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7 Monomial Orderings: [CLO] §2.2

Definition 7.1. A monomial ordering < (also called a term ordering) is a
an ordering of Nn0 such that

(1) < is a total ordering: for any α, β ∈ Nn0 , exactly one of the following is true:
α < β, or α = β, or α > β.

(2) < respects addition: α < β implies α+ γ < β + γ.

(3) < is a well ordering: any nonempty subset of Nn0 has a least element.

Assume that a specific term ordering is chosen. We order monomials in k[x̄]
by applying the term ordering to the exponent vector of the monomials. For
f ∈ k[x1, . . . , xn] we will write its terms in descending term order. We use LT(f)
for the leading term, LM(f) for the leading monomial, LC(f) for the leading
coefficient, and LE(f) for the leading exponent (the exponent of the leading term).
IVA calls LE(f) the multidegree and uses mdeg(f).

The most common term orderings are lexicographic (lex), graded lexicographic
(glex or grlex), and graded reverse lexicographic (grevlex). See IVA for their
definitions.

Two articles by Robbiano, (Theory of graded structures, 1986, and Term order-
ings on the polynomial ring , 1985) classify all possible term orders. These papers
broaden the context for term orders, so are useful to discuss.

Here is a summary of the main steps used to classify monomial orderings in
Robbiano’s papers.

(1) Any term ordering on Nn0 extends in a unique way to a term ordering on Zn.

(2) Any term ordering on Zn extends in a unique way to a term ordering on Qn.

(3) Any term ordering on Qn is such that (Qn)+ (the set of elements larger than
(0, . . . , 0)) is convex, and (Qn)− (the set of elements smaller than (0, . . . , 0))
is also convex. By convex we mean that for all α, β ∈ (Qn)+, and r a rational
between 0 and 1, rα+ (1− r)β ∈ (Qn)+.

(4) The convexity property for a term order on Qn implies that the ordering is
continuous. That means ∀α ∈ Qn if there exists a neighborhood Uα such
that Uα − {α} ⊆ (Qn)+ then α ∈ (Qn)+ (and similarly for −).

(5) Thus, every ordering on Qn extends to a continuous order respecting addition
on Rn. (The extension may not be unique).
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I will just explain the first step above (the second is similar, the rest are harder).
Suppose that < is an ordering on Nn0 . Let α, β ∈ Zn (so α and β may have negative
terms). There is some γ ∈ Nn0 such that α + γ and β + γ both have positive
components (Check this!). We will say that α < β if α+γ < β+γ. Since there are
many choices for γ, we have to check consistency: α+γ < β+γ iff α+γ′ < β+γ′

for all γ′ large enough so that α+ γ′ and β + γ′ are in Nn0 . (Check this!)
Once Robbiano has shown that each term order extends to an ordering on Rn

he can make use of continuity. The result is this classfication theorem.

Theorem 7.2. Every term ordering on Nn0 is determined by some sequence
u1, u2, . . . , us ∈ Rn, in the following sense.

α < β iff there is some t ∈ {1, 2, . . . , s} such that α · ui = β · ui for
i < t and α · ut < β · ut.

The · means the dot product. In other words, α < β if α · u1 < β · u1 and
α > β if α · u1 > β · u1. If this test is inconclusive, that is α · u1 = β · u1, then use
u2 to compare. Continue on till you get a definitive answer.

We may also use matrix notation. Taking exponent vectors α, β as column
vectors, write each ui as a row vector, with ui = [ui1, ui2, . . . , uin]. Then compute

u11 u12 . . . u1n

u21 u22 . . . u2n

. . . . . . . . . . . .
us1 us2 . . . usn



α1 − β1

α2 − β2

. . .
αn − βn


If the top most nonzero term is positive then α > β if it is negative then α < β.

If there are n vectors u1, . . . un and they are linearly independent, then any
unequal α and β will be distinguished by one of these tests (Check!). It is possible
for fewer than n vectors to determine a total ordering. This is because α and β
have integer entries. An example for n = 2 is u1 = [1,

√
2]. If α and β have integer

entries and α · u1 = β · u1 then α = β.

Exercises 7.3. (HW) Monomial orderings: A menagerie (See [CLO] §2.4 #10-
12). Each of these have fairly brief answers.

(a) For n = 3, list the monomials of total degree 2 or less in increasing order for
grevlex and for grlex. Illustrate: for each, show a triangle with the monomi-
als of degree 2 and the path of increasing order.

(b) Let n = 3. For each of the monomial orderings lex, grlex and grevlex, find
vectors u1, u2, u3 which determine that ordering.
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(c) Find a total ordering on N3
0 which is determined by a single vector u1. Ex-

plain why the one vector is sufficient.

(d) Find necessary and sufficient condition(s) on the ui to ensure that a group
ordering on Nn0 is also a well-ordering and therefore a monomial ordering.

(e) Find necessary and sufficient condition(s) on the ui that ensure that a mono-
mial ordering on Nn0 has no element α that is larger than an infinite number
of other elements of Nn0 . Justify your answer.

(f) Let >1 be a monomial ordering on Nm1
0 and let >2 be a monomial ordering

on Nm2
0 . Generalize the discussion in IVA II.4#10 to define the product

order of >1 and >2.
Explain how to obtain vectors defining the product order from the vectors
defining the individual orders.

Discussion

For those that have worked with Groebner bases previously, here is a discussion
and experimentation problem in Sage. Choose a field: Q or some finite field that
might be easier to work with. Create the polynomial ring in x, y over the field
with lex y > x. Choose a set S of points in the plane (start with a small number
then increase to larger sets). Find a Groebner basis for the set of points. Look at
the Groebner basis and interpret what you see geometrically. Note that when the
points have distinct x-coordinates the geometry of the GB is simpler. Experiment
with examples in which there may be 2, 3 or even more points with the same
x-coordinate.
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8 Division in k[x̄]: [CLO] §2.3

Given a term order < on k[x̄], each f ∈ k[x̄] has a leading term. We use LT(f), for
the leading term LM(f) for the leading monomial, LE(f) for the leading exponent,
and LC(f) for the leading coefficient.

When using lex order I will write each monomial with the lowest variable on
the left and the highest on the right. This is to encourage thinking of the lex order
y > x for k[x, y] as treating the ring as a polynomial ring in y with coefficients
from k[x].

Example 8.1. Let g = 7xy2 + 5x4y + x4 + 3x2. With lex and y > x the leading
term is 7xy2 the LM is xy2 the LC is 7 the LE is (2, 1). With glex and y > x the
leading term is 5x4y the LM is x4y, the LC is 4 and the LE is (4, 1).

With lex and x > y, we can write the polynomial as 5yx4 + x4 + 3x2 + 7y2x.
The LT is 5yx4 again. At some point it may be useful to think of the polynomial
as an element of (k[y])[x], in which case the leading term would be (5y+ 1). (But
that is a diversion at this moment.)

In Section 2.3 the authors introduce a deterministic algorithm for dividing a
polynomial h by a sequence of polynomials [f1, f2, . . . , fs]. The order of the fi
impacts the result.

Exercises 8.2. Let h = x2y+xy2+y2, and let f1 = xy−1, and f2 = y2−1.

(a) In §2.3 Examples 2,4, the authors use lex order with x > y and divide h by
f1, f2, and by f2, f1. These give two different pairs of quotients and different
remainders. Call the two remainders r1 and r2. They show that r1− r2 is in
the ideal 〈f1, f2〉. (Note: I wish that, using lex with x > y, they had written
h in the form yx2 + y2x+ y2 so that each term is in the form LC ∗LM as an
element of k[y][x].)

(b) Do the same problem with lex and y > x. (Now write h in the form for
k[x][y] with descending term order and each term written LC ∗LM). Again
show that the difference of remainders is in the ideal.

Let F = [f1, f2, . . . , ft]. We will write f
h

for the remainder of h after division
by F .

Exercises 8.3. (HW) Two division problems

(a) [CLO] §2.3#5

(b) Do the same work as the previous problem, but use f1 = x2− y, f2 = xz− y
and g = x3 − x2y − x2z.

(c) [CLO] §2.3#9,10
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Exercises 8.4. Finding an element h of 〈F 〉 whose remainder upon division by F
is h itself.

(a) [CLO] §2.3 #6, 7

Exercises 8.5. Term orders and division

(a) What conditions ensure the sequences of ui and vi define the same term
order?

(b) Be able to apply the division theorem. You may get different results if you
change the ordering of the polynomials, or if you change the term order.

Note that the multivariable division algorithm is not as simple as it is with one
variable.

(1) It depends on the term order <.

(2) It depends on the ordering of the elements in F .

We would like to eliminate the dependence on the order of elements in F . As we
will see this is possible for well chosen F .
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9 Dickson’s Lemma and the Hilbert Basis Theorem

Hilbert’s Basis Theorem says that if every ideal in R is finitely generated then
every ideal in R[x] is also finitely generated. In [CLO], the Hilbert Basis Theorem
is proven for polynomial rings over a field as a straightforward consequence of
Dickson’s lemma, which says that every monomial ideal in k[x̄] is finitely generated.
Here I summarize the steps in the [CLO] treatment of Dickson’s lemma and how it
leads to the broader Hilbert Basis Theorem. I will also prove the general Hilbert
Basis theorem. The proof for the general theorem may be somewhat easier to
follow than Dickson’s lemma because the notation is a bit simpler. The structure
of the proofs is essentially the same.

Dickson’s lemma

Lemma 9.1 (Dickson: [CLO] §2.4 Theorem 5). Every monomial ideal has a
finite generating set. More precisely, for A ⊆ Nn0 there is a finite A′ ⊆ A such that

〈xα : α ∈ A〉 = 〈xα : α ∈ A′〉

Furthermore, we may take A′ so that xα - xβ for all α, β ∈ A′.

The justification for the last sentence of the theorem should be fairly clear.
If α, β ∈ A are such that xα divides xβ then any monomial divisible by xβ is
also divisible by xα so we may remove β from A and still have a generating set.
Removing all such unnecessary monomials gives the result.

In order to prove the Hilbert Basis Theorem, we introduce a term order, <.
Relative to this order we get from any ideal in k[x̄], a monomial ideal called the
ideal of leading terms (it could also be called the ideal of leading monomials).

Definition 9.2. Let < be a term order on k[x̄]. For an ideal I let LT(I) =
{LT(f) : f ∈ I}. The ideal of leading terms of I is 〈LT(I)〉.

Since leading terms are just a constant multiple of the leading monomials, we
have 〈LM(I)〉 = 〈LT(I)〉.

Dickson’s lemma says that there is a finite subset of LT(I) that generates the
monomial ideal 〈LT(I)〉. Each of these is the leading term of some polynomial in
I. Thus we have

Proposition 9.3 ([CLO] 2.5 Proposition 3). There exist g1, g2, . . . , gs ∈ I such
that 〈LT(I)〉 = 〈LT(g1), . . . ,LT(g(t)〉.

From this we get the Hilbert Basis Theorem.
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Theorem 9.4 (Hilbert Basis: [CLO] Theorem 4). Let I be an ideal in k[x̄]. Let
g1, . . . , gt be elements of I such that LT(g1), . . . ,LT(gt) generate 〈LT(I)〉. Then
I = 〈g1, . . . , gt〉.

Proof. Let A = LE(I) = {LE(f) : f ∈ I}. Then 〈LT (I)〉 = 〈xα : α ∈ A〉 and
by Dickson’s theorem there is some finite subset A′ = {α1, . . . , αt} of A such
that {xα1 , . . . , xαt} generate 〈LT(I)〉. Furthermore, the xαi are leading terms of
elements of I, say xαi = LT(gi). Now let f ∈ I. Dividing f by G we get f =
a1g1 + · · ·+ atgt + r and the remainder r has no terms divisible by any of the xαi

(terms are only placed in the remainder when they are not divisible by any leading
term of a gi). Now f −

∑
aigi = r ∈ I. If r 6= 0 then LT(r) ∈ 〈LT I)〉 so LT(r) is

divisible by some xαi . This gives a contradiction. Thus r = 0.

Hilbert Basis Theorem more generally

Definition 9.5. A ring R satisfies the ascending chain condition (ACC)
when every ascending chain of ideals stabilizes. That is, if I1 ⊆ I2 ⊆ I2 ⊆ · · ·
is an ascending chain of ideals in R indexed by N then there is some j such that
Ai = Aj for all i > j. A ring satisfying the ACC is called Noetherian after Emmy
Noether.

Proposition 9.6. Let R be a ring. R satisfies the ACC if and only if every ideal
is finitely generated.

Proof. Suppose R does not satisfy the ACC, so there is some I1 ⊂ I2 · · · with each
ideal properly contained in the next. Let K = ∪∞j=1Ij . It is straightforward to
show that K is an ideal. I claim that K is not finitely generated. Let h1, . . . , hs be
any finite set of elements in K. Each hi is an element of one of the ideals Ij so there
is some m ∈ N such that all of the hi lie in Im. Consequently, 〈h1, . . . , hs〉 ⊆ Im
and so 〈h1, . . . , hs〉 6= K.

Conversely, suppose that R contains an ideal I that is not finitely generated.
We can choose fi ∈ I inductively so that fi 6∈ 〈f1, . . . , fi−1〉. This gives a strictly
increasing sequence of ideals in R, so R does not satisfy the ACC.

Theorem 9.7 (Hilbert Basis). Let R satisfy the ACC. Then so does the polynomial
ring R[y].

Proof. Let I ⊆ R[y]. For k ≥ 0 let

Jk = 〈
{
r ∈ R : ryk is the leading term of some element of I

}
〉

One can verify that
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(1) Jk is an ideal in R.

(2) Jk ⊆ Jk+1.

This ascending chain has a greatest element, let it be Jm. We know Jm is finitely
generated so let

Jm = 〈s1, s2, . . . , sn〉

For each si let gi ∈ I have leading term siy
m. Let G = {g1, . . . , gn}.

Each Jk is finitely generated. Let’s choose p large enough so that Jk is generated
by p elements for all k < m. (If Jk is generated by fewer elements, that is ok, we
can make the extra generators 0.) Now let Jk = 〈rk1, . . . , rkp〉 and choose elements
fk1, . . . , fkp in I such that fki has leading term rkiy

k. Let Fk = {fk1, . . . , fkp}.
Now consider the ideal generated by F0 ∪ F1 ∪ · · · ∪ Fm−1 ∪ G. I claim it is

equal to I, which shows I is finitely generated. Since I was arbitrary R[y] satisfies
the ACC.

To prove the claim, take an arbitrary element h ∈ I divide it by F0 ∪F1 ∪ · · · ∪
Fm−1 ∪G. You will get 0. This proves the claim.

Corollary 9.8. For a field k, k[x̄] satisfies the ACC.

Proof. k itself does. Apply the Hilbert Basis Theorem inductively.

Exercises 9.9. Verify these claims from the material above.

(a) If I1 ⊆ I2 ⊆ I3 · · · is an ascending chain of ideals in R prove that ∪∞j=1Ij is
an ideal.

(b) Prove claims (1) and (2) in the proof of the Hilbert Basis Theorem.

Groebner Basis

The term “basis” is a bit improper in the following definition, since we commonly
think of basis in terms of vector spaces. An element of a vector space has a
unique representation as a sum of basis elements. An ideal has a generating set,
and there may be more than one way to express a given element of an ideal
as a combination of the generators. It would be more proper to use the term
generating set instead of basis, but Groebner basis is more concise and has become
the standard terminology.

Definition 9.10. Consider k[x̄] with a fixed term order <. Let I be an ideal in
k[x̄] and let G ⊆ I be such that 〈LT(g) : g ∈ G〉 = 〈LT(I)〉. Then G is called a
Groebner basis for I. If no g1, g2 ∈ G satisfy LT(g1)|LT(g2) then we say G is a
minimal Groebner basis.
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Let ∆I = Nn0 \ LE(I). We call ∆I (and the set of associated monomials) the
footprint of I.

Suppose that G is a minimal Groebner basis, that each g ∈ G is monic (LC(g)
is 1) and that for each g ∈ G all terms of g − LM(g) have exponent in ∆I . Then
G is a reduced Groebner basis.

The monomials {xα : α ∈ ∆I} form a (true) basis for k[x̄]/I as a vector space
over k.

Proposition 9.11 ( [CLO] §2.6 Proposition 1). Given f ∈ I there is a unique
g ∈ I and unique r =

∑
α∈∆(I) rαx

α such that f = g + r. Furthermore, for any
Groebner basis, G (and any ordering of G), r is the remainder when f is divided
by G.

Proof. We can divide any f ∈ k[x1, . . . , xn] by a Groebner basis G = {g1, . . . , gt}
and get f =

∑
aigi+r with remainder r having terms with exponents in ∆(I). Let

g =
∑
aigi. We have shown existence of g, r. We must show uniqueness. Suppose

f = g + r and f = g′ + r′. Then g + r − (g′ + r′) = 0 so g − g′ = r′ − r. I claim
g = g′ and r = r′. If not g − g′ ∈ I, so LE(g − g′) 6∈ ∆(I). On the other hand
LE(r − r′) ∈ ∆(I) since all terms of r and r′ have exponents in ∆(I). This gives
a contradiction, so g = g′ and r = r′.

We have also shown that r is the remainder when f is divided by G, for any
Groebner basis G.

Note: this is all based on a fixed term order!

Proposition 9.12 ( [CLO] §2.7 Proposition 6). A nonzero ideal I has a unique
reduced Groebner basis.

Proof. For existence, let G = {g1, . . . , gt} be a minimal Groebner basis. Divide
g1 by g2, . . . gt. We get g1 =

∑t
i−2 aigi + r1. Furthermore r1 ∈ I, and r1 has the

same leading term as g1 because LT(g1) is not divisible by LT(gi) for i > 1 (since
the Groebner basis is minimal). Replace g1 with r1 and we still have a minimal
Groeber basis, but no term of r1 is divisible by LT(gi) for i = 2, . . . , t. Proceed
similarly with gi for i = 2, . . . , t.

To prove uniqueness, suppose G and G′ are both reduced Groebner bases. For
g ∈ G there is a unique g′ ∈ G′ (by minimality) such that LT(g) = LT(g′). Then
g − g′ cancels the leading term so each term of g − g′ is in ∆(I). On the other
hand g − g′ ∈ I, so we must have g − g′ = 0.

These important results generalize the Division Theorem. Given a fixed term
order < for any f ∈ k[x1, . . . , xn] and ideal I, there is a unique remainder of f
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divided by I. We have also solved the ideal description problem in a satisfying
way: there is a unique reduced Groebner basis. We have an easy test for ideal
membership, divide by the Groebner basis and see if the result is 0.

The next and key question is how to compute a Groebner basis, akin to the
question for k[x]: how do we compute the gcd of two polynomials in one variable?
The answer in one indeterminate is the Euclidean algorithm. It is not so simple
with several indeterminates.

Exercises 9.13. Recall that a Groebner basis is defined relative to a fixed mono-
mial ordering <.

(a) IVA 2.3#9, 10 Implicitization of a twisted rational curve.

(b) IVA 2.6 #1, 4, uniqueness of remainder.

(c) IVA 2.5 #7, 8; 2.6 #9, 10 computation of GB.

(d) IVA 2.7 #2, 3.

(e) IVA 2.5 #9, 2.7 #9,10 linearpolynomials and GB.

(f) IVA 2.7#5-7, minimal GB.

(g) IVA 2.7#14

Exercises 9.14. Syzygy polynomials

(a) IVA 2.6#5, 6 compute the syzygy polynomial.

(b) IVA 2.6#8, 12 syzygy and monomial multiples.
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Here is some SageMath code

FF = FiniteField(19)

PF.<x,y> = PolynomialRing(FF, 2, order =’deglex’)

f = PF.random_element(2, 6)

g = PF.random_element(2, 6)

I = PF.ideal([f,g])

G= I.groebner_basis()

LMs = [g.lm() for g in G]

LEs = [m.degrees() for m in LMs]

Here is a little experiment to count the number of different

footprints for two sorta randomly generated degree 2 polynomials.

A = [(0, 3), (2, 0), (1, 1)]

B = [ (2,0), (0,2)]

cntA = 0

cntB = 0

for i in range(100):

f = PF.random_element(2, 6)

g = PF.random_element(2, 6)

I = PF.ideal([f,g])

G= I.groebner_basis()

LMs = [g.lm() for g in G]

LEs = [m.degrees() for m in LMs]

if LEs == A:

cntA = cntA +1

elif LEs == B:

cntB = cntB +1

else:

print LEs

This is a function to compute the syzygy polynomial (Spoly) of f and g.

def Spoly(f,g):

m = f.lm()

n = g.lm()

h = LCM(m,n)

return PF(h/m)*f/f.lc() - PF(h/n)*g/g.lc()
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10 Syzygy Polynomials

Definition 10.1. Let α, β ∈ Nn0 . For i = 1, . . . , n, let γi = max(αi, βi). We will
call γ = (γ1, γ2, . . . , γn) the LCM(α, β). We will also call xγ the LCM(xα, xβ).

It should be clear that LCM(xα, xβ) is the smallest monomial that is a multiple
of both xα and xβ. Using LCM for α and β is a small abuse of terminology.

Definition 10.2. Let f, g ∈ k[x1, . . . , xn]. The syzygy polynomial of f and g (also
called the S-polynomial) is

S(f, g) =
xγ

LT(f)
f − xγ

LT(g)
g

where γ = LCM(LE(f),LE(g)).

In other words, if the leading monomial of f is xα and the leading monomial
of g is xβ , then xγ is the smallest monomial divisible by both LM(f) and LM(g)

and
xγ

LT(f)
f and

xγ

LT(g)
g both have leading term xγ (the leading coefficients are

both 1). The S-poly results from taking the smallest multiples of f and g that will
give cancellation of leading terms. Thus LM(S(f, g)) < LCM(LM(f),LM(g)). Of
course if f, g ∈ I then S(f, g) ∈ I since it is a polynomial combination of f and g.

Buchberger’s algorithm

Let F = {f1, . . . , fs} and let I = 〈F 〉 be the ideal generated by F . We would like
to have

(1) a test to see if F is a Groebner basis for I, and

(2) an algorithm to compute a Groebner basis for I if F is not one.

The algorithm is essentially this: for various f1, f2 ∈ F compute S(f1, f2) then
divide the result by F and get a remainder r with no terms divisible by leading
terms of polynomials in F . Since S(f1, f2) ∈ I and we divided by F ⊆ I we must
have r ∈ I. In addtion, since we divided by F , LT(r) is not divisible by LT(f) for
all f ∈ F . If r 6= 0, we add r to our set F and repeat the process: choose two
elements of F ∪ {r}, compute their S-poly, divide by F ∪ {r} to get a remainder,
if it is nonzero throw it into our set of polynomials and continue.

Theorem 10.3 (S-poly. [CLO] §2.6 Theorem 6.). Let G = {g1, . . . , gt} be a

generating set for I. G is a Groebner basis for I iff S(gi, gj)
G

= 0 for all i, j.
Futhermore the algorithm described above terminates with a Groebner basis for

I after a finite number of steps.
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Note: h
F

means the remainder when h is divided by F where F is an ordered
set of polynomials, F = f1, . . . , ft. The symbol h→F r means that h =

∑
aifi+ r

and LE(f) ≥ LE(aifi) for all i with ai 6= 0. We’ll discuss this in class.

Exercises 10.4. (HW) Consider the ideal I generated by x − y2 and xy2 − x in
R[x, y]

(a) Using lex x > y,

(1) Find a GB for I;

(2) Identify a basis for R[x, y]/I and show how to compute the product of
two arbitrary monomials from this basis;

(3) Working over R, identify all the maximal ideals containing I;

(4) Localize at each of these maximal ideals and simplify the ideal.

(b) Redo the previoius problems using lex y > x.

(c) Redo the previous problems using glex x > y or y > x (your choice).

Exercises 10.5. Buchberger and Groebner bases

(a) II.8 #1, 2, 6, Groebner basis computations,

(b) II.8 #7 implicitization of parametrically defined surface.

(c) II.9 #1, 2 standard representation and Groebner bases.

(d) II.10 #1, 2, 3 syzygy and determinental ideals.

Exercises 10.6. Groebner basis and computations. In k[x, y, z] with the grlex
term order with x > y > z, let I = 〈g1, g2, g3, g4〉 where,

g1 = x2 − x g2 = xy − z
g3 = xz − z g4 = yz − z2

(a) Show that S(g1, g2) and S(g3, g4) reduce to 0 when divided byG = [g1, g2, g3, g4].
If you did this for all pairs gi, gj you would find that this is a Groebner basis
for I (trust me).

(b) Identify a basis for k[x, y, z]/I using this Groebner basis. It may help to
graph the leading terms of G.

(c) Write down a general element of k[x, y, z]/I.

(d) Explain how to compute in k[x, y, z]/I. In particular, show that yizj = zi+j .

(e) Show that the associated variety is the union of two lines defined by ideals
I1 and I2. Show that I1 contains I and similarly for I2.
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(f) Analyze the ring map

k[x, y, z]/I −→ k[x, y, z]/I1 × k[x, y, z]/I2

Is it injective? Is it surjective?
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