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11 Unique Factorization Extends to a Polynomial Ring

Let R be a unique factorization domain. The goal of this section is to show that
R[x] is also a unique factorization domain. We will make use of unique factorization
in K[x] where K is the field of quotients of R.

Recall that for Z and for k[x], with k a field, a key step in proving unique
factorization was to show the equivalence between irreducibility and primality.
Let us extend the definition of these concepts to an arbitrary ring.

Definition 11.1. Let R be an integral domain. We say that a divides b, written
a|b, when there is some c such that ac = b. An element p in R is prime when p|ab
implies that either p|a or p|b. An element p is irreducible when p = ab implies
that either a or b is a unit in R.

Observe that p is a prime if and only if 〈p〉 is a prime ideal.

Some comments on uniqueness of factorization

In Z, the unique factorization of an integer is upe11 · · · perr in which the pi are distinct
positive primes, the ei are positive integers, and u is 1 or −1. In k[x] we stated the
unique factorization to be u(p1(x))e1 · · · (pr(x))er in which the pi(x) are distinct
monic polynomials, the ei are positive integers, and u is a nonzero constant (an
element of k). In each case the uniqueness is up to reordering of the prime power
factors, but we did not need to worry about (2x−2)((1/2x) and (x−1)x both being
valid factorizations into irreducibles of x2−x. We chose the monic polynomial once
and for all as the one to use in a standard factorization.

Definition 11.2. Let R be an integral domain. Two elements of R are associates
if they differ by a factor that is a unit. That is, if r1, r2 ∈ R we say r1 and r2 are
associates when there is a unit u ∈ R such that r2 = ur1.

It should be clear that the relation of being associates is an equivalence relation.
Additionally, if p is irreducible in R then so are all associates of p.

Henceforth, for our unique factorization domain R we will assume that for each
equivalence class of irreducibles (under the relation of being associates) we have
chosen a unique representative that will be used in the standard factorization.
Unique factorization may then be stated as follows. Let Irr be a set of represen-
tatives for the irreducibles, containing one element from each equivalence class of
irreducible polynomials (under the relation of being associates).

Each element of R may be written in a unique way as u
∏
p∈Irr p

ep . In
which u is a unit, each ep ∈ N0, and only a finite number of the ep are
nonzero.

SDSU Fall 2022 February 21, 202338



Math 620: Groups, Rings, and Fields Michael E. O’Sullivan

The gcd of two elements a, b ∈ R is now uniquely defined. Factor each of
a, b into irreducibles and for each irreducible p take the minimum power that
divides both a and b. Multiply over all irreducibles to get the gcd. Explicitly, if
a = u

∏
p∈Irr p

dp and b = v
∏
p∈Irr p

ep , then gcd(a, b) =
∏
p∈Irr p

min(dp,ep). Similarly,

lcm(a, b) =
∏
p∈Irr p

max(dp,ep).
The field K is a unique factorization domain only in the most trivial sense;

since all nonzero elements are all units, there are no irreducibles. On the other
hand, K inherits a meaningful unique factorization because it was constructed
from R. An element of K can be written a/b with a, b ∈ R. We may express this
“in lowest terms” by factoring a and b and dividing each by their gcd. Thus, using
the factorizations in the previous paragraph, we let P = {p ∈ Irr : dp > ep} and
Q = {p ∈ Irr : dp < ep}, and then

a

b
=
a/ gcd(a, b)

b/ gcd(a, b)

= (uv−1)

∏
p∈P p

dp−ep∏
p∈Q p

ep−dp

This is in lowest terms—the numerator and denominator have no common irre-
ducible factor—and it is the unique expression of a

b in this form.

Proposition 11.3. Any element of K can be uniquely expressed in the form uab
in which u is a unit, a and b are the product of elements of Irr, and a and b are
coprime.

Proving R[x] is a UFD

As we said earlier the key step in proving unique factorization is to show the
equivalence between irreducibility and primality.

The first step, an easy one, is that one direction of the equivalence always
holds.

Proposition 11.4. In any integral domain every prime element is irreducible.

Proof. Look at the proof for Z and see that it works with little alteration.

In general rings, irreducible elements are not necessarily prime.

Example 11.5. Here is a domain in which an irreducible element may not be prime.
Consider Z[

√
−5]. One can check that 2,3, 1+

√
−5 and 1−

√
−5 are all irreducible.

One can also verify that the only units in Z[
√
−5] are ±1, so no two of these

irreducibles are associates. Here are two distinct factorizations into irreducibles
that are equal (

1 +
√
−5
)(

1−
√
−5
)

= 6 = 2 · 3
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The key element in establishing unique factorization is thus to show that when
an element of R[x] is irreducible it is also prime. To get started we will use a coarse
factorization for elements of K[x].

Definition 11.6. Let f(x) ∈ K[x] have positive degree and write its coefficients
in lowest terms

f(x) = un
an
bn
xn + un−1

an−1

bn−1
xn−1 + · · ·+ u1

a1

b1
x+ u0

a0

b0

Here each ui is a unit, ai and bi are products of elements of Irr and have no common
irreducible factor. Let A = gcd(a1, a2, . . . , an) and let B = lcm(b1, b2, . . . , bn). The
unit part of f(x) is uf = un, the content of f(x) is cf = A/B, and the primitive
part of f(x) is f∗(x) = u−1

f (B/A)f(x). Clearly we have f(x) = ufcff
∗(x).

We say f(x) ∈ K[x] is primitive when it has positive degree, and uf = cf = 1.
In particular the leading coefficient of f is a product of elements of Irr.

Since the gcd and lcm of a polynomial are uniquely defined—because Irr has a
unique representative for each associate class of irreducibles—the factorization of
f(x) ∈ K[x] into the product of its unit part, its content and its primitive part is
unique. Note also that a primitive polynomial is actually in R[x] since the lcm of
the denominators is 1.

Proposition 11.7. Let f(x) have positive degree, with content cf and primitive
part f∗(x). Then f∗(x) is a primitive polynomial. That is,

(1) f∗ ∈ R[x],

(2) cf = 1, and

(3) uf = 1.

Proof. (1) Let f(x) be written as follows with each ai
bi

in lowest terms and define
A and B.

f(x) = un
an
bn
xn + un−1

an−1

bn−1
xn−1 + · · ·+ u1

a1

b1
x+ u0

a0

b0

A = gcd(a1, a2, . . . , an)

B = lcm(b1, b2, . . . , bn)

Then

f∗(x) =
an
A

B

bn
xn + (u−1

n un−1)
an−1

A

B

bn−1
xn−1 + · · ·+ (u−1

n u1)
a1

A

B

b1
x+ (u−1

n u0)
a0

A

B

b0
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Each ai
A and each B

Bi
is an element of R by the choice of A and B, so f∗(x) ∈ R[x].

(2) We know that f∗(x) ∈ R[x], so the denominators of its coefficients are all 1.
We will show that the gcd of its coefficients is 1 by showing that for any p ∈ Irr,
p does not divide all the coefficients of f∗(x).

Let p ∈ Irr be such that p|B, and let pe be the largest power of p that divides
B. Then, for some i, pe divides bi, but pe+1 does not divide bi. We thus have
p - (B/bi). Since the coefficients of f(x) were in lowest terms, we also have p - ai.
Thus p - (aiB/bi). This shows that no irreducible that divides B divides all of the
aiB/bi. Consequently, the only irreducibles that divide all of the aiB/bi actually
divide the ai and therefore we have

gcd(a0B/b0, . . . , anB/bn) = gcd(a0, . . . , an) = A

gcd(a0B/Ab0, . . . , anB/Abn) = gcd(a0/A, . . . , an/A) = 1

(3) The leading term of f∗ is a product of irreducibles, since A, an, B, bn are.
So uf = 1.

Lemma 11.8. The product of two primitive polynomials is primitive. More gener-
ally, let f(x), g(x) ∈ K[x] both have positive degree. Then ufg = ufug, cfg = cfcg
and

(
f(x)g(x)

)∗
= f∗(x)g∗(x).

Proof. Suppose that f(x) and g(x) are both in R[x] and that they are both prim-
itive. We will show that for any p ∈ Irr there is a coefficient of f(x)g(x) that is
not divisible by p. Since p is arbitrary the gcd of all the coefficients is 1.

Since f(x) is primitive, we know that p does not divide all coefficients of f(x).
Let i be the smallest integer such that fi is not divisible by p. Similarly, let j be
the smallest integer such that gj is not divisible by p. Then the (i+j)th coefficient
of f(x)g(x) is

f0gi+j + f1gi+j−1 + · · ·+ figj + · · ·+ fi+jg0

We see that p divides every term except it does not divide figj . Thus p does not
divide the (i+ j)th term of f(x)g(x). This was what we needed to show.

Now let f(x), g(x) ∈ K[x] be arbitrary and h(x) = f(x)g(x). Then h(x) =
ufcff

∗(x)ugcgg
∗(x) =

(
ufug

)(
cfcg

)(
f∗(x)g∗(x)

)
. The first term is a unit in R,

the second term is in K and is a product of irreducibles (or their inverses). The
last term is a primitive polynomial in R(x). By the uniqueness of the factorization
into unit part, content, and primitive part we are done.

Corollary 11.9. Let m(x) ∈ R[x] have positive degree. Then
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(1) m(x) is irreducible only if it is primitive.

(2) m(x) is irreducible in R[x] if and only if it is irreducible in K[x].

(3) If m(x) is irreducible in R[x] then it is prime in R[x].

Proof. We may assume that the unit part of m(x) is 1.
If m(x) is not primitive then cmm

∗(x) is a nontrivial factorization of m(x), so
m(x) is not irreducible.

Let m(x) ∈ R[x] be primitive with degree n > 0. Any factorization of m(x) in
R[x] would involve polynomials of degree less than n and would therefore extend
to a factorization in K[x]. Thus if m(x) is reducible in R[x] then it is also reducible
in K[x].

Conversely, suppose that m(x) is reducible in K[x] with m(x) = f(x)g(x) and
both f(x) and g(x) having positive degree. Then, cmm

∗(x) = cfcgf
∗(x)g∗(x).

Bust since m(x) is primitive, cfcg = cm = 1. And m(x) = m∗(x) = f∗(x)g∗(x).
This shows that m(x) is reducible in R[x].

Finally, suppose m(x) is irreducible in R[x] and suppose m(x) divides f(x)g(x)
with both factors in R[x]. In particular, m(x) and therefore both f(x) and g(x)
are primitive. Consider this factorization in K[x]: from the previous item, m(x)
is irreducible in K[x] so, it is prime in K[x], so it must divide one of f(x) or
g(x). Suppose f(x) = m(x)h(x) is a factorization in K[x]. We have cf = cmch.
But cf = cm = 1 since f(x) and m(x) are primitive. Consequently, ch = 1 and
h(x) ∈ R[x]. Thus we have m(x) divides one factor of the product f(x)g(x) within
R[x]. This shows m(x) is prime.

Theorem 11.10. If R is a unique factorization domain, so is R[x].

Proof. Existence: The proof is similar to that for k[x]. We use induction on the
degree, starting with the factorization into irreducibles in R, which gives a base
step in degree 0. Assume we have factorization into irreducibles for polynomials
of degree less than n. Let f(x) ∈ R[x] have degree n and let its content be cf
and primitive part f∗(x). Since f(x) ∈ R, so is cf and it has a factorization into
irreducibles. If f∗ is irreducible itself we are done. If it can be factored then, since
f(x) is primitive, each factor must have degree less than n. Each of the factors
can be written as a product of irreducibles by the induction hypothesis; so f∗(x)
can also be written as the product of irreducibles.

Uniqueness: The proof is entirely analogous to that in the integers or k[x]. It
follows from the fact that all irreducibles in R[x] are prime as shown in Corol-
lary 11.9.
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Corollary 11.11. Let k be a field. The polynomial ring in n variables k[x1, . . . , xn]
is a unique factorization domain.

Proof. Induction on n.

Exercises 11.12. Discussion items

(a) Prove that every prime is irreducible in an integral domain.

(b) Explain why the “lowest terms” expression of an element of K is unique.

Representatives for the irreducibles in R[x]

We can define a set of representatives for irreducibles in R[x] by building on top of
IrrR, the set of representatives for the irreducibles in R. Let m(x) be irreducible
in R[x] of degree n > 1. We will choose a representative for the set of irreducibles
that are associates of m(x). Note that m(x) must be primitive, for otherwise it
will factor into its content times its primitive part and the content is either 1 or a
product of irreducibles in R.

Factor mn, the leading coefficient of m(x), as mn = u
∏
p∈Irr p

e
p (with each

ep nonnegative, and only a finite number nonzero, and u a unit in R). We are
allowing the possibility that the product is empty, in which case mn is a unit. We
take u−1m(x) as the representative for the associates of m(x). In other words we
require the leading term of an element of IrrR[x] to be a product of elements of
IrrR, disallowing multiplication by a unit in R.
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12 Tests for Irreducibility

Let R be a unique factorization domain and let K be its field of quotients. How can
we determine if a primitive polynomial m(x) ∈ R[x] is irreducible? We introduce
three tests for irreducibility, each is a straightforward generalization of tests (that
you may have seen at some point) for irreducibility in Q[x].

Leading coefficient and constant term

Proposition 12.1. Let m(x) = mnx
n+mn−1x

n−1 + · · ·+m1x+m0 be a primitive
polynomial of degree n in R[x]. Let r, s be coprime elements of R. Then r/s is a
root of m(x), as an element of K[x], if and only if sx − r is a factor of m(x) as
an element of R[x]. This can occur only if s|mn and r|m0.

Consequently, the search for linear factors of m(x) is narrowed to considering
those of the form sx− r for s a factor of mn and r a factor of m0.

Proof. Clearly if sx− r is a factor of m(x) in R[x] then it is also a factor of m(x)
in K[x] and consequently r/s is a root of m(x).

Suppose that r/s is a root of m(x) considered in K[x]. Then by the Roots-
Factors theorem, x − r/s is a factor of m(x) so m(x) = (x − r/s)g(x) for some
g(x) ∈ K[x]. Since m(x) is primitive and the content of x − r/s is 1/s (or some
associate of it), the content of g(x) must be s (or the appropriate associate).
Furthermore m(x) = (sx − r)(g(x)/s) is a factorization of m(x) in R[x]. Since
the leading term of m(x) is the product of the leading terms of the two factors,
s|mn. Similarly, the constant term is the product of the constant terms of the two
factors, so r|m0.

This narrows the search for a linear factor of a primitive polynomial m(x), but
it doesn’t help determine higher degree factors. For m(x) of degree 2 or 3, m(x)
is irreducible if it has no linear factor. For m(x) of degree n, m(x) is irreducible
if it has no factor of degree bn/2c or less. The following more general result can
help with higher degree.

Proposition 12.2. Let m(x) = mnx
n+mn−1x

n−1 + · · ·+m1x+m0 be a primitive
polynomial of degree n in R[x]. Suppose m(x) has a factorization in R[x] as m(x) =
a(x)b(x). Then

(1) a(x) and b(x) are primitive with degrees adding to n;

(2) the product of the leading terms of a(x) and b(x) is mn;

(3) the product of the constant terms of a(x) and b(x) is m0.
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We know that Z is a UFD and that Q[x] is a UFD. Theorem 11.10 established
that Z[x] is a UFD. It may be counterintuitive, but to prove that an m(x) ∈ Q[x]
is irreducible, it is useful to consider its primitive part m∗(x) ∈ Z[x]. Using the
previous proposition is one way. The next exercises are examples. We will treat
two other methods in the next subsections.

Exercises 12.3.

(a) For what integer values of u does y3 + uy + 2 factor in Q[x]?

(b) For what values of u(x) ∈ Q[x] does y3 + u(x)y + x factor in Q[x, y]?

Exercises 12.4.

(a) For what integer values of u does f(y) = y4+uy2+4 factor in Q[x]? Consider
separately the case when f(y) has a root, and when it factors as a product
of irreducible quadratics.

(b) For what values of u(x) ∈ Q[x] does y4 + u(x)y2 + x2 factor in Q[x, y]?
Consider separately the case when f(y) has a root in Q[x] and when it
factors as a product of irreducible quadratics.

Exercises 12.5. Use the general theorem above to show that one of the polyno-
mials over Z below is irreducible and to factor the other.

(a)

(b)

Exercises 12.6. Consider the polynomials below over F2[x]. Use Proposition ??
to factor one of the polynomials to show that the other is irreducible.

(a)

(b)

Reducing modulo a prime ideal

Given a ring R and ideal J in R, there is a natural homomorphism from R[x] to
R/J [x] that simply reduces each coefficent of a polynomial modulo J : the image
of a(x) =

∑
aix

i is ā(x) =
∑
āix

i where āi is ai + J , the congruence class of ai in
R/J .

Proposition 12.7. Let m(x) ∈ R be a primitive polynomial of degree n > 1.
Suppose that J is an ideal J in R such that mn 6∈ J . Let m̄(x) be the element of
R/J [x] obtained by reducing the coefficients of m modulo J . If m̄(x) is irreducible
then so is m(x).
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Proof. We will show the logically equivalent statement: if m(x) is reducible then
so is m̄(x). Suppose m(x) is reducible and m(x) = a(x)b(x) is a factorization in
R[x] with deg(a(x)) and deg(b(x)) both greater than 1. Note that the leading
coefficient of m(x) is the product of the leading coefficients of a(x) and b(x). Since
mn is not in J , the leading coefficients of a(x) and b(x) are not in J . Thus
deg(ā(x)) = deg(a(x)) and similarly deg(b̄(x)) = deg(b(x)).

Reducing each coefficient modulo J we have in R/J [x], m̄(x) = ā(x)b̄(x). Since
the leading coefficients of ā(x) and b̄(x) are non zero, we have a nontrivial factor-
ization of m̄(x), as was to be proved.

Exercises 12.8.

(a) Show that y4 + 7y3 + 2y2 + 1 is irreducible in Q[y].

(b) Show that y4 + (x3 + 7)y3 + x2y2 + x2 + 2x+ 3 is irreducible in Q[x, y].

Eisenstein’s criterion

Proposition 12.9 (Eisenstein). Let m(x) ∈ R[x] be a primitive polynomial of
degree n > 1. Suppose that there is a prime ideal P in R such that

(1) mn 6∈ P .

(2) mi ∈ P for i = 0, . . . , n− 1

(3) m0 6∈ P 2

Then m(x) is irreducible.

Proof. We assume m(x) satisfies the properties above and that it factors as m(x) =
a(x)b(x). We show that one of the factors is an invertible element of R (in par-
ticular, of degree 0). Since this is true for an arbitrary factorization, m(x) is
irreducible.

Since the leading coefficient of m is not in P , the leading coefficients of a(x)
and b(x) are also not in P . The constant term of m is in P but not P 2. Since
m0 = a0b0 and P is prime, exactly one of a0 and b0 is in P and the other is not.
Let us assume a0 ∈ P and b0 6∈ P . Let t be minimal such that at 6∈ P (we know
the leading coefficient of a(x) is not in P , so there exists such a t). Then we have

mt = a0bt + a1bt−1 + · · ·+ at−1b1 + atb0

Each term aibt−i is in P except the last, which is not, so mt 6∈ P . By our assump-
tions on m(x), the only coefficient not in P is mn. Thus t = n, a(x) has degree n
and b(x) has degree 0. Since m(x) is primitive, b(x) must be a unit.
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Exercises 12.10. Use Eisenstein’s criterion to show that the following are irre-
ducible polynomials

(a) In Q[y], (yp − 1)/(y − 1) (hint: substitute y = z + 1).

(b) In k[x, y], for any field k, y2 + x2 − 1 is irreducible.

(c) In k[x, y], for any field k, yn − x3 − x2 is irreducible.

Exercises 12.11. Show these are irreducible over any field.

(a) xy2 − z
(b) xy2 − z2

(c) x2 + y2 + z2 − 1 (this took me two steps)

(d) −4x3z + 3x2y2 − 4y3 + 6xyz − z2, the tangent surface to the twisted cubic.
(I couldn’t do this.)
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