

13 The Spectrum of a Ring

This section presents a more general view of algebraic geometry. We will work over a Noetherian ring R (so ideals are finitely generated), although everything here generalizes with a bit of care to arbitrary rings. As always, k is a field.

OUR “GEOMETRIC” OBJECT: THE SPECTRUM OF A RING

Definition 13.1. Let R be a ring.

$$\begin{aligned}\mathrm{Spec} R &= \{\text{prime ideals in } R\} \\ \mathrm{MSpec} R &= \{\text{maximal ideals in } R\}\end{aligned}$$

Example 13.2. Consider the following examples

- \mathbb{Z}
- $D^{-1}\mathbb{Z}$ where D is a multiplicatively closed set. Take $D = \{2^i 3^j : i, j \geq 0\}$ as a specific example.
- k
- $\mathbb{C}[x]$
- $\mathbb{R}[x]$
- $\overline{\mathbb{F}}_p[x]$
- $\mathbb{F}_p[x]$
- $\mathbb{C}[x, y]$

THE ZARISKI TOPOLOGY

We now define a topology on $\mathrm{Spec} R$. That is, a set \mathcal{A} that contains subsets of $\mathrm{Spec} R$, which are called open sets, satisfying

- (1) $\mathrm{Spec} R$ and \emptyset are in \mathcal{A} .
- (2) The intersection of two open sets is open.
- (3) The union of any collection of open sets is open.

The closed sets of the topology are just the complements, in $\mathrm{Spec} R$, of the open sets: $\mathcal{C} = \{A^c : A \in \mathcal{A}\}$.

Definition 13.3. The basic open and closed sets are defined for each $f \in R$.

$$A_f = \{P : f \notin P\}$$

$$C_f = \{P : f \in P\}$$

We define \mathcal{A} , the open sets of $\text{Spec } R$, to be arbitrary unions of the basic open sets A_f .

Exercises 13.4. The topology on $\text{Spec } R$.

- (a) Show that $A_{fg} = A_f \cap A_g$ and $C_{fg} = C_f \cup C_g$
- (b) Show that in $k[x]$, $A_f \cap A_g = A_{\text{lcm}(f,g)}$ and $A_f \cup A_g = A_{\text{gcd}(f,g)}$. (It may be easier to think about the corresponding claims for the closed sets.)
- (c) Give an example of a closed set that is not C_f for some $f \in R$ (and of an open set that is not A_f).
- (d) Show that \mathcal{A} does satisfy the requirements to be a topology.

Exercises 13.5. Examples and a more general definition for open and closed sets.

- (a) Identify the open sets in the examples in 13.2.
- (b) For an ideal I we could define $C_I = \{P : I \subseteq P\}$. Show that if $I = \langle f_1, \dots, f_s \rangle$ then $C_I = \bigcap_{i=1}^s C_{f_i}$.
- (c) If $J = \bigcap_{s \in S} I_s$ then $C_J = \bigcup_{s \in S} C_{I_s}$.

RING HOMOMORPHISMS

Recall the following propositions about prime, radical, and maximal ideals.

Proposition 13.6. Let $\varphi : R \rightarrow S$ be a ring homomorphism.

- If J is a radical ideal in S then $\varphi^{-1}(J)$ is a radical ideal in R .
- If J is a prime ideal in S then $\varphi^{-1}(J)$ is a prime ideal in R .
- If M is a maximal ideal in S and φ is surjective then $\varphi^{-1}(M)$ is a maximal ideal in R .

Consequently, $\varphi : R \rightarrow S$ defines a function

$$\begin{array}{ccc} \text{Spec } R & \xleftarrow{\tilde{\varphi}} & \text{Spec } S \\ & & \varphi^{-1}(Q) \longleftarrow Q \end{array}$$

Exercises 13.7. Analyze these examples

- (a) The natural map $k[x] \rightarrow k[x, y]$ taking x to x .
- (b) The natural map $k[x] \rightarrow k[x, y, z]$ taking x to x and y to y .
- (c) The inclusion $\mathbb{Z} \rightarrow \mathbb{Q}$.
- (d) The inclusion $\mathbb{R}[x] \rightarrow \mathbb{C}[x]$.
- (e) The map $k[x, y] \rightarrow k[x]$ taking x to x and y to 1.
- (f) The map $k[x, y, z] \rightarrow k[x]$ taking x to x and y to $y - x$ and z to 1.
- (g) Analyze the two maps and the composite map

$$k[x, y] \rightarrow k[x, y]/\langle y^2 - x^3 \rangle \rightarrow k[t]$$

Where the second map is $y \rightarrow t^3$ and $x \rightarrow t^2$.

- (h) Analyze the two maps and the composite map

$$k[x, y] \rightarrow k[x, y]/\langle y^2 - x^2 + x^3 \rangle \rightarrow k[t]$$

Where the second map is $x \rightarrow 1 - t^2$ and $y \rightarrow t - t^3$.

(See [CLO] §1.3#8 for parametrization of this curve.)

Exercises 13.8.

- (a) Show that $\tilde{\varphi}$ is continuous.