of this
map is the set of polynomials that are multiples of x−a. That is, the ideal 〈x− a〉.

Polynomial Rings in Several Variables

Now we consider k[x1, x2, . . . , xn]. We will default to n being the number of vari-
ables, and to be concise I will sometimes write k[x̄].

Definition 2.4. Let x1, . . . , xn be variables (more properly indeterminates, but
variables is easier to say). A monomial is a product xα1

1 xα2
2 · · ·xαn

n with each αi a
nonnegative integer. We will call α = (α1, α2, . . . , αn) ∈ Nn0 the exponent vector
for this monomial and we will use the shorthand xα for xα1

1 xα2
2 · · ·xαn

n . The total
degree of xα is |α| = α1 + · · ·+ αn.

An element of k[x̄] is a sum of terms, each term being a constant multiple of
a monomial. So, elements of k[x̄] will be written

f =
∑
α

fαx
α

Here fα ∈ k is the coefficient of xα. The sum is implicitly over a finite subset
of Nn0 . Alternatively, we may consider the sum to be over all of Nn0 , but only a
finite number of the fα are nonzero. This finiteness assumption will be implicit
whenever we write a polynomial in this way.
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Each f ∈ k[x̄] determines a function:

f : kn −→ k

b̄ 7−→ f(b̄) =
∑
α

fαb
α1
1 bα2

2 · · · b
αn
n

As with the case n = 1 discussed above, we can consider the graph of f(x̄) in
kn+1. That is, the set of (x̄, y) points (x̄, f(x̄)). Slicing it with y = 0 we get the
“zero-set” of f .

Definition 2.5. The variety defined by f ∈ k[x̄] (also called the zero-set of f) is

V(f) =
{
b̄ ∈ kn : f(b̄) = 0

}
Similarly, for any set of polynomials F

V(F ) =
{
b̄ ∈ kn : f(b̄) = 0 for all f ∈ F

}
Discussion: Properties of varieties

A simple logical argument shows the following.

Proposition 2.6. For f, g ∈ k[x̄], V(f)∩V(g) = V(f, g). More generally, for any
set F of polynomials.

V(F ) =
⋂
f∈F

V(f)

Here is another logical consequence of the definition of a variety.

Proposition 2.7. If F ⊆ G then V(F ) ⊇ F(G).

It is less clear that the union of varieties is a variety, but that is also true.

Proposition 2.8.

V(F ) ∪ V(G) = V({fg : f ∈ F and g ∈ G})

More generally, any finite union of varieties is a variety.

Proof. §1.2 Lemma 2.

Here is a weird example.

Example 2.9. Let q be a prime power. Consider xq−x ∈ Fq[x, y]. Since αq = α for
every element of Fq, the variety of xq−x is the whole plane over Fq: V(xq−x) = F2

q .
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We will generally work over infinite fields, which, as the following proposition
shows, allows us to avoid the behaviour in the example.

Proposition 2.10. For k an infinite field and f ∈ k[x̄], V(f) = 0 if and only if
f = 0.

Consequently, if f, g ∈ k[x̄] and f(ā) = g(ā) for all ā ∈ kn then f = g.

Proof. §1.1 Prop. 5. and Cor. 6.

Exercises 2.11.

(a) Varieties in k1 are finite.

(b) A finite set of points in kn is a variety.

Exercises 2.12. There are 6 ways to think of k[x, y, z] as a succession of one
variable polynomial rings k[x][y][z] or k[y][x][z] etc..

(a) Write the polynomial x2y+x2z+y3z+yz3 +y2x+x+y+z using descending
degree in each of these rings.

(b) Find a polynomial that has as few terms as possible and has a different
leading term in each of the different ways to think about k[x, y, z].

Exercises 2.13. From [CLO] Section 1.2.

(a) §1.2 #2 sketch an eliptic curve,

(b) §1.2 #4de sketch,

(c) §1.2 #5 sketch for a product ideal,

(d) §1.2 #13, 14 robot arm problems

(e) (HW) §1.2 #15d The Cartesian product of two varieties is a variety.

A final point on the ground field

Algebraic geometry is usually conducted over an algebraically closed field (at least
as a starting point) so that every polynomial in one variable factors completely
(into linear factors). We will see that this has an important impact for varieties
in higher dimensions as well.

The algebraically closed fields that we will use are C, and Fp =
⋃
n Fpn (occas-

sionally), and Q (very rarely).
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3 Algebra and Geometry: Ideals and Varieties

Ideals and some special properties of them

Definition 3.1. An ideal of a ring R is a nonempty subset I ⊆ R which is closed
under addition and closed under multiplication by an arbitrary element of R:

a+ b ∈ I if a, b ∈ I (1)

ra ∈ I if a ∈ I and r ∈ R (2)

We will say that I is an additive subgroup of R and I absorbs products. (If
a ∈ I then so is its additive inverse since (−1)a ∈ I, so I is a subgroup under
addition.)

There are 3 types of ideals that will play a prominent role in this course.

Definition 3.2. Let I be a proper ideal of R (that is I 6= R). An ideal I is
maximal if the only ideal properly containing I is R. The ideal I is prime when
ab ∈ I implies that either a ∈ I or b ∈ I. The ideal I is radical when an ∈ I for
n ∈ N implies a ∈ I.

Points and maximal ideals

In the last section we focused on the function defined by f ∈ k[x̄].

f : kn −→ k

b̄ 7−→ f(b̄) =
∑
α

fαb
α1
1 bα2

2 · · · b
αn
n

We now shift attention: for a fixed b̄ ∈ kn we have a homomorphism

ϕb̄ : k[x̄] −→ k

xi 7−→ bi

f(x̄) 7−→ f(b̄) =
∑
α

fαb
α1
1 bα2

2 · · · b
αn
n

This is a homomorphism by the universal property of polynomial rings.
The kernel of ϕb̄ is the maximal ideal 〈x1 − b1, x2 − b2, . . . , xn − bn〉. Conse-

quently, for f ∈ k[x̄] we have the equivalences

b̄ ∈ V(f)⇐⇒ f(b̄) = 0

⇐⇒ ϕb̄(f) = 0

⇐⇒ f ∈ 〈x1 − b1, x2 − b2, . . . , xn − bn〉

Thus a geometric statement—b̄ is a point of the variety defined by f—has an
algebraic analogue—f is in the maximal ideal 〈x1 − b1, x2 − b2, . . . , xn − bn〉.
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Discussion: Ideal of a set of points

We have defined the variety for any set of polynomials F ⊆ k[x̄] to be the points
b̄ in kn such that all f ∈ F vanish at b̄. The first thing we should note is that the
variety defined by a set of polynomials is equal to the variety defined by the ideal
those polynomials generate.

Proposition 3.3. V(F ) = V(〈F 〉)

As an opposite operation to V (which, given polynomials determines a set of
points in kn) we define an operator that, given a set of points determines a set of
polynomials.

Definition 3.4. Let S be a set of points in kn, the ideal defined by S is

I(S) =
{
f ∈ k[x̄] : f(b̄) = 0 for all b̄ ∈ S

}
Proposition 3.5. I(S) is not only an ideal, it is a radical ideal.

Proposition 3.6. If S ⊆ T then I(S) ⊇ I(T ).

Exercises 3.7.

(a) §1.4 #3, 5 Equality of ideals.

Discussion: Composition of I and V

Proposition 3.8.

V(I(S)) ⊇ S
I(V(F )) ⊇ F

Proposition 3.9.

I
(
V(I(S)

)
= I(S)

V
(
I(V(F ))

)
= V(F )
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4 Parametrization and Implicitization

From a practical point of view, how does one describe a set of points in kn? Listing
the points limits us to a finite set. In order to get an infinite set we might use
a parametrization. As an example over R, the set of points (cos(t), sin(t)) in the
plane satisfy the polynomial equation x2 + y2 = 1. Conversely, for any point on
x2 + y2 = 1 there is a choice of t the produces that point. The circle may also be
parametrized by ((1− t2)/(1 + t2), 2t/(1 + t2), although this parametrization does
not yield the point (−1, 0). This is not a parametrization by polynomial functions,
but it is close, we used rational polynomials.

We focus on parametrizations by polynomial or rational polynomial functions.
A key question is, how does one determine the ideal of polynomials that vanish on
the set S that is the image of the parametrization? This is called implicitization.
A second question is, are there additional points on the variety defined by the ideal,
V(I(S))?

There is also a natural reverse question. Given an ideal I in k[x̄] can we
parametrize the points V(I)? Or, perhaps “most of” them?

[CLO] §1.3 treats several examples. First, they parametrize a variety deter-
mined by linear equations. Then the treat the circle, deriving the parametriza-
tion above via a geometric argument. They give an implictly defined surface
x2 − y2z + z3, and a parametrization for it (which is derived in §1.3 problem 11.
They then describe another pametrically defined surface: the tangent surface of
the twisted cubic curve (the curve defined by the parametrization (t, t2, t3)). They
give the implicit description of the surface as a teaser for §3.3 where the techniques
for implicitization are treated in detail.

It is interesting to note the different utility of parametric vs implicit descrip-
tions. To create a point on a variety the parametric description is useful, and the
implicit description is not very useful. On the other hand, to check if a given point
ā is on a variety, the implicit description is useful and the parametric is not.

4.1. Discussion and HW problems

Here are the main problems to do to get a sense for the implicitization and
parametrization.

Implicitly and parametrically defined varieties.

(1) (HW)§1.2 #8 the punctured line is not a variety.

(2) §1.3 #4 Implicitization of a parametrized curve.

(3) §1.3 #5(b,c,d) Parametrizing the hyperbola.
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(4) (HW) §1.3 #6 Parametrizing the sphere.

(5) §1.3 #11 parametrizing x2 − y2z + z3.

(6) (HW) §1.4 #11, 12 The variety of a parametrized curve.

Implicitization and parametrization

(1) II.1 #1d ideal membership in k[x].

(2) II.1#2b Parametrize a variety described by linear equations.

(3) II.1#3b,c Find an implicit description of (the ideal of) a parametrized variety.

(4) (HW) II.1#5a-c Implicit formula for a parametrically defined curve in the
plane.

Chapter 2 of [CLO] starts with some big issues and questions concerning the
relationship between algebra and geometry. I’ve added some others. The quoted
problems are from [CLO] §2.1.

• We can understand change of coordinates as an isomorphism of polynomial
rings.

• What is the “best” way to describe a variety? (The “ideal description”
problem.)

• How can we determine if a polynomial is in a particular ideal (or vanishes
on a particular variety)? (The “ideal membership” problem.)

• Is there a way to describe the points on a variety explictly? Conic sections
can be parametrized, but not all varieties are parametrizable. ( The “solving
polynomial equations” problem.)

• Parametrization: We can understand it as a homomorphism of rings. Can
we find the ideal of a parametrized variety? (The “implicitization” problem.

• Singularities and other special points. We can understand singularities and
differentiate types of singularities algebraically.

• Intersection of varieties: We can understand intersections and tangency bet-
ter by considering algebraic properties.

• Families of curves as slices of surfaces (and ditto for higher dimension). The
“special” slices may be understood algebraically.
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