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5 Derivatives

The other main difference between k[z] and Z is the operation called the derivative.
We develop the derivative using only algebraic techniques, no limits.
We require the following properties of the derivative (with respect to z) on

(1) The derivative d maps k[z] to k[z].

(2) d(z) =

(3) Linearity: d(f + g) = d(f) + d(g).

(4) The Product Rule: d(fg) = fd(g) + gd(f).

Exercises 5.1. Using just the rules above, show the following for Q[z]:
(a) d(0) = 0 [use linearity].
(b) d(1) =0 [use the product rule].
(c) d(m) =0 for m € Z [use linearity].
(d) (HW) d(a) =0 for a € Q [use the product rule].
(e) (HW) d(az™) = ama™"! (induction, product rule).
(£) (HW) d(X,, amz™) = >0 Gmmaz™ L.

For arbitrary fields we add one more assumption:
(5) The derivative of a constant is 0.

This was proven from the properties of a derivative in Q[z] in the exercise above,
but more generally it has to be assumed. In fact, the derivative can be defined
much more generally (of a ring R relative to a subring (call it k) and derivatives
of elements of k are 0).

We will use f/(x) for the derivative of f(x).

Exercises 5.2. (HW)

(a) Show that the derivative can be extended to to k(z) and that the quotient
rule must hold (first use the product rule to establish the reciprocal rule

d(1/a(z)) = d'(x)/(a(x))?).
Exercises 5.3. (HW) Let f(z) € k[z] with k a field of characteristic 0.

(a) Suppose a is a root of multiplicity m of f. Show that a is a root of multiplicity

m — 1 of f'(x).
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(b) Suppose the unique factorization of f(z)is u(zx—ai)™ (r—a)y? - (x —ax)™.
Show that f'(z) = (z —a1)" Yz — a)p2 - (z — a)™ 'h(z). For some
h(zx) that does not have any of the a; as roots.

(c) More generally, suppose the unique factorization of f(z) is u(p1(z))™ (p2(x)) ™ - -

Show that f/(z) = (pl(x))el_l (pg(a:))eQ_1 e (pt(x))et_lh(x) for some h(x)
that is not divisible by any of the p;(z).
(d) For f € k[z] and f monic, show that rad(f) = f/ged(f, f').

Strange things happen in finite characteristic.

Exercises 5.4. Let p be prime and ¢ a power of p. We will consider derivatives
in Fpr[z].
(a) Over any field, check that the derivative map is a homomorphism of vector
spaces.
(b) (HW) Over a field of characteristic 0, the kernel is just the constant polyno-
mials. What is the kernel for F,[x]?
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6 Mason-Stothers Theorem and Fermat’s Last Theo-
rem for Polynomial rings

We can now prove the analogues of the abc-conjecture and Fermat’s Last Theorem
for k[x]. We assume the characteristic of k is 0.

MASON-STOTHERS

In the previous exercises we showed rad(f) = f/gcd(f, f). Let’s introduce the
unique factorization of f, f = u]_[’;f:l p;* with the p; irreducible, e; > 1 and u a
constant. Now introduce some notation for the radical f,., the “excess”, f, and
another term derived from the derivative that I will call f.

t
f=ullp
i=1
t
fr= sz'
i=1

: f
fe = ’LLpri_l = f—
=1

r

Taking the derivative,

t

= U(Zeipgp?_l(np?w

i—1 i
t t
= U(pri_1> (Zeip’i Hpj)
=1 =1 i
= fefk

where,
- f
fe=> e[ pi=>_ewi—
i=1 j#i i pi

Note that fi is comprime to f since for each irreducible factor p; of f, p; divides
all summands of f, except for the ith term, which it does not divide.
Now we can prove the Mason-Strothers theorem.
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Theorem 6.1. Let k be a field of characteristic 0. Let f,g,h be nonconstant
coprime polynomials in klx| satisfying f + g = h. Then

max (deg(f), deg(g), deg(h)) < deg (rad(fgh))

Proof. Note that if any two of f, g, h have a common factor of positive degree then
all do, so it is enough to assume that any two are coprime.
Taking the derivative of both sides of the equation, we have these two equalities:

frg=nh
f/ + g/ — h/
Multiplying the first by ¢’ and the second by g we have
fd +g99' = hg'
fla+gg="ng
Substracting,
fg' = Ffg=hg —hg

Now we introduce the notation defined above,

JrfeGegr — fefrgrge = hrhegegr — hehigrge
fe9e(frarx — frgr) = hege(hrgik — higr)

Observe that f, ge, he are coprime and each divides fg'— f’g, which equals hg'—h'g.
Thus

deg(fe) 4 deg(ge) + deg(he) < deg(fg’ — f'g)
Observe also that

deg(f'g — fg') < max(deg(f'g),deg(fg')) = deg(f) + deg(g) — 1

Now we substitute deg(f.) = deg(f) — deg(f,) and similarly for the others.

deg(f) — deg(f-) + deg(g) — deg(gr) + deg(h) — deg(h;) < deg(f) + deg(g) — 1

Rearranging,
deg(h) < deg(f;) + deg(gy) + deg(hr) — 1
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Using comprimality of f, g, h,

deg(f,) + deg(gr) + deg(h,) = deg(frgrhr) = deg (rad(fgh))

So
deg(h) < deg(rad(fgh)) — 1

The argument is easily reworked to show the same bounds for deg(f) and deg(g).
O

Exercises 6.2. Extend the Mason-Stother theorem to fields of finite characteristic.

(a) Let f,g,h be nonconstant coprime polynomials in k[z] satisfying f + g = h.
Then either

max deg(f), deg(g), deg(h) < deg(rad(fgh))

or each of f, g, and h has derivative 0. [hint: the key step is either f¢'— f'g =
0 or it does not equal 0.

THE ANALOGUE OF FERMAT’S LAST THEOREM

Theorem 6.3. Let k be a field of characteristic 0 and let n > 3 be an integer.
Suppose that a(t), b(t), and c(t) are three coprime polynomials in k(t) satisfying
a(t)” 4+ b(t)" = c(t)”. Then all three polynomials are constants.

Exercises 6.4.
(a) Prove FLT for polynomials using the Mason-Stother’s theorem.

(b) (HW) Show that the FLT holds for polynomials that aren’t coprime provided
a(t) and b(t) aren’t associates.

(c) )HW) Show that there do exist polynomials a(t),b(t), c(t) of positive degree
such that a(t)? + b(t)? = c(t)%
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