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Chapter 1

Getting Started

1.1 The Integers

What are the integers? This is not a simple question, if you want to be rigorous
about defining the integers. Formally doing so would distract from developing our
core topics, so we will take as our foundation the following. The ring of integers
Z is

• the set of natural numbers N = {1, 2, 3, . . . } along with the number 0 and
the additive inverses of the natural numbers {−1,−2,−3. . . . };

• the operation of addition (and the properties of addition we know from ele-
mentary school);

• the operation of multiplication (and the properties of multiplication we know
from elementary school);

• the ordering defined by positive numbers being greater than 0 and a > b if
and only if a− b > 0;

• properties of order related to addition and multiplication such as a > b
implies a+ c > b+ c;

• the well-ordering principle—any non-empty subset of the natural numbers
has a least element.

We may think of subtraction as either a − b = a + (−b) or equivalently (after
some argument) a− b is the the number s (which we should show is unique) such
that s+ b = a. Division will be dealt with below. While the integers are familiar
from elementary school, the well-ordering principle is not (unless you attended
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a very special elementary school!). It is actually key to the formal definition of
the integers (see the Peano axioms and [Men15]) and to mathematical induction
stripped to its essentials:

The Principle of Mathematical Induction
Let K be a subset of N satisfying these two properties

• 1 ∈ K;

• whenever a ∈ K it is also true that a+ 1 ∈ K.

Then K = N.

The well-ordering principle is easily extended to say that any non-empty subset
of the integers that is bounded below has a least element. Similarly, the principle
of induction can use any integer (instead of 1) as an initial element in the set K.

Beyond the basic properties above there are five main results for the integers
that are fundamental. For the purposes of easy reference I will call them the
Quotient-Remainder (QR) Theorem, the Greatest Common Divisor (GCD) Theo-
rem, the Euclidean Algorithm, the Prime-Irreducible Theorem (Euclid’s lemma),
and the Unique Factorization Theorem (the Fundamental Theorem of Arithmetic).
The Quotient-Remainder Theorem and Unique Factorization will be familiar; the
other results, perhaps less so. The proofs here will be concise, and just a few
exercises are included because this material is treated very well in other resources
[Hun12].

In addition to these key results about the integers we introduce modular arith-
metic in this section. Modular arithmetic creates a new algebraic structure known
as the integers modulo n (for some n > 1), which we write Z/n.

The Quotient-Remainder Theorem and Divisibility

We have implicitly used the Quotient-Remainder Theorem since elementary school,
when we computed (the unique!) quotient and remainder of two integers. The
proof relies on something sophisticated: the well-ordering principle.

Theorem 1.1.1 (Quotient-Remainder). Let a and b be integers with b ̸= 0. There
exist unique integers q, r such that

(1) a = bq + r, and

(2) 0 ≤ r < |b|.

If the remainder of a divided by b is 0, we say b divides a and a is a multiple
of b.
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Proof. We prove this for b > 0 and leave modifications necessary for the case b < 0
as an exercise. Consider the set S = {a− bc : c ∈ Z}∩N≥0. As a nonempty subset
of the nonnegative integers, it has a least element. Let r be the minimal element
of S, and let q be the integer such that r = a − bq. If r ≥ b we would have a
contradiction because then r− b ≥ 0 and r− b = a− b(q+1) would put r− b ∈ S.
Thus we must have 0 ≤ r < b. This establishes existence of q, r as claimed.

To prove uniqueness, suppose another r′, q′ satisfy (1) and (2) and suppose
without loss of generality that r ≥ r′. (We want to show that r′ = r and q′ = q.)
Then a = bq + r = bq′ + r′ so r − r′ = b(q′ − q). Now b > r − r′ ≥ 0 but b(q′ − q)
is a multiple of b. The only multiple of b in the interval [0, b) is 0, so the only
possibility is r − r′ = 0 = b(q − q)′, and therefore r = r′ and q = q′.

It is fairly common in programming languages (in particular in Python and
Sage) to write the integer quotient as a//b and the remainder as a%b. We will use
this in the exercises and the discussion of the Euclidean algorithm in this chapter.

Exercises 1.1.2. More on the Quotient-Remainder Theorem.

(a) For b > 0, show that a//(−b) = −(a//b) and a%(−b) = a%b. [Don’t let the
notation make this hard!]

(b) Prove the QR Theorem for negative integers. You can do this by carefully
going through the proof of the theorem, making minor changes. You can
also use the proof for b < 0 by applying the theorem to −b and using part
(a).

(c) Prove this alternative version of the QR Theorem. Let a and b be integers
with b > 0. There exist unique integers q, r such that

(1) a = bq + r, and

(2) −|b|/2 < r ≤ |b|/2

[There are two approaches: use the existing QR Theorem to prove the alter-
native, or prove it from scratch by redefining S and modifying the proof of
the QR Theorem.]

Let a and b be integers, at least one of which is not 0. The common divisors
of a and b are the integers that divide both a and b. The greatest common
divisor (gcd) is the largest positive integer dividing both a and b. The common
multiples of a and b are the integers that are multiples of both a and b. The
least common multiple (lcm) is the smallest positive integer that is a multiple
of both a and b.

A linear combination of a and b is an integer that can be expressed as au+bv
for some integers u and v.

Exercises 1.1.3. Properties of divisibility.
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(a) Show that if b divides a and d divides b that d also divides a.

(b) Show that if d divides a and d divides b that d also divides any linear com-
bination of a and b. (In particular, this proves Lemma 1.1.5 below.)

The following result is an important property of the integers, and not an obvious
one. It is an important tool in the study of groups. We will see echos of this result
and the proof when we study ideals in rings (Section 4.4).

Theorem 1.1.4 (GCD). Let a and b be integers, at least one of them nonzero.
The gcd of a and b is the smallest positive linear combination of a and b. In
particular, gcd(a, b) = au+ bv for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of
gcd(a, b).

Proof. Let S = {ar + bs : r, s ∈ Z} be the set of all linear combinations of a and b.
Let d be the smallest positive element of S and let u, v be such that d = au+ bv.
I claim d divides a and b.

By the QR Theorem applied to a and d, a = dq + r for some integer q and
nonnegative integer r < d. Then

r = a− dq = a− (au+ bv)q = a(1− uq)− bvq

This shows that r is also in S. But, d is the smallest positive element of S, and
0 ≤ r < d. Consequently, r = 0, so d divides a.

Similarly, one shows d divides b, so d is a common divisor of a and b. To show
it is the greatest common divisor, let c be any other common divisor of a and b.
Then c divides au+ bv = d (by divisibility properties). Since d is positive c ≤ d.

Since d divides a and b the elements of S are all multiples of d by Exercise 1.1.3.
On the other hand, any multiple of d is a linear combination of a and b since d is a
linear combination of a and b. This establishes the last sentence of the theorem.

We say two integers are coprime (or relatively prime) when their gcd is 1.
Given a and b, how do we find their gcd? The answer (for arbitrary large

integers) is not to factor each and look for common factors. Rather, use the
Euclidean algorithm.

Let’s assume a ≥ b ≥ 0. Recall that a//b is the integer quotient and a%b the
remainder as determined by the QR Theorem. Set r−1 = a and r0 = b, and define
inductively (while rk ̸= 0)

qk = rk−1//rk

rk+1 = rk−1%rk, so that

rk−1 = rkqk + rk+1.
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Rearranging these equalites by solving for rk+1, we get a sequence

r1 = r−1 − r0q0 = a− bq0
r2 = r0 − r1q1
r3 = r1 − r2q2

...

rk+1 = rk−1 − qkrk
...

rn+1 = rn−1 − qnrn = 0.

The rk are a strictly decreasing sequence of nonnegative integers, so the process
must terminate: for some n, rn+1 = 0 so rn divides rn−1. Now we make use of the
following lemma, proved using basic divisibility properties (see Exercise 1.1.3).

Lemma 1.1.5. For integers a, b, c, s such that a = bs + c, we have gcd(a, b) =
gcd(b, c).

Let’s apply this to the sequence rk, letting n be minimal such that rn+1 = 0.
We have (since rn+1 = 0)

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, rn+1) = gcd(rn, 0) = rn

This argument shows that the Euclidean algorithm produces the gcd of a and b.
In the following Sage code we only keep two of the remainders at any time, not
the whole sequence: after the kth pass through the while loop, r in the algorithm
is rk−1 and s is rk.

def euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

r = a

s = b

while s != 0:

rem = r %s

r = s

s = rem

return r
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There is a heftier Euclidean algorithm—often called the Extended Euclidean
algorithm—which produces two integers u, v such that au + bv = gcd(a, b). I like
the following matrix version of the algorithm. Let

Qk =

[
−qk 1
1 0

]
and Rk =

[
rk
rk−1

]
where the sequence rk and qk are the same as used above in the Euclidean algo-
rithm. Verify that Rk+1 = QkRk. Consequently,

Rn+1 =

[
0
rn

]
= QnQn−1 · · ·Q0R0 (1.1)

where R0 =

[
b
a

]
. Let M =

[
m1,1 m1,2

m2,1 m2,2

]
= QnQn−1 · · ·Q0. Then, after the

algorithm terminates, we have m2,1b+m2,2a = rn = gcd(a, b).
Here is Sage code for the extended Euclidean algorithm. (Note that Sage

indexes rows and columns of matrices starting from 0 not 1.) Initially M is the

2×2 identity matrix and R is the matrix

[
a
b

]
. The algorithm iteratively computes

q (which, at the kth iteration is qk−1), the quotient of m1,0 by m0,0. It forms the

matrix Q =

[
−q 1
1 0

]
and multiplies both R andM by Q. The result after iteration

k (for k = 1, . . . ), is that R is Rk and M is the product Qk−1Qk−2 · · ·Q1Q0 in
(1.1).

def ext_euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

M = matrix.identity(2)

R = matrix(2,1, [b,a])

while R[0,0] != 0:

q = R[1,0]//R[0,0]

Q = matrix(2,2,[ -q , 1, 1, 0])

M = Q * M

R = Q * R

return M

We have proven that the Euclidean algorithm terminates with the greatest
common divisor of the input integers. A bit closer analysis of the algorithm reveals
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a connection with the Fibonacci numbers and allows one to bound the number of
steps for the Euclidean algorithm. See [Ros11] for details.

Theorem 1.1.6 (Euclidean Algorithm). Let a, b be integers with b ̸= 0. The
Euclidean Algorithm outputs gcd(a, b) in at most 1 + log2 b/ logα steps, where
α = (1 +

√
5)/2 is the golden ratio. The Extended Euclidean Algorithm outputs

integers u, v with |u| < b and |v| < a such that au+ bv = gcd(a, b).

The greatest common divisor of a finite set of integers (that contains a nonzero
integer) is simply the largest integer that divides each element of the set. A simple
induction argument shows that the set of common divisors of {a1, . . . , an} is equal
to the set of common divisors of {gcd(a1, . . . , an−1), an}. To compute the greatest
common divisor of this set efficiently, one computes iteratively gcd(a1, . . . , ak) =
gcd(gcd(a1, . . . , ak−1), ak). (There are moreoptimized algorithms, but understand-
ing this approach is sufficient here.)

Exercises 1.1.7. Using the Euclidean algorithm

Express the greatest common divisor as a linear combination of the given
integers.

(a) 89, 24

(b) 24, 40, 30

Exercises 1.1.8. Extensions of the GCD theorem

(a) Given any set of integers {a1, . . . , an} their greatest common divisor may be
expressed as a linear combination d = u1a1 + . . . unan for ui ∈ Z. Prove this
using induction.

(b) Given a, b ∈ Z, characterize the set of {(u, v) ∈ Z× Z : ua+ vb = gcd(a, b)}.
That is, if (ū, v̄) is one such pair, what are all the others? [It is easiest to do
this first for a, b coprime. Then extend the result.]

(c) For the integers a = 6, b = 10, and c = 15 identify the set of all triples u, v, w
such that au+ bv + cw = gcd(a, b, c).

(d) (Much more challenging, and just to tantalize you.) Characterize the set of
integers u1, . . . , un such that a1u1+a2u2+ · · ·+anun = gcd(a1, . . . , an). Try
this for a = 2, b = 3, c = 5.

Primes, Irreducibles, and Unique Factorization

The next main result is the Fundamental Theorem of Arithmetic, which says
(roughly) that every nonzero integer has a unique factorization as a product of
primes. We will now define what it means for an integer to be prime, but it will
not be the school definition. We also define the term irreducible, which is what
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we customarily use for primality. The definitions given here are the accepted ones
in more general contexts. Fortunately, the following theorem (Euclid’s Lemma),
which I will refer to as the Prime-Irreducible Theorem shows that for integers the
notions are equivalent.

Definition 1.1.9. Let r be an integer with |r| > 1. We say r is irreducible when
r = ab implies that either a = ±1 or b = ±1 (and the other is ±r). We say r is
prime when r|ab implies r|a or r|b.

Theorem 1.1.10 (Prime-Irreducible). An integer is irreducible if and only if it is
prime.

Proof. We prove this for positive integers; minor adjustments can be made for a
negative number.

Let p > 1 be an irreducible; let us show it is prime. Suppose that p|ab for
some integers a and b. We need to show p|a or p|b. If p divides a we are done, so
suppose it does not divide a. Since p is irreducible, its only positive divisors are 1
and p, so the GCD of a and p is 1. By the GCD Theorem, there are integers u, v
such that

1 = au+ pv

Multiplying by b
b = abu+ pbv

Since p|ab we have that p divides the right hand side. Thus p divides b, as was to
be shown.

Suppose now that p > 1 is prime, we will show it is irreducible. Let p = ab be
a factorization of p. We must show one of a or b is ±1. Since p is prime and it
divides (in fact equals) the product ab it must divide one of the factors. Without
loss of generality, say p|a, so a = px for some integer x. Then p = ab = pxb, so
p(1− xb) = 0. Since p ̸= 0, we have 1− xb = 0, so x = b = ±1.

The previous theorem is the key ingredient to establishing unique factorization.

Theorem 1.1.11 (Unique Factorization). Let a be a positive integer a > 1. There
is a nonnegative integer t, there are positive prime numbers p1 < p2 < · · · < pt,
and there are positive integers e1, . . . , et, such that

a = pe11 · · · p
et
t

This factorization of a is uniquely determined.
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Proof. We prove existence first, then uniqueness, both by induction.
Clearly, any prime integer, such as 2 can be factored as claimed using t = 1 and

e1 = 1. Let us assume that all integers less than n can be factored as a product
of primes, and prove that n can also be factored as a product of primes. If n is
prime, we are done (again using t = 1, et = 1). Otherwise n = ab with a < n
and b < n. By the induction hypothesis, each of a and b can be factored as a
product of primes, let’s say there are t distinct primes involved altogether in the
factorizations of a and b. Allowing some of the exponents to be 0 we have

a = pd11 · · · p
dt
t and

b = pe11 · · · p
et
t so

n = ab =
(
pd11 · · · p

dt
t

)(
pe11 · · · p

et
t

)
n = ab = pd1+e1

1 · · · pdt+et
t

To prove uniqueness, we again note that there is only one way to factor a prime
number, since it is only divisible by itself and 1. This gives us our base step, n = 2.
Assume uniqueness of the prime factorization for all integers less than n. Suppose
n has two distinct factorizations.

n = pd11 · · · p
ds
s = qe11 · · · q

et
t

with di, ei positive. Since p1 is prime and is a factor of n it must divide one of
the factors of n in the q factorization; say p1 divides qj . But q1 is the smallest
prime among the qi, so q1 ≤ p1. An analogous argument shows p1 ≤ q1, and
consequently, p1 = qi. Dividing both sides by p1 we get n/p1 is an integer smaller
than n. It therefore has a unique factorization. Consequently, s = t and for all i,
pi = qi and di = ei.

Exercises 1.1.12. Consequences of unique factorization

Prove these statements using the Unique Factorization theorem.

(a) Every nonzero integer can be uniquely expressed in the form u2eb in which
u = ±1 , e ∈ N0 and b is odd.

(b) Every nonzero rational number a can be uniquely expressed in the form

a = upe11 · · · p
et
t

for some u = ±1, t ∈ N0, prime numbers p1 < p2 < · · · < pt, and nonzero
integers e1, . . . , et.

(c) Any rational number can be expressed in a unique way in the form a/b with
a ∈ Z and b ∈ N with gcd(a, b) = 1. We call this expressing the rational
number in lowest terms.
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Exercises 1.1.13. Extending greatest common divisor to rational numbers.

This will be easier to do using unique factorization than just the GCD the-
orem. Let {a1/b1, . . . , an/bn} be a set of rational numbers in lowest terms.
Let B = lcm {b1, . . . , bn} and A = gcd {a1, . . . , an}.

(a) Show that Bai/(Abi) is an integer for all i = 1, . . . , n .

(b) Show that gcd {Ba1/(Ab1), . . . , Ban/(Abn)} = 1. [Suppose p is a prime
dividing B, show there is some i such that p is not a factor of Bai/(Abi).]

(c) Observe that the rational number A/B is similar to the GCD. If we factor it
out of the rational numbers ai/bi we are left with a set of integers that have
no common factor.

Modular Arithmetic

Our discussion of the integers culminates with a quick summary of arithmetic
modulo an integer n. This is a model for the construction of quotient groups and
quotient rings that will be taken up later.

Definition 1.1.14. Let n be a nonzero integer. For integers a and b we say a is
congruent modulo n to b when n divides a− b.

Theorem 1.1.15. Congruence modulo n is an eqivalence relation. Furthermore,
the set {0, 1, . . . , n − 1} is a system of representatives for congruence modulo n
in the sense that each integer a is congruent modulo n to exactly one element of
{0, 1, . . . , n− 1}.

Proof. The relation of being congruent modulo n is clearly reflexive, since for any
a ∈ Z, n|(a − a). It is symmetric because if n|(a − b) then also n|(b − a). It is
transitive because if a is congruent to b and b is congruent to c modulo n then
n|(a−b) and n|(b−c). This implies that n divides the sum (a−b)+(b−c) = a−c,
by Exercise 1.1.3, so a is congruent to c modulo n.

From the Quotient-Remainder Theorem, an integer a is congruent to its re-
mainder when divided by n, since there is an integer q such that a = nq+ r. This
remainder is one of the elements of {0, 1, . . . , n− 1}. No two of these numbers
differ by a multiple of n so they are distinct modulo n.

The integers n and −n give the same equivalence relation, so we always use
positive integers for the modulus. It is common to write [a]n for the congruence
class of a modulo n, whenever we need to be careful to distinguish between the
integer a and the congruence class, or when we have more than one modulus to
worry about. If there is a unique modulus the subscript n may be omitted. If it is
clear from context that we are working modulo n, we may simply write a.

Finally we have:
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Theorem 1.1.16 (Arithmetic modulo n). Suppose that a ≡ b mod n and r ≡
s mod n. Then a + r ≡ b + s mod n and ar ≡ bs mod n. Thus, arithmetic on
congruence classes modulo n is well-defined as follows.

• [a] + [r] = [a+ r]

• [a] ∗ [r] = [ar]

Proof. Suppose that a ≡ b mod n and r ≡ s mod n. We have a = b+ jn for some
integer j and r = s + kn for some integer k. Then a + r = b + s + (j + k)n so
a+ r ≡ b+ s mod n. We also have ar = bs+ (ak + bj + jkn)n so ar ≡ bs mod n.

This shows that no matter what element of an congruence class is used to
represent the class, arithmetic operations modulo n will give the same result.

We will write Z/n for the set of congruence classes modulo n, with the opera-
tions + and ∗. (It is also common to use Zn, but Z/n is consistent with notation
we will use later.) When there is no chance of ambiguity, we write the congruence
classes as 0, 1, . . . , n − 1 (without the brackets and using the least nonnegative
representatives for each class). But, sometimes it is handy to be a bit flexible. For
example it is good to remember that n− b is equal to −b in Z/n. So (in Z/n)

b(n− 1) = (−1)b = n− b (computing in Z/n).

Exercises 1.1.17. Alternative representatives for elements of Z/n
(a) Use the Quotient-Remainder Theorem from Exercises 1.1.2 to show alterna-

tive sets of representatives for the integers modulo n are:

− n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2
for n odd, and,

− n− 2

2
,−n− 4

2
, . . . ,

n− 4

2
,
n− 2

2
,
n

2
for n even.

Exercises 1.1.18. Invertible elements in Z/n
(a) Let p be a prime number. Let [a] ∈ Z/p with [a] ̸= [0] (so a is not divisible

by p). Use the GCD Theorem 1.1.4 to show there is some r ∈ Z/p such that
[a][r] = [1].Consequently, each nonzero element of Z/p has a multiplicative
inverse.

(b) Extend this result, partially, to Z/n for composite n. If [a] ∈ Z/n is such
that the integer a is coprime to n, then there is some [r] ∈ Z/n such that
[a][r] = [1].
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1.2 Groups, Rings, and Fields

Let us now introduce our three objects of study: groups, rings, and fields. This
section will discuss some familiar number systems in the context of groups, rings,
and fields. We include also some perspective on the history of the number systems
as well as their appearance in our system of education.

Definition 1.2.1. A binary operation on a set S is a function from S × S to
S. A unary operation on S is a function from S to S. An “operation” on S is
usually assumed to be binary if not stated otherwise1.

A binary operation ∗ on S is associative when (a ∗ b) ∗ c = a ∗ (b ∗ c). It is
commutative when a∗ b = b∗a. It has an identity element when there is some
element e ∈ S such that a ∗ e = e ∗ a = a for all a ∈ S.

A group has one binary operation, generally denoted ∗, while rings and fields
have two binary operations, generally denoted + and ∗.

Definition 1.2.2. A group is a set G with a binary operation ∗ and a unary
operation, denoted a 7−→ a−1, satisfying the following properties.

(1) Associativity of ∗.

(2) Identity for ∗: There is an element, generally denoted e, such that e ∗ a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

Definition 1.2.3. A ring is a set R, with two operations + and ∗ that satisfy the
following properties.

(1) Associativity for both + and ∗.

(2) Commutativity for both + and ∗.

(3) Identity elements for both + and ∗. There is some element in R, that we
call 0, such that a+ 0 = a and there is an element, that we call 1, such that
a ∗ 1 = a.

1One can define ternary (S × S × S −→ S) and, more generally, n-ary operations, but we will
have no use for these.
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(4) Inverses for +. For each a ∈ R there is some other element, which we write
−a, such that a+ (−a) = 0.

(5) Distributivity of ∗ over +. That is, a ∗ (b+ c) = a ∗ b+ a ∗ c.

A field is a ring with one additional property,

(6) Inverses for ∗. For each nonzero a ∈ R there is some other element, that we
write a−1, such that a ∗ a−1 = 1.

Comparing these definitions, one sees that a ring R under the operation +
is an abelian (commutative) group with identity element 0 and additive inverse
operation a 7−→ −a. Under the operation of multiplication, ∗, a ring may lack the
property of inversion. A field F is an abelian group under + and the set of nonzero
elements, F ∗ = F \ {0}, is an abelian group under ∗. The interaction between the
two operations of + and ∗ for both rings and fields is given by the distributive
property.

Now to the question: what examples do we have of groups, rings, and fields?

Familiar Rings and Fields

The first number system that a child learns in school is the natural numbers
N = {1, 2, 3, 4, . . . }, and eventually this is expanded to the integers by including 0
and the additive inverse of each positive integer. The integers, denoted Z, are an
abelian group under addition. Once the operation of multiplication as repeated
addition is introduced, we have the first example of a ring. The integers in fact
form the prototypical ring, as we shall see in Theorem 4.2.13.

Students in elementary school—the lucky ones—may also learn “clock arith-
metic” in which addition is done on a clock, so 8:00 plus 7 hours is 3:00. This is
essentially modular arithmetic with modulus 12 (although we usually use repre-
sentatives 1:00, 2:00, . . . , 12:00 rather than using 0:00, 1:00, . . . , 11:00). We saw in
Section 1.1 that multiplication is also well defined modulo n, and one can check
that the properties of a ring are satisfied. We will denote this number system Z/n
(although Zn is also commonly used).

The next step in mathematics education is to expand this integer number sys-
tem. The integers do not form a field since the only numbers with a multiplicative
inverse in Z are ±1. There is a complicated process that enlarges the set of integers
by adding fractions to create the rationals, Q. I say the process is complicated
because lots of people have trouble understanding fractions well, and a key part
of the problem is that a given number has an infinite number of different names:
1/2 = 2/4 = 3/6 = · · · . The process of forming fractions can be generalized to
other rings, but it has delicate and subtle steps involving equivalence relations.
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When you see the construction in Section 4.7 you may appreciate that these sub-
tleties are closely tied to the difficulties people have with fractions.

There are two other fields that are introduced in secondary school education,
although they are challenging to understand fully: the real numbers R, and the
complex numbers C. Formally defining the real numbers is a sophisticated process,
but treating R as the set of all decimal numbers (including infinite non-repeating
ones) and imagining numbers as points on the number line is a way to work with
them effectively enough to do most college level mathematics.

We won’t have much need for the real numbers, but the relationship be-
tween the reals and the complex numbers is something that is key to study-
ing fields in general. The complex numbers are lightly treated in secondary
school by “imagining” a number i whose square is −1. The complex numbers
are those of the form a + bi in which a, b ∈ R. Addition is “componentwise,”
(a+ bi)+ (c+ di) = (a+ c)+ (b+ d)i, and the additive inverse of a+ bi is −a− bi.
Multiplication is based on i2 = −1: (a+ bi) ∗ (c+ di) = (ac− bd)+ (ad+ bc)i. One
can check that (a− bi)/(a2 + b2) is the multiplicative inverse of a+ bi. With these
operations, C is a field.

In the discussion of the complex numbers above, there was actually no need
to use real numbers for a, b, c, d. We could have restricted them to be rational
numbers and the statements about addition, multiplication and inverses would
still hold true. Thus we can introduce a field derived from Q that includes i and
uses the rules above for addition, multiplication, and the inverses for each. We call
this field the Gaussian rationals and denote it Q(i).

There is one other field that is accessible to those who have learned “clock
arithmetic,” (essentially arithmetic modulo 12 as noted above). If our clock had
a prime number p of positions, the arithmetic would be in Z/p. It was shown
in Exercise 1.1.18 that every nonzero element in Z/p has a multiplicative inverse,
thus Z/p is a field. When we focus on this modular ring as a field we will write
it as Fp, instead of Z/p. Thus we have our slate of elementary fields, Q, Q(i) and
Fp, supplemented if we want by R and C.

Each of these fields is of course a ring. Our collection of rings that are not fields
includes Z and Z/n for n not a prime. We may supplement it by the Gaussian
integers

Z[i] = {a+ bi : a, b ∈ Z}

It is routine to check that this is a ring. Notice that there are 4 elements that have
multiplicative inverses, ±1,±i.

All of our rings are groups under addition and we can study them as groups
by “forgetting” the multiplicative structure (“forget” is actually a term used by
mathematicians in this context!) We also obtain a few other examples of groups
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Figure 1.1: The Pentagon

by looking at the nonzero elements of a field under multiplication. These are
the nonzero rationals, denoted Q∗, the nonzero elements of Q(i), and the nonzero
elements of Fp, denoted F∗

p (and similarly for R and C).
But what about a group that doesn’t involve ignoring one of the operations on

a ring? In particular, so far, we have no examples of groups in which the operation
is not commutative.

The Dihedral Groups, Dn

Group theory actually arose from the study of transformations that preserve the
structure of a mathematical objects. The symmetry of physical objects is perhaps
the easiest entry point.

Consider a regular pentagon, as in Figure 1.1. Imagine a table with a pentagon
carved into it and a clear pentagon that fits neatly into the enclosure. Enumerate
the “base points” on the table and the vertices of the pentagon as shown.

Rotation counter-clockwise about the center by 72◦ takes the pentagon to itself.
Only the enumeration of the vertices would indicate that a change occured. Calling
this rotation r, we can see there are 5 rotational symmetries, which are rotation
by 72◦, 144◦, 216◦, 288◦ and 360◦. The latter has the same result as not moving
the pentagon at all. This set of rotations is a group where the operation is just
doing one rotation followed by another. Thinking of rotation as a function, we are
composing functions. We may write these rotations as r, r2, r3, r4 and r5; the latter
having the same effect as not moving pentagon at all, so r5 = r0 is the identity
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element. It should be clear that ri ∗ rj = ri+j . This group has 5 elements and
“looks a lot like” Z/5 under addition. (It is isomorphic to Z/5, see Section 2.3.)

There is another type of symmetry indicated by the dashed line. For each
vertex of the pentagon 0, . . . , 4 there is a line through that vertex and the midpoint
of the opposite side that is an axis of symmetry for reflection. Let ti be the
reflection across the line at vertex i. We now have 10 symmetries of the pentagon:
the identity, 4 non-trivial rotations, and 5 reflections. I claim these are the only
symmetries. There are 5 possible places to put vertex 1; but then vertex 2 must be
one notch away, either clockwise or counterclockwise. The positions of the other
vertices are then determined by the rigidity of the pentagon. So there are only
10 possibilities. Notice also that after a rotation, the ordering of the pentagon
vertices increases clockwise, but after a reflection the numbers of the pentagon
vertices increase counterclockwise (and the numbers on the pentagon would be
reversed as in a mirror).

Now let’s consider the group operation: what happens when we follow one
symmetry by another? To get started we must address some ambiguities in how
we define rotation and reflection when the pentagon is not in the original position
as in Figure 1.1. We adopt the following conventions:

• The rotation r is rotation of vertex i of the pentagon to the position of
vertex i−1, so it is counter-clockwise when the enumeration on the pentagon
increases clockwise and clockwise when the enumeration on the pentagon
increases counter-clockwise (as it is after a reflection).

• A reflection ti is reflection across the line through the ith vertex of the
pentagon, not the label i on the table.

• The product r∗ti means reflect then rotate. As is customary using functional
notation, we apply the function on the right first.

Figure 1.2 shows the two computations, t0 ∗ r = t2 and r ∗ t0 = t3. These are
unequal, so these computations show that we have our first example of a nonabelian
group. It is called the dihedral group of order 5, and written D5.

Definition 1.2.4. For n ≥ 3, the dihedral group of order n, written Dn, is
the group of symmetries of a regular n-gon. In addition to the identity, there
are n − 1 rotations and n reflections. The group operation is composition of the
transformations.

One can verify, in a similar manner to that above, that Dn is nonabelian for
all n. Our initial example could have been D3 or D4 rather than D5. We did
not choose D3 because it is equal to the symmetric group, S3 (see below), and we
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(d) After rt0 = t3

Figure 1.2: The pentagon after various transformations
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Figure 1.3: The Four Reflectional Symmetries of the Square

wanted the first example to distiguish between the symmetric and dihedral groups.
We did not choose D4 because there is a subtle complication with the notation
when n is even. The reflections on D4 (and for other even n) are not nicely indexed
by the vertices. Some reflections go through a pair of vertices, the other reflections
go through midpoints of opposite sides, as illustrated in Figure 1.3

We can consider each of the symmetries of the pentagon as a function on Z/5
that assigns to the base point a on the table the index of the pentagon vertex
at position a after applying the symmetry. So r(a) = a + 1, and ri(a) = a + i
(computing modulo 5). The following exercise develops this example in more
detail.

Exercises 1.2.5. Formulas for the products in D5

We will use arithmetic in Z/5 with the system of representatives 0, 1, 2, 3, 4.

(a) Observe that the reflection ti applied to the original position of the pentagon
(in Figure 1.1) switches i+1 with i−1 and i+2 with i−2 where computations
are modulo 5. Show that when ti is applied to the original position of
the pentagon the vertex at base point a is 2i − a. We can write this as
ti(a) = 2i− a.

(b) Explain why the product of two reflections is a rotation, and find a formula
for ti ∗ tj(a).

(c) Show that r ∗ ti = ti+3 by arguing that rti is a reflection and that, applied
to the pentagon in the original position, it takes i+ 3 to itself.

(d) Find a formula for rj ∗ ti; that is, give a function of Z/5 [Hint: linear] for
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rj ∗ ti(a). Do the same for ti ∗ rj .

The Symmetric Groups, Sn

Recall that a function from one set to another is a bijection when it is both injective
(one-to-one) and surjective (onto). If f : A −→ B is a bijection, then there is a well-
defined inverse function, f−1, since each element of B has exactly one preimage. If
f : A −→ A is a bijection from A to itself then we say f permutes the elements of
A; it rearranges them in a sense. We are particularly interested in the case when
A is a finite set, even more specifically the set {1, 2, 3, . . . , n}. In this case it is
convenient to write a permutation as a table with the columns i, f(i). Here are
two examples (it is common to use Greek letters to denote permutations).

σ =

(
1 2 3
1 3 2

)
π =

(
1 2 3
2 3 1

)
Here σ(1) = 1, σ(2) = 3 and σ(3) = 2.

This tabular format makes it evident that there are n! permutations of a set
with n elements: There are n choices for the image of 1, call it a1 ∈ {1, . . . , n},
then there are n−1 possible images for 2, since it must be in {1, . . . , n}\{a1} and
so on. The table would then be(

1 2 3 . . . n
a1 a2 a3 . . . an

)
The tabular form indicates the sense in which a permutation is a rearrangement,
with a1 now being in the first position, a2 in the second, and so on.

Since the composition of two bijections from A to itself is itself a bijection from
A to itself, composition is an operation on the set of permutations. The inverse of
a permutation is also a permutation. Thus we can make the following definition.

Definition 1.2.6. Let n be a positive integer. The set of all permutations of
{1, 2, 3, . . . , n} along with composition and the unary operation that takes a per-
mutation to its inverse function is called the symmetric group on {1, . . . , n} and
is denoted Sn. We will write composition of permutations using ◦ when empha-
sizing that permutations are functions, but generally we use ∗, which is the usual
notation for a product in groups.

For n = 1 the symmetric group has just 1 element, and for n = 2 it has two.
The group S3 has 6 elements. Three of these elements fix exactly one element, as
σ does, and are called transpositions. The other two are π and π−1 = π ◦π. These
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are called 3-cycles. The symmetric groups Sn for n ≥ 3 are nonabelian. One can
compute π ◦ σ and σ ◦ π and see that they are unequal (applying the right hand
function first is our convention).

π ◦ σ =

(
1 2 3
2 1 3

)
σ ◦ π =

(
1 2 3
3 2 1

)
The symmetric groups will be discussed in detail in Section 2.5.
An astute reader has perhaps noticed that the discussion of D5 yielded a per-

mutation of {0, 1, 2, 3, 4} for each element of D5. Allowing ourselves to let S5 be
the permutation group of {0, 1, . . . , 4} for the moment, we have essentially given
a function of D5 into S5. Using a bit of Exercise 1.2.5 (and computing in Z/5) we
have;

rj 7−→
(
0 1 2 3 4
j 1 + j 2 + j 3 + j 4 + j

)
ti 7−→

(
0 1 2 3 4
2i 2i− 1 2i− 2 2i− 3 2i− 4

)
.

One can check that composition of the linear functions from Exercise 1.2.5 agree
with the composition of the permutations; we are just composing functions.

In the terminology of the next chapter, we have given a homomorphism (Sec-
tion 2.3) from D5 to S5 and the image is a subgroup of S5 (Section 2.1).

Symmetry of Other Objects

The aesthetic appeal of symmetrical objects seems to be universal in human cul-
ture. The following images, some purely geometric, and some from artwork of
various civilizations, show how rich the notion of symmetry can be. How does one
describe the symmetry group of each of these objects? How does one understand
the structure of these groups? These are questions that I hope will motivate the
next two chapters.

A discussion of frieze patterns
Several examples of frieze patterns
Wikipedia article on symmetric tilings of the plane.
Wikipedia article on symmetric tilings of other the sphere and hyperbolic plane
Alhambra mosaics
A source for lots of art work with symmetry from ancient and modern times.
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Figure 1.4: The cube has rotational symmetry along three axes: each going through
the center of opposite faces.

www.craftsmanspace.com

Figure 1.5: Some Frieze Drawings: Imagine these extending infinitely in both
directions

www.craftsmanspace.com

Figure 1.6: More Frieze Drawings: Imagine these extending infinitely in both
directions
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www.craftsmanspace.com

Figure 1.7: Some Mosaic Drawings: Imagine these extending infinitely to cover
the plane

1.3 The Univariate Polynomial Ring over a Field

Let F be a field, in particular, we may consider F to be Q, Fp, or any of the
other fields discussed in the Section 1.1. By F [x] we mean the polynomial ring in
the indeterminate x. The key theme of this section is that everything is that all
the theorems we discussed for integers in Section 1.1 also hold—with appropriate
modifications—for the polynomial ring over F . These are the Quotient-Remainder
(QR) Theorem, the Greatest Common Divisor (GCD) Theorem, the Euclidean Al-
gorithm, the Prime-Irreducible Theorem, and the Unique Factorization Theorem.
This close relationship between Z and F [x] is such an important theme in algebra
and number theory that I want to lay out the fundamentals in detail in this section,
which parallels substantially Section 1.1.

We can think of the polynomial ring consisting of two binary operations.

• It is a vector space over F with an infinite basis 1, x, x2, . . . , and componen-
twise addition;

• It has a multiplicative structure defined by xi ∗ xj = xi+j and the proper-
ties of commutativity, associativity and distributivity of multiplication over
addition.

The result is thus a ring.
Sometimes it is useful to write a polynomial b(x) ∈ F [x] as a sum b(x) =∑∞

i=0 bix
i with the understanding that only a finite number of the bi are nonzero.

When all of the bi = 0 we get the zero polynomial. Suppose b(x) ̸= 0 and let
δ be the largest integer such that bδ ̸= 0. We call δ the degree of b(x); bδx

δ is
the leading term of b(x); xδ is the leading monomial of b(x); and bδ is the
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leading coefficient of b(x). If bδ = 1 we say b(x) is monic. When δ = 0 we say
b(x) is a constant polynomial. The zero polynomial is also considered a constant
polynomial and the degree is sometimes defined to be −∞.

The product of a polynomial a(x) of degree γ and b(x) of degree δ has degree
γ + δ. Rules for divisibility of polynomials are similar to those for the integers.
In particular if a(x) divides b(x) and b(x) divides c(x) then a(x) divides c(x).
Furthermore if d(x) divides both a(x) and b(x) then it divides their sum (and also
any multiple of either a(x) or b(x)).

The Quotient-Remainder Theorem and Divisibility

The following lemma simplifies the proof of the Quotient-Remainder Theorem. It
is worth remarking that we are using the properties of a field when we divide by
bγ .

Lemma 1.3.1 (Division). Let a(x) and b(x) be in F [x] with degrees γ and δ
respectively and γ > δ. Then the degree of a(x)− aγ

bδ
xγ−δb(x) is less than γ.

Proof. This is a straightforward computation.

a(x)− aγ
bδ
xγ−δb(x)

= aγx
γ + aγ−1x

γ−1 + · · ·+ a1x+ a0

− aγ
bδ
xγ−δ

(
bδx

δ + bδ−1x
δ−1 + · · ·+ b1x+ b0

)
= aγx

γ + aγ−1x
γ−1 + · · ·+ a1x+ a0

−
(
aγx

γ +
aγbδ−1

bδ
xγ−1 + · · ·+ aγb1

bδ
xγ−δ+1 +

aγb0
bδ

xγ−δ
)

=
(
aγ−1 −

aγbδ−1

bδ

)
xγ−1 +

(
aγ−2 −

aγbδ−2

bδ

)
xγ−2 + · · ·

The leading terms of a(x) and
aγ
bδ
xγ−δb(x) cancel and the result has degree less

than γ.

Theorem 1.3.2 (Quotient-Remainder). Let a(x) and b(x) be elements of F [x]
with b(x) ̸= 0. There exist unique q(x), r(x) such that

(1) a(x) = b(x)q(x) + r(x), and

(2) deg r(x) < deg b(x).
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Proof. Consider the set S = {a(x)− b(x)c(x) : c(x) ∈ F [x]}. The set of degrees
of the elements of S is a nonempty subset of the nonnegative integers, so it has
a least element, δ. There is some polynomial of degree δ in S, call it r(x), and
suppose r(x) = a(x)− b(x)q(x). I claim deg(r(x)) < deg(b(x)). Suppose not. Let
γ = deg(r(x)) and δ = deg(b(x)). Apply Lemma 1.3.1 to r(x) and b(x) to get

r(x)− rδ
bγ
xγ−δb(x) = a(x)− b(x)q(x)− rδ

bγ
xγ−δb(x)

= a(x)− b(x)(q(x) + rδ
bγ
xγ−δ).

This is also in S and by Lemma 1.3.1 has lower degree than r(x). This contradicts
our choice of δ as the lowest degree of elements in S. Consequently, we must have
deg(r(x)) < deg(b(x)). This establishes existence of q(x) and r(x) as claimed.

To prove uniqueness, suppose another r′(x), q′(x) satisfy (1) and (2). (We want
to show they are equal to r(x) and q(x)!) Then

a(x) = b(x)q(x) + r(x) = b(x)q′(x) + r′(x) so

r(x)− r′(x) = b(x)
(
q′(x)− q(x)

)
.

The degree on the left hand side is strictly less than the degree of b(x). Since the
right hand side is a multiple of b(x), it must in fact be 0. Thus r(x) = r′(x) and
q(x) = q′(x).

The greatest common divisor of two integers was easy to define since the in-
tegers are well ordered. It is not obvious that, among the common divisors of
a(x), b(x) ∈ F [x], there is just one monic divisor of maximal degree. The following
theorem shows the gcd can be uniquely defined and extends the GCD Theorem to
polynomials. A polynomial combination of a(x) and b(x) is a polynomial that
can be expressed as a(x)u(x) + b(x)v(x) for some u(x), v(x) ∈ F [x].

Theorem 1.3.3 (GCD). Let a(x), b(x) ∈ F [x] with at least one of them nonzero.
There is a unique polynomial d(x) satisfying

(1) d(x) is a common divisor of a(x) and b(x),

(2) d(x) is monic,

(3) d(x) is divisible by all other common divisors of a(x) and b(x) (so it is the
greatest common divisor).

Furthermore, there exist u(x), v(x) ∈ F [x] such that d(x) = a(x)u(x) + b(x)v(x).
The set of all polynomial combinations of a(x) and b(x) equals the set of multiples
of d(x).
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Proof. Let S = {a(x)s(x) + b(x)t(x) : s(x), t(x) ∈ F [x]} be the set of all polyno-
mial combinations of a(x) and b(x). Let d(x) be a nonzero polynomial of minimal
degree in S and let u(x), v(x) be such that d(x) = a(x)u(x) + b(x)v(x). We may
assume that d(x) is monic, since any constant multiple of a polynomial in S is also
in S. I claim d(x) divides a(x) and b(x).

By the QR Theorem applied to a(x) and d(x), a(x) = d(x)q(x)+ r(x) for some
q(x) and r(x) in F [x] with deg(r(x)) < deg(d(x)). Then

r(x) = a(x)− d(x)q(x)
= a(x)−

(
a(x)u(x) + b(x)v(x)

)
q(x)

= a(x)
(
1− u(x)q(x)

)
− b(x)v(x)q(x)

This shows that r(x) is also in S. If it were nonzero, it could be multiplied by a
constant to get a monic element of S with lower degree than d(x), which contradicts
the choice of d(x). We can thus conclude that r(x) = 0, and consequently d(x)
divides a(x).

Similarly, one shows d(x) divides b(x). Thus d(x) is a common divisor of
a(x) and b(x). To show it is the greatest common divisor, let c(x) be any other
common divisor of a(x) and b(x). Then c(x) divides a(x)u(x) + b(x)v(x) = d(x)
(by divisibility properties) as claimed.

Finally, we note that the set S (which we defined to be the set of polynomial
combinations of a(x)) is also the set of multiples of d(x). Since d(x) divides each
of a(x) and b(x) it will divide any polynomial combination of a(x) and b(x) by
divisibility properties. On the other hand, since d(x) is a polynomial combination
of a(x) and b(x), any multiple of d(x) is also a polynomial combination of a(x)
and b(x) and therefore in S.

The proof of the theorem can be adapted for any set of polynomials P ⊆ F [x].
One can show that the smallest degree monic polynomial that can be expressed as
a combination of the elements of P actually divides all the elements of P .

The discussion of the Euclidean algorithm for integers carries over almost ver-
batim to F [x]. We use a(x)//b(x) for the polynomial quotient and a(x)%b(x) for
the remainder of division of a(x) by b(x).

Assume deg(a(x)) ≥ deg(b(x)). Set r−1(x) = a(x) and r0(x) = b(x), and define
inductively (while rk(x) ̸= 0)

qk(x) = rk−1(x)//rk(x)

rk+1(x) = rk−1(x)%rk(x), so that

rk−1(x) = rk(x)qk(x) + rk+1(x).
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Rearranging these equalites by solving for rk+1(x), we get a sequence

r1(x) = r−1(x)− r0(x)q0(x) = a(x)− b(x)q0(x)
r2(x) = r0(x)− r1(x)q1(x)
r3(x) = r1(x)− r2(x)q2(x)

...

rk+1(x) = rk−1(x)− qk(x)rk(x)
...

rn+1(x) = rn−1(x)− qn(x)rn(x) = 0.

We note that deg(rk(x)) is a strictly decreasing sequence of nonnegative integers.
The process must terminate: for some n, rn+1(x) = 0. Now we make use of the
following lemma, proved using basic divisibility properties.

Lemma 1.3.4. For polynomials a(x), b(x), c(x), s(x) in F [x] that satisfy a(x) =
b(x)s(x) + c(x), we have gcd(a(x), b(x)) = gcd(b(x), c(x)).

Let’s apply this to the sequence rk(x), letting n be minimal such that rn+1(x) =
0. We have (since rn+1(x) = 0)

gcd(a(x), b(x)) = gcd(b(x), r1(x)) = · · · = gcd(rn(x), rn+1(x)) = gcd(rn(x), 0) = rn(x)

This argument shows that the Euclidean algorithm produces the gcd of a(x) and
b(x).

Exercises 1.3.5. Using the Euclidean algorithm

Express the greatest common divisor of these two polynomials as a polyno-
mial combination of them.

(a) f = x4 + x2 and g = x3 + 1.

(b) f = x6 + 1 and g = x4 + x3 + x2 + 1 as elements of F2[x].

Primes, Irreducibles and Unique Factorization

Let r(x) ∈ F [x] have degree at least one. As with integers, we say r(x) is irre-
ducible when it can’t be factored in a nontrivial way: whenever r(x) = a(x)b(x)
either a(x) or b(x) is a constant (that is, in F ). We say r(x) is prime when
r(x)|a(x)b(x) implies r(x)|a(x) or r(x)|b(x).

As with integers, we have the equivalence of primality and irreducibility, which
is a key step towards proving unique factorization.
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Theorem 1.3.6 (Prime-Irreducible). Any nonconstant element of F [x] is irre-
ducible if and only if it is prime.

Proof. Let r(x) ∈ F [x] be irreducible; let us show it is prime. Suppose that
p(x)|a(x)b(x) for some a(x) and b(x) in F [x]. We need to show p(x)|a(x) or
p(x)|b(x). If p(x) divides a(x) we are done, so suppose it does not divide a(x).
Since p(x) is irreducible, the GCD of a(x) and p(x) is 1. By the GCD Theorem,
there are polynomials u(x), v(x) such that

1 = a(x)u(x) + p(x)v(x)

Multiplying by b(x)

b(x) = a(x)b(x)u(x) + p(x)b(x)v(x)

Since p(x)|a(x)b(x) we have that p(x) divides the right hand side, and consequently
p(x) divides b(x). Thus we have shown that p(x) is prime.

Suppose now that p(x) is prime; we will show it is irreducible. Let p(x) =
a(x)b(x) be a factorization of p(x). We must show one of a(x) or b(x) is a constant.
Since p(x) is prime and it divides (in fact equals) the product a(x)b(x) it must
divide one of the factors. Without loss of generality, say p(x)|a(x). We then have
deg(a(x)) ≥ deg(p(x)). On the other hand, since p(x) = a(x)b(x) we have by
additivity of degrees for a product of polynomials,

deg(p(x)) = deg(a(x)) + deg(b(x)) ≥ deg(a(x))

We conclude that deg(p(x)) = deg(a(x)) and deg(b(x)) = 0. Thus b(x) is a
constant.

Finally, we can establish uniqueness of factorization. The proof differs slightly
from the proof for integers.

Theorem 1.3.7 (Unique Factorization). Let a(x) ∈ F [x] be nonzero. There is
a nonnegative integer t, a constant u ∈ F , distinct monic irreducible polynomials
p1(x), . . . , pt(x), and positive integers e1, . . . , et such that

a(x) = u
(
p1(x)

)e1 · · · (pt(x))et
Each of t, pi(x), ei and u is uniquely determined, up to reordering of the pi(x)

ei.

Proof. We prove existence first, then uniqueness, both by induction on the degree
of a(x). Clearly, a polynomial of degree one cannot be factored as a product of
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polynomials of positive degree, since the degree of a product is the sum of the
degrees of the factors. Thus a polynomial of degree one is irreducible and has a
unique factorization a1x + a0 = a1(x + a0/a1). This gives the base step for both
existence and uniqueness.

Let us assume that all polynomials of degree less than n can be factored as a
product of a constant and monic irreducibles, and prove that any polynomial a(x)
of degree n can also be factored in this way. If a(x) is irreducible, we are done (again
using t = 1, et = 1 and factoring out the leading coefficient). Otherwise a(x) =
b(x)c(x) with both b(x) and c(x) having degree less than n. By the induction
hypothesis, each of b(x) and c(x) can be factored as a product of irreducibles, let’s
say there are t distinct irreducible polynomials involved altogether in factorizations
of b(x) and c(x). Allowing some of the exponents to be 0 we have

b = p1(x)
d1 · · · pt(x)dt and

c = p1(x)
e1 · · · pt(x)et so

a(x) = b(x)c(x) =
(
p1(x)

d1 · · · pt(x)dt
)(
p1(x)

e1 · · · pt(x)et
)

a(x) = b(x)c(x) = p1(x)
d1+e1 · · · pt(x)dt+et

To prove uniqueness, suppose a(x) has two distinct factorizations.

a(x) = up1(x)
d1 · · · ps(x)ds = vq1(x)

e1 · · · qt(x)et

with di, ei positive. Then u and v are both the leading term of a(x), so they are
equal. Since p1(x) is irreducible, it is prime, and since it is a factor of a(x) it
must divide one of the factors of a(x) in the q factorization; say p1(x) divides
qj(x). Since qj(x) is irreducible and monic its only monic factor is itself. Thus
p1(x) = qj(x). Dividing both sides by p1(x) we get a(x)/p1(x) is a polynomial of
degree less than n. It therefore has a unique factorization. Consequently, s = t
and for all i, pi = qi and di = ei.

Polynomial modulus

We now extend the technique of modular arithmetic to the polynomial ring over
a field.

Let m(x) ∈ F [x] have degree d. Polynomials a(x) and b(x) are congruent
modulo m(x) when m(x) divides a(x)− b(x).

Theorem 1.3.8. Congruence modulo m(x) is an equivalence relation. The set of
polynomials of degree less than δ = deg(m(x)) is a system of representatives for
congruence modulo m(x). That is, each polynomial is congruent modulo m(x) to
its remainder when divided by m(x), which has degree less than δ.
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Any constant multiple ofm(x) will define the same equivalence relation asm(x)
so we usually take m(x) to be monic. We will write [a(x)]m(x) for the congruence
class of a(x) modulo m(x) whenever we need to be careful to distinguish between
a(x), otherwise we will omit the subscript if the modulus is obvious.

Theorem 1.3.9 (Arithmetic modulo m(x)). Suppose that a(x) ≡ b(x) mod m(x)
and r(x) ≡ s(x) mod m(x). Then a(x) + r(x) ≡ b(x) + s(x) mod m(x) and
a(x)r(x) = b(x)s(x) mod m(x). Thus, arithmetic on congruence classes modulo
m(x) is well-defined.

• [a(x)] + [r(x)] = [a(x) + r(x)]

• [a(x)] ∗ [r(x)] = [a(x)r(x)]

Proof. Suppose that a(x) ≡ b(x) mod m(x) and r(x) ≡ s(x) mod m(x). We have
a(x) = b(x) + u(x)m(x) and r(x) = s(x) + v(x)m(x) for some polynomials u(x)
and v(x). Then

a(x) + r(x) = b(x) + s(x) +
(
u(x) + v(x)

)
m(x), so

a(x) + r(x) ≡ b(x) + s(x) mod m(x)

We also have

a(x)r(x) = b(x)s(x) +
(
a(x)v(x) + b(x)u(x) + u(x)v(x)m(x)

)
m(x)

so a(x)r(x) ≡ b(x)s(x) mod m(x).
This shows that no matter what element of a congruence class is used to rep-

resent a class, arithmetic operations modulo m(x) will give the same result.

We will write F [x]/m(x) for the set of equivalence classes modulo m(x), with
the operations + and ∗ as designated above.

Exercises 1.3.10. Invertible elements in F [x]/mx)

(a) Letm(x) be an irreducible monic polynomial in F [x]. Let [a(x)] ∈ F [x]/m(x)
with a(x) not divisible by m(x). Use the GCD Theorem 1.3.3 to show there
is some r(x) ∈ F [x] such that [a(x)][r(x)] = [1].

(b) Extend this result, partially, to other F [x]/m(x). If a(x) ∈ F [x] is such
that a(x) is coprime to m(x), then there is some r(x) ∈ F [x] such that
[a(x)][r(x)] = [1].
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1.4 A Roadmap for this Book

Main themes
We have introduced three categories of algebraic objects: groups, rings, and

fields. We have a few examples of each type. In the rest of the book we will study
some fundamental questions for each of these categories:

• What are some characteristic first examples?

• How can we construct new (potentially more complex) objects from simpler
ones?

• What types of functions are there between objects of the category (from
groups to groups, or rings to rings) that respect the architecture of that
category (the operations, identities, and inverses)? These functions are called
homomorphisms.

• When are two objects essentially the same? (When there is a bijective ho-
momorphism between them.)

• Can we break an arbitrary object in the category into constituent parts that
are easier to understand? (This is the reverse question to the one about
constructing new more complicated objects from simpler objects.)

For Groups

• Classify finite, and finitely generated groups.

• Outline the challenges and what is known about classifying all finite groups.

• Expand on the discussion of symmetry with group actions

• Apply group actions to understanding the structure of a finite group using
the Sylow theorems.

For Rings

• Explore constructions, in particular polynomial rings and rings of fractions.

• Explore generalizations of the theorems in Sections 1.1 and 1.3 to other rings,
particularly polynomial rings over a field in several indeterminates. What
can we say about unique factorization? About division? About the GCD
theorem (more specifically, the linear combination used to prove the GCD
theorem for integers).

33



For Fields

• Describe the construction and the structure of all finite fields. Expanding on
the observations previously that Z/p is a field for p prime and that F [x]/m(x)
is a field when m(x) is irreducible.

• Describe number fields, these are fields that, like Q(i) are derived from the
rationals using irreducible polynomials over Q.

• Show the relationship between group theory and field theory developed by
Galois.
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Chapter 2

Groups

2.1 Groups and Subgroups

The material in this section is a quick summary of the most fundamental properties
of groups. I have omitted some proofs because they are are fairly routine, are good
exercises for the reader, and are available from many sources. See in particular the
book of Hungerford [Hun12]. It is worthwhile reviewing the proofs as you read!

First let us recall the definition of a group.

Definition 2.1.1. A group is a set G with a binary operation ∗ and a unary
operation denoted a 7−→ a−1 satisfying the following properties.

(1) Associativity of ∗: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) Identity for ∗: There is an element in G, usually denoted e, such that e∗a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
multiplicative inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

The operation is usually called a product. So a ∗ b is the product of a and b.
One must be careful, because, in a nonabelian group, the products a ∗ b and b ∗ a
are not necessarily equal. In abelian groups the operation is often called addition
and is written with a + sign, while the identity is written as 0.

The most basic properties are contained in the following proposition. The
proofs of all of these are called “card tricks” by a friend of mine. Any algebraist
should have these up a sleeve since similar cleverness is used in other contexts.
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Proposition 2.1.2 (Basic Properties). Let G, ∗ be a group. Then

(1) The identity element is unique.

(2) The inverse of any element is unique.

(3) The cancellation law holds: a ∗ b = a ∗ c implies b = c (and similarly for
cancellation on the right).

(4) If a ∗ g = g for some g ∈ G, then a = eG.

(5) (a ∗ b)−1 = b−1 ∗ a−1.

(6) (a−1)−1 = a.

Let G be a group. When there is risk of confusion, with more than one group
under consideration, we will use ∗G for the operation on the group G and eG for
the identity element. Otherwise we will not subscript with G. In fact, unless there
is some reason to be very clear we rarely write the group operation: g1g2 means
g1 ∗G g2. For a positive integer n, gn is shorthand for gg · · · g︸ ︷︷ ︸

n factors

and g−n is shorthand

for g−1g−1 · · · g−1︸ ︷︷ ︸
n factors

. It is straightforward to check that the usual rules for exponents

apply.

Exercises 2.1.3. Basic Properties of Groups

(a) Prove each of the properties in Proposition 2.1.2

(b) Show that it makes sense to define g0 = e.

(c) Prove by induction that for a positive integer n, (g−1)n = (gn)−1.

For a group in which the operation is + and the identity is 0 (in particular,
the group must be abelian), the sum g + g + · · ·+ g︸ ︷︷ ︸

n terms

is written ng. Think of this

as repeated addition, not as multiplication: the group just has one operation, and
n is an integer, not necessarily an element of the group. For a negative integer
−n (with n > 0), we define (−n)(g) = (−g) + (−g) + · · ·+ (−g)︸ ︷︷ ︸ and show this is

equal to −(ng) by the same argument as used in the previous exercise.
The first examples come from a familiar place, the integers, as discussed in

Section 1.2.

Example 2.1.4. The integers Z form a group with operation +, identity element 0
and inversion operation a 7−→ −a. The elements 1 and −1 generate the group Z
in the sense that by applying inversion and repeated addition we can get all the
other elements of Z. This is not true for other elements.
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The set of multiples of n in Z also is a group under + with identity 0. Adding
two multiples of n gives another multiple of n, and the additive inverse of a multiple
of n is also a multiple of n. We will denote this group by nZ. Later in this section
we introduce the abstract definition of a subgroup. Here nZ is a subgroup of Z.
The elements n and −n generate nZ just as 1 and −1 generate Z.

The integers modulo n, introduced in Section 1.1, also form a group under +.
We can write the elements as 0, 1, 2, . . . , n− 1, but these are really shorthand for
congruence classes. When consider the integers modulo n as a group (ignoring
multiplication) we will write it as Zn. An interesting question is: what elements
generate Zn?

Definition 2.1.5. A single element g of a group G generates G when any element
of G is equal to gn for some n ∈ Z (or, if the operation of the group is addition,
any element is equal to ng for some n). Such a group is said to be cyclic.

Let S be a subset of a groupG. We say thatG is generated by S if any element
of G is equal to a product (with an arbitrary number of terms) of elements of S
and elements of

{
s−1 : s ∈ S

}
.

A group is t−generated if there is a subset S of G with t elements that
generates G.

Exercises 2.1.6. A 2-generated group.

The Cartesian product Z×Z is a group under coordinatewise addition with
identity element (0, 0) and inverse operator (a, b) 7−→ (−a,−b).

(a) Show that it is not possible to generate all elements by repeated addition of
a single element. [Show that if (a, b) generates the group then both a and b
have to be ±1. Then show that (1, 1) can’t generate all elements of Z× Z.]

(b) Show that this group is 2−generated.
The Cartesian product Z/m × Z/n under coordinatewise addition (and using

coordinatewise identity elements and inversion) is also a group. In certain cases it
is possible to have a single element generate all elements by repeated addition.

Exercises 2.1.7. More on generators for groups.

(a) Consider Zn for n = 2, 3, 4, 5, 6, 7. Which elements a ∈ Zn generate all of
Zn?

(b) Experiment with some small integers m and n to find cases in which Zm×Zn

is generated by a single element and other cases in which it is not.

The following proposition introduces another very tangible example of a group,
which is derived from the ring Z/n. This is an elaboration of Exercise 1.1.18
concerning multiplication in Z/n. We say that an element [a] in Z/n is a unit if
[a] has a multiplicative inverse modulo n, that is, there is some [u] ∈ Zn such that
[a][u] = [1].
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Proposition 2.1.8. The congruence class [a] in Z/n is a unit if and only if a is
coprime to n. The units in Z/n form a group under multiplication. This group is
denoted Un.

Proof. Let n > 1 be an integer and let a ∈ Z. We first show that a is coprime to
n if and only if [a] has a multiplicative inverse modulo n. If a and n are coprime
then, by the GCD Theorem 1.1.4, there exist integers u and v such au + vn = 1.
Reducing modulo n we have

[a][u] = [a][u] + [v][0] = [a][u] + [b][n] = [1]

Conversely if [a] has an inverse modulo n, say [a][u] = [1] then au − 1 must be a
multiple of n. But if au− 1 = vn then the smallest positive linear combination of
a and n is 1. By the GCD Theorem a and n are coprime.

Let Un be the set of elements in Z/n that have multiplicative inverses. The
identity element of Un is [1]. Clearly if [a] is in Un and [u] is such that [a][u] = [1]
then [u] is the inverse of [a] and vice-versa. If [a], [b] ∈ Un and their inverses are,
respectively, u and v, then by associativity and commutativity, ([a][b])([u][v]) =
([a][u])([b][v]) = [1][1] = [1] so ab is also invertible. Thus multiplication is an
operation on Un (it maps Un × Un to Un); there is an identity element, [1], and a
unary operation corresponding to inversion.

The groups Un are interesting because their structure is not immediately ob-
vious. The additive group Zn,+ is easy to understand; it is cyclic, generated by
[1]. Some groups Un are cyclic, but some are not. We won’t fully determine the
structure of Un until we establish the Chinese Remainder Theorem for rings (or
specifically Z/n) in Theorem 4.6.15.

Definition 2.1.9. The cardinality of a group G, written |G|, is just the cardi-
nality of the underlying set. It is also called the order of the group.

Many of our examples will be finite groups and we will be studying some of
the properties that go into understanding the structure of finite groups.

Example 2.1.10. Recall the definition of the dihedral group Dn, which is the sym-
metry group of a regular n-gon (1.2.4). We showed that Dn has 2n elements and
that it is 2-generated—by r, the rotation by 2π/n, and any reflection, ti. (Well,
we did this for D5, but the same argument holds for Dn).

Section 1.2 also introduced Sn, the group of all possible permutations on
{1, 2, . . . , n}. This group has cardinality n!. Composing them is just composing
functions. The inverse permutation involves flipping the two rows of the permu-
tation and then, for convenience, rearranging the columns so that the first row is
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increasing order.

For π =

(
1 2 3 4 5
4 3 1 5 2

)
, the inverse is π−1 =

(
1 2 3 4 5
3 5 2 1 4

)
.

The Order of an Element

Definition 2.1.11. For g ∈ G the order of the element g is the smallest
positive integer n such that gn = e, if such an n exists. If no such n exists then g
has infinite order. We use |g| or ord(g) for the order of g.

The exponent of G is the least common multiple of the orders of the elements
of G, if such an integer exists, that is exp(G) = lcm {ord(g) : g ∈ G}. If no such
element exists one can say the exponent is infinite.

Exercises 2.1.12. Basic properties of order.

(a) Only the identity element of a group has order 1.

(b) Every nonzero element of Z has infinite order.

(c) In Zn some elements have order n, but other non-identity elements may have
a different order.

(d) For any finite group there is a well defined exponent, but an infinite group
may or may not have one.

Theorem 2.1.13 (Order Theorem). Let g be an element of the group G.

(1) If g has infinite order, then elements gt for t ∈ Z are all distinct.

(2) If g has order n then

(a) gt = gs if and only if t ≡ s mod n. In particular, gt = e if and only if
n divides t.

(b) ord(gt) = n
gcd (t,n) .

Proof. Suppose gt = gs for integers s, t. Then gt−s = eG. If g has infinite order
then s− t = 0 so s = t. This proves item (1).

Suppose g has order n. Then g0 = e, g1, g2, . . . , gn−1 must all be distinct, by
an argument similar to the previous paragraph. If gt = gs for 0 ≤ s ≤ t < n then
gt−s = e with 0 ≤ t− s < n. Since the order of g is n, t− s = 0, so t = s. For an
arbitrary integer t use the quotient remainder theorem to write t = nq + r. Then
gt = gnq+r = (gn)qgr = eqgr = gr. This establishes claim (2a): gt = gs if and only
if t and s have the same remainder when divided by n.

Now let d = gcd(t, n) and write t = da and n = db. Then a, b have no common
factor (otherwise d would not be the gcd) and we observe that b = n/gcd (t, n).
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We now have (gt)b = gdab = (gn)a = e. Furthermore, if (gt)s = e then, by (2a),
n = db divides ts = das. Cancelling d and taking note of b and a being coprime
we get b divides s. This establishes (2b).

Example 2.1.14. The reflections in Dn all have order 2. The rotation by 2π/n has
order n, but some of the other rotations have order less than n. For example in
D6 with r the rotation by 2π/6, r2 has order 3 and r3 has order 2.

Exercises 2.1.15. More card tricks.

(a) Suppose that every element of G has order 2. Show that G is abelian.

(b) If G has even order then G has an element of order 2. (Consider the pairing
of g with g−1).

Exercises 2.1.16. Order and commutativity.

(a) If g ∈ G has order m and h ∈ H has order n, find the order of (g, h) ∈ G×H.

(b) Suppose that a, b ∈ G commute (that is ab = ba). If ord(a) and ord(b) are
coprime find the order of ab.

(c) Let A be an abelian group with finite exponent. Show that there is some
a ∈ A such that ord(a) = exp(A). [This is a bit more challenging and uses
part (b).]

2.2 Subgroups

A key area of investigation in many mathematical subjects is the subsets of a given
object that have useful structure. In this section, we treat subsets of a group that
are themselves groups.

Definition 2.2.1. A nonempty subset H of a group G is a subgroup, when H is
a group using the operation ∗G on G. We will write H ≤ G when H is a subgroup
of G (as opposed to H ⊆ G when H is just a subset), and H < G when H is a
proper subgroup (that is H ̸= G).

The following proposition is a sanity check on our definition of subgroup: the
identity element and inversion are the same for the subgroup as for the group.

Proposition 2.2.2. If K is a subgroup of G then eK = eG and the inversion
operation is the same on K as it is on G.

Proof. If K is a subgroup of G then it must have an identity element. For any
k ∈ K, we have (using ∗K = ∗G) that eK ∗K k = eK ∗G k = k. Proposition 2.1.2 (4)
shows that it must be the case that eK = eG. (If something acts like the identity
it is the identity!)
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Let k ∈ K and let k−1 be its inverse in G. This k−1 is also the inverse of k in
the subgroup K because k ∗ k−1 = eG = eK .

(Thank goodness for both of these facts.)
In practice the following proposition is used to check if a subset of a group is

a subgroup. We will say that H ⊆ G is closed under inversion when for any
h ∈ H the inverse h−1 is also in H. We say is H closed under multiplication
when for any h, k ∈ H, the product h ∗G k is also an element of H.

Proposition 2.2.3 (Subgroup Properties). If H is a nonempty subset of G that is
closed under inversion and closed under multiplication in G then H is a subgroup
of G (i.e. it also contains eG).

If H is a nonempty subset of G such that h ∗G k−1 ∈ H for all h, k ∈ H then
H is a subgroup of G.

Proof. Since H is nonempty, it contains some element k. Since H is closed under
inversion, k−1 ∈ H. Since H is closed under multiplication, k ∗G k−1 = eG ∈ H.
ThusH satisfies the definition of a group since it has associativity (immediate since
∗H is the restriction of ∗G), an identity element, and inverses (by assumption).

Suppose H is a nonempty subset of G such that h ∗G k−1 ∈ H for all h, k ∈ H.
For any k ∈ H, setting h = k gives k ∗G k−1 = eG ∈ H. Letting h = eG gives
eG ∗ k−1 = k−1 ∈ H, so H is closed under inversion. Now for any h, k ∈ H we
know k−1 ∈ H, so h ∗G (k−1)−1 = h ∗G k ∈ H. This shows H is closed under
multiplication.

When proving that a particular subset of a group is a subgroup one can either
show the set is closed under inversion and under multiplication, or use the second
property of the theorem. I like the clarity of proving closure under each operation.

Exercises 2.2.4. Subgroup constructions

(a) Let G be a group and let g an arbitrary element of G. Show that
{
gi : i ∈ Z

}
is a subgroup of G. This group is called the cyclic subgroup generated
by g and is written ⟨g⟩.

(b) Let G be a group. Show that the set Z(G) = {a ∈ G : ag = ga for all g ∈ G}
is an abelian subgroup of G. It is called the center of G.

(c) Let H and K be subgroups of G. Show that their intersection is also a
subgroup of G.

Note that there is consistency between the order of an element and the order
of the subgroup it generates. If g ∈ G has order n then the set of powers of g
is
{
g0 = eG, g, g

2, . . . , gn−1
}
(any other power of g is one of these). This set is a

subgroup of G of order n. If g ∈ G has infinite order then it generates a cyclic
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subgroup that is infinite. (It is not really cycling in the infinite case, but that’s
the term used!)

Example 2.2.5. As was discussed in Section 1.2, the integers, Z, the rational num-
bers, Q, the real numbers, R, and the complex numbers, C, are all abelian groups
under addition. We sometimes write Z,+ (for example) to emphasize that we
are ignoring multiplication, and are just considering the additive properties of Z.
Clearly we have a sequence of subgroups.

Z < Q < R < C

Exercises 2.2.6. Some subgroups of abelian groups

Let A,+ be an abelian group (under addition) and let m be an integer.

(a) Let mA = {ma : a ∈ A}. Show that mA is a subgroup of A.

(b) Let A[m] = {a ∈ A : ma = 0}. Show that A[m] is a subgroup of A.

(c) Give an example in which mA∩A[m] is trivial (just 0) and give an example
in which it is not trivial. (Try Zn for a few choices of n.)

(d) Compute mZ ∩ nZ and Z[m] ∩ Z[n].
Example 2.2.7. We showed in Section 1.2 that D5 may be identified with a sub-
group of S5. The discussion can be generalized to show Dn identified as a subgroup
Sn for any n ≥ 3.

The permutation group S4 may also be seen as contained in S5; it is just the set
of all permutations in S5 that take 5 to 5 (we say these “fix” 5). There are other
subgroups that have the exact same structure as S4. For example the set of all
permutations in S5 that fix 3. These subgroups are all isomorphic (see Section 2.5).

Proposition 2.2.8. Let H be a set of subgroups of a group G. Let H be the
intersection of all the elements of H,

K =
⋂

H∈H
H

Then K is itself a subgroup of G.

Proof. We have to show that K is nonempty and is closed under multiplication
and inversion. Since each H ∈ H is a subgroup of G, each contains the identity,
so eG ∈ K. If k ∈ K then k is an element of each H in H. Since each H ∈ H is a
group, k−1 ∈ H for each H ∈ H. Thus k−1 is in the intersection K =

⋂
H∈HH.

Similarly if k and k′ are elements of K then k and k′ are in each H ∈ H and the
product kk′ is in each H ∈ H. Thus kk′ ∈ K.
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Definition 2.2.9. Let B be a subset of a group G we define the group generated
by B to be the intersection of all subgroups of G containing B. We denote it ⟨B⟩.

If H and K are subgroups of G their join, written H ∨K, is ⟨H ∪K⟩.

By the proposition, ⟨B⟩ is a subgroup of G. Furthermore, since by definition
it is the intersection of all subgroups of G containing B, it is contained in every
subgroup of G containing B. Thus it makes sense to call it the smallest subgroup
of G containing B. The join of two subgroups plays a similar role to the union
of sets. The subgroup H ∨K is the smallest subgroup of G that contains both H
and K.

The definition is not very useful for computing ⟨B⟩. How would one find all
subgroups of G containing B and then find the intersection of them?! It is more
practical to adopt a constructive (or “bottom up”) approach to find all the elements
of ⟨B⟩. That is, if b1, b2 ∈ B then bk1b

m
2 ∈ ⟨B⟩ for any integers k,m. This is not

simple either(!), but for small examples it can be useful to compute the subgroup
⟨B⟩, as we will see below.

The Lattice of Subgroups

Consider a fixed group G and let S be the set of all subgroups of G. For small
groups, it is often illuminating to draw a diagram showing all these subgroups
and the containment relationships among them. There is no simple and efficient
process for this in general, but there are some useful heuristics for small examples.
One is to find the extremal cases of subgroups.

Definition 2.2.10. Let G be a group. A proper subgroup M of G is maximal
when there is no subgroup H of G satisfying M < H < G. Similarly, a nontrivial
subgroupM of G is minimal when there is no subgroup H of G satisfying {eG} <
H < M .

For any group G a single element a ∈ G generates a subgroup ⟨a⟩, which we
call a cyclic subgroup. Any minimal subgroup must be cyclic (but the converse is
not true!). This suggests a general approach: work up from the trivial subgroup
{eG} to construct the lattice of subgroups.

(1) Find all subgroups generated by 1 element. Take account of containment
relationships among them.

(2) Find all subgroups generated by 2 elements by adding a new element to the
1-generated subgroups.

(3) See if there are subgroups that require 3 generators by adding an element to
the 2-element subgroups.
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Note that there are usually several ways to generate a particular subgroup.
Here are some examples.

⟨(0, 0)⟩

⟨(1, 0)⟩ ⟨(0, 1)⟩⟨(1, 1)⟩

Z2 × Z2

Figure 2.1: The lattice diagram for Z2 × Z2.

⟨(0, 0)⟩

⟨(1, 0)⟩ ⟨(0, 1)⟩

Z2 × Z3

Figure 2.2: The lattice diagram for Z2 × Z3.

Example 2.2.11. The lattice of subgroups of Z is infinite, but we can get some
sense for its structure. We have shown that for an integer n, the multiples of n,
nZ, form a subgroup of Z. The integers n and −n generate the same group, so
we may restrict our attention to nonnegative integers. I claim these are the only
subgroups of Z and that the subgroups for distinct n ∈ N are unequal. Suppose
A is a subgroup of Z. If A has no positive elements then, since it is closed under
(additive) inverses it must also have no negative elements, and A = {0} = 0Z.
Suppose A does have positive elements, and let n be the smallest positive element

⟨0⟩

⟨2⟩

Z4

Figure 2.3: The lattice diagram for Z4.

44



〈(
1 2 3
1 2 3

)〉

〈(
1 2 3
2 1 3

)〉〈(
1 2 3
3 2 1

)〉 〈(
1 2 3
1 3 2

)〉
〈(

1 2 3
2 3 1

)〉S3

Figure 2.4: The lattice diagram for S3.

of A (we are using the Well-Ordering Principle). Let a be another element of A.
By the Quotient-Remainder Theorem a = qn + r for some 0 ≤ r < n. Since a
and qn are both in A, a− qn = r ∈ A. By assumption, n is the smallest positive
element of A, so r must be 0. Thus every element of A is a multiple of n, and we
have shown A = nZ.

The lattice of subgroups of Z simply reflects divisibility properties: nZ ≤ dZ if
and only if d | n. The maximal subgroups of Z are generated by prime numbers.
A prime p has no divisors except ±p and ±1 so the only subgroup of Z properly
containing pZ is Z itself. There are no minimal subgroups of Z because for any
n > 0 there are (infinitely many) subgroups such as 2nZ, 3nZ, 4nZ, that are
proper subgroups of nZ and are not equal to {0}.
Exercises 2.2.12. Lattice Diagrams for Groups

(a) Draw the subgroup lattice diagram for Z45.

(b) Draw the subgroup lattice diagram for Z60.

(c) Draw the subgroup lattice diagram for Z2 × Z4.

(d) Draw the subgroup lattice diagram for Z3 × Z4.

(e) Find all subgroups of Z4×Z4. Describe the logic of your process for finding
them. Present them in an organized fashion. Draw the lattice if you can.

2.3 Group Homomorphisms

In any algebraic subject a key starting point is to identify functions that are
appropriate to study. These functions are typically called homomorphisms (from
classical Greek: hom meaning “same” and morph “shape”) because they preserve
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the algebraic structures on which they act.

Definition 2.3.1. Let G and H be groups. A function φ : G −→ H is a homo-
morphism when

(1) φ(g1 ∗G g2) = φ(g1) ∗H φ(g2) for all g1, g2 ∈ G, and

(2) φ(eG) = eH , and

(3) φ(g−1) = (φ(g))−1 for all g ∈ G.

I like to speak informally about a homomorphism as a function that respects
structure: A homomorphism of groups “respects” the property of the identity
element, multiplication, and inversion.

It is fairly easy to show that the first item in the definition of homomorphism
implies the other two. This result and another important result are contained in
the following proposition.

Proposition 2.3.2 (Homomorphisms). Let G,H,K be groups.
If φ : G −→ H is a function such that φ(g1 ∗G g2) = φ(g1) ∗H φ(g2) then φ is

a group homomorphism.
If φ : G −→ H and θ : H −→ K are group homomorphisms then the composi-

tion θ ◦ φ is also a group homomorphism.

Exercises 2.3.3. Prove the proposition.

(a) Assuming that φ respects multiplication, show that it also takes the identity
of G to the identity of H (use eG ∗ eG = eG) and that it respects inversion
(use gg−1 = eG).

(b) Prove that the composition of homomorphisms is a homomorphism.

The simplest type of a homomorphism is the inclusion of a subgroup H of G
into G. That is, whenH < G, then there is a functionH −→ G that takes elements
of H to themselves (now thought of as elements of G). A homomorphism of groups
may be surjective, injective or neither. A injective homomorphism φ : G −→ H is
often called an embedding.

Proposition 2.3.4. Let g be an element of a group G. There is homomorphism

φ : Z −→ G

t 7−→ gt

When g ∈ G has infinite order, this homomorphism is injective.
When g ∈ G has order n, the function below is an injective homomorphism.

φ : Zn −→ G

t 7−→ gt
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Proof. Let g be an element of a group G. Consider the function Z −→ G taking
t to gt. The function is a homomorphism because for s, t ∈ Z, s + t maps to
gs+t = gs ∗ gt and this is the product of the images of s and t.

Now assume that g has infinite order. Suppose that gs = gt. Then gs−t = eG.
Since g has infinite order s− t = 0, so s = t. This proves injectivity.

The proof for g of finite order is similar.

Notice that the homomorphisms of the proposition are completely defined by
the requirement that 1 maps to g. For if 1 maps to g then 1+1 maps to g ∗ g, and
inductively, a positive number t must map to gt. Since homomorphisms respect
inversion, −t maps to g−t.

Proposition 2.3.5. Let φ : G −→ H be a homomorphism. For any subgroup G′

of G, the image of G′, which we write φ(G′), is a subgroup of H.

Proof. We need only show that the image is closed under inversion and multipli-
cation. Consider an element of φ(G′). We may write it as φ(g) for some g ∈ G′.
By the properties of a homomorphism

φ(g−1)φ(g) = φ(g−1g) = φ(eG) = eH

This shows that the inverse of φ(g) is φ(g−1). SinceG′ is a subgroup ofG, g−1 ∈ G′,

and we can conclude that
(
φ(g)

)−1 ∈ φ(G′).
Consider two elements of φ(G′), which we may write as φ(g1) and φ(g2) for

g1, g2 ∈ G′. Their product is φ(g1)φ(g2) = φ(g1g2), and this is in φ(G′) since g1g2 ∈
G′. We have shown that φ(G) is closed under inversion and under multiplication
so it is a subgroup of G.

The Kernel of a Homomorphism

Definition 2.3.6. Let φ : G −→ H be a homomorphism. The kernel of φ is the
set of elements that map to the identity in H, that is

ker(φ) = φ−1(eH) = {g ∈ G : φ(g) = eH} .

Proposition 2.3.7. Let φ : G −→ H be a homomorphism. The kernel of φ is a
subgroup of G. Furthermore, for any a ∈ ker(φ) and any g ∈ G, gag−1 ∈ ker(φ).

Proof. By the definition of homomorphism eG ∈ ker(φ). Suppose a ∈ ker(φ). We
have

eH = φ(eG) = φ(aa−1) = φ(a)φ(a−1) = eHφ(a
−1) = φ(a−1)
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So a−1 is also in ker(φ). If b is another element in ker(φ) then φ(ab) = φ(a)φ(b) =
eHeH = eH . Thus ker(φ) is closed under inversion and multiplication, so it is a
subgroup of G. The final claim is a similar computation.

φ(gag−1) = φ(g)φ(a)φ(g−1) = φ(g)eHφ(g
−1)

= φ(g)φ(g−1) = φ(gg−1) = φ(eG) = eH

The kernel of a homomorphism and the property described in the last sentence
of the proposition are important concepts, as we will see in Section 2.8 Here is
another important aspect of the kernel, it gives a simple test for injectivity. Recall
that to test if a function f : A −→ S is injective we show that for a, b ∈ A,
f(a) = f(b) implies a = b.

Proposition 2.3.8. A homomorphism φ : G −→ H is injective if and only if the
kernel is trivial, ker(φ) = {eG}.

Proof. For any homomorphism φ(eG) = eH , so injectivity forces ker(φ) = {eG}.
Suppose that the only element of ker(φ) is eG, let us show that φ is injective.

Let a, b ∈ G be such that φ(a) = φ(b). Using the properties of a homomorphism
and φ(a) = φ(b) we have

phi(ab−1) = φ(a)φ(b−1) = φ(a)(φ(b))−1 = φ(a)(φ(a))−1 = eH

This forces ab−1 = eG, and multiplying on the right by b we get a = b. This shows
that φ is injective.

Exercises 2.3.9. The preimage of a subgroup

Prove this extension of Proposition 2.3.7 and compare with Proposition 2.3.5.

(a) Let φ : G −→ H be a homomorphism. For any subgroup H ′ of H, the
preimage of H ′, which we write φ−1(H ′), is a subgroup of G.

Isomorphisms

Definition 2.3.10. A homomorphism φ that is also a bijection (one-to-one and
onto) is called an isomorphism. When there exists an isomorphism φ : G −→ H
we say G and H are isomorphic and write G ∼= H.

The following proposition shows that the relation of being isomorphic satisfies
symmetry and transitivity so it determines an equivalence relation on any set of
groups.
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Proposition 2.3.11 (Isomorphisms). If φ is an isomorphism of groups, then the
inverse function φ−1 is also an isomorphism of groups.

If φ : G −→ H and θ : H −→ K are group isomomorphisms then the composi-
tion θ ◦ φ is also a group isomorphism.

On any set of groups G, the relation of being isomorphic is an equivalence
relation.

Proof. Let φ : G −→ H be an isomorphism of groups. By definition, φ is both
injective and surjective, so there is a well defined inverse function, φ−1. We must
show that φ−1 is a homomorphism.

Let h1 and h2 be two elements of h. Since φ is surjective there are two elements
g1 and g2 such that φ(g1) = h1 and φ(g2) = h2. Since φ is injective these two
elements are uniquely defined. We now show that φ−1 respects products, which is
sufficient to show it is a homomorphism.

φ−1(h1h2) = φ−1 (φ(g1)φ(g2))

= φ−1 (φ(g1g2)) since φ is a homomorphism

= g1g2 since φ and φ−1 are inverse functions

= φ−1(h1)φ
−1(h2)

The composition of two bijections is a bijection, and by Proposition 2.3.5 we
know that the composition of homomorphisms is a homomorphism. Thus the
composition of two isomorphisms is an isomorphism.

On any set of groups we can define a relation as follows: G is related to G
if there is an isomorphism from G to H. The relation is clearly reflexive since
any group is isomorphic to itself under the identity map. The first part of this
proposition shows the relation is symmetric: if G is isomorphic to H then H is
also isomorphic to G. The second part establishes transitivity.

If there is an isomorphism φ from group G to H then G and H have the same
algebraic structure. Since φ is a bijection it gives a pairing of elements of G with
elements of H. The image of g ∈ G will have the same order as g does. The image
of a subgroup G′ of G is a subgroup of H (by Proposition 2.3.5) that is isomorphic
to G′. Distinct subgroups of G will be mapped to distinct subgroups of H and the
lattice of subgroups of G will have the same structure as the lattice of subgroups
of H.

Exercises 2.3.12. Homomorphisms on Zn

(a) Show that for each a ∈ Zn there is a unique homomorphism
φa : Zn −→ Zn such that φa(1) = a.
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(b) Under what conditions on a is φa an isomorphism? [Try some examples with
n < 10.]

(c) Identify all subgroups of Zn.

Exercises 2.3.13. Homomorphisms on cyclic groups

(a) Show that if d | n then there is a unique homomorphism φ from Zn to Zd

that takes 1 (in Zn) to 1 (in Zd). [Show that respecting the operation of
addition forces a unique choice for φ(a). Show also that this does give a
homomorphism.]

(b) Show that φ is also surjective.

(c) Show that if d does not divide n then there is no homomorphism Zn to Zd

that takes 1 (in Zn) to 1 (in Zd). [Try to define it and run into a roadblock.]

Exercises 2.3.14. Homomorphisms and dihedral groups

(a) Show that there is an injective homomorphism from Zn into Dn taking 1 to
rotation by 2π/n.

(b) How many injective homomorphisms are there from Zn into Dn?

(c) Identify all subgroups ofDn for n = 3, 4, 5, 6. Draw a lattice diagram showing
containment of subgroups.

Exercises 2.3.15. A Perverse Group

(a) Show that Z is a group under the operation □ defined by a□b = a + b − 2.
(What is the identity element? What is the inverse of an element a?)

(b) Find an isomorphism from Z,+ to Z,□.

Exercises 2.3.16. Order and homomorphisms

Prove the following results about the relationship between the order of an
element and the order of its image under a homomorphism.

(a) If φ : G −→ H is a homomorphism, then ord(φ(g)) divides ord(g).

(b) If φ : G −→ H is an isomorphism, then ord(φ(g)) = ord(g).

The previous exercises give important restrictions on homomorphisms. If you
want to create a homomorphism from G to H, each element g in G must go to an
element of H that has order dividing ord(g).

Exercises 2.3.17. Other homomorphisms

(a) Show that there is a nontrivial homomorphism from D3 to Z2 but that any
homomorphism from D3 to Z3 is trivial.

2.4 Some Constructions of Groups

In this section we show two ways to construct new groups from ones that we
already have. Both have been touched on briefly; we give more detail here. The
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first construction is the direct product of groups. The idea is simple (and was
illustrated in the first examples of groups that we gave). Given two groups, form
the Cartesian product as sets, and apply componentwise operations to get a new
group. The construction yields, in a natural way, two types of homomorphisms
that are important despite their simplicity. The direct product can also be applied
to several groups, not just two. The second construction is quite a bit more
mysterious, for a given group G the isomorphisms of G to itself have a group
structure that is useful in understanding the properties of G.

The Direct Product

Definition 2.4.1. Let G and H be groups. The Cartesian product G×H, along
with the unary operation (of inversion) and the binary operation (of multiplication)
below form the direct product of G and H.

(g, h)−1 = (g−1, h−1)

(g1, h1) ∗G×H (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

The identity element is of course (eG, eH).

The following proposition shows that the direct product is in fact a group and
gives other important properties. None of the following are surprising and they
are routine to prove.

Theorem 2.4.2 (Direct Product). Let G and H be groups.

(1) The above definition does, indeed, make G×H a group.

(2) The associative law for the product of several groups holds: G1×(G2×G3) ∼=
(G1 ×G2)×G3.

(3) G×H is abelian if and only if G and H are abelian.

(4) If G′ is a subgroup of G and H ′ is a subgroup of H then G′×H ′ is a subgroup
of G×H. In particular G× {eH} and {eG} ×H are subgroups of G×H.

(5) There is an injective homomorphism iG : G −→ G × H taking g to (g, eH)
(and similarly iH : H −→ G×H).

(6) The projection maps pG : G×H −→ G and pH : G×H −→ H are surjective
homomorphisms.

(7) The construction and the observations above can be generalized to the direct
product of any set of groups {Gi : i ∈ I} indexed by a finite set I. (It extends
to infinite index sets I with some modification due to subtle issues.)
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Notice that the kernel of the homomorphism pG is {(eG, h) : h ∈ H} and this
is exactly the image of the homomorphism iH . Similarly ker(pH) = im(iG).

Exercises 2.4.3. Subgroups of a direct product

(a) Not all subgroups of G × H are direct products of subgroups of G and H.
Illustrate with some examples: Z2 × Z2, Z4 × Z4.

The following result is more subtle and it turns out to be a powerful idea.

Proposition 2.4.4 (Universal Property of the Product). Let G,H, and T be
groups, and let φ : T −→ G and ψ : T −→ H be homomorphisms. The function
α : T −→ G×H defined by t 7−→ (φ(t), ψ(t)) is a homomorphism. It is the unique
homomorphism such that pG ◦ α = φ and pH ◦ α = ψ.

Proof. Note first that, by construction, pG ◦ α = φ and pH ◦ α = ψ. Furthermore,
there is no other choice for the definition of α that satisfies these two requirements.

We have to show that α respects inversion and multiplication. Let t ∈ T .
We have to show that α(t−1) is the inverse of α(t). The subscript on ∗ that we
sometimes use to show the group being used is omitted in the following derivation,
but it is worthwhile to identify it while reading.

α(t) ∗ α(t−1) =
(
φ(t), ψ(t)

)
∗
(
φ(t−1), ψ(t−1)

)
=
(
φ(t) ∗ φ(t−1), ψ(t) ∗ ψ(t−1)

)
=
(
φ(t ∗ t−1), ψ(t ∗ t−1)

)
= (eH , eK)

This proves that α(t−1) is the inverse of α(t). Similarly for t1, t2 ∈ T ,

α(t1) ∗ α(t2) =
(
φ(t1), ψ(t1)

)
∗
(
φ(t2), ψ(t2)

)
=
(
φ(t1) ∗ φ(t2), ψ(t1) ∗ ψ(t2)

)
=
(
φ(t1 ∗ t2), ψ(t1 ∗ t2)

)
= α(t1 ∗ t2)

This shows α respects products.

As a corollary of Proposition 2.4.4 we get

Corollary 2.4.5. Let m and n be positive integers. There is a unique homo-
morphism Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
. When m and n are

coprime this homomorphism is an isomorphism.
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Proof. Exercise 2.3.13 shows that there is a unique homomorphism taking [1]mn to
[1]m and a unique homomorphism taking [1]mn to [1]n. The previous proposition
says this pair of homomorphisms extends in a unique way to a homomorphism
α : Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
.

When m and n are coprime the kernel of α is trivial because if α([b]mn) is(
[0]m, [0]n

)
then b must be divisible by both m and n. Since m and n are coprime

b is divisible by mn, so [b]mn = [0]mn.

The previous corollary is closely related to the Chinese Remainder Theo-
rem 4.6.15 (which says a bit more than our corollary does). The following exercise
broadens the perspective

Exercises 2.4.6. Homomorphisms and the direct product of cyclic groups

We have shown that there is a homomorphism Zn −→ Zd taking 1 in Zn to
1 in Zd if and only if d | n. Suppose c and d both divide n. Proposition 2.4.4
says that the two homomorphisms Zn −→ Zd (taking [1]n to [1]d]) and
Zn −→ Zc (taking [1]n to [1]c]) give rise to a homomorphism Zn −→ Zc×Zd.

(a) What is the kernel of the homomorphism Zn −→ Zc × Zd?

(b) Under what conditions is it injective?

(c) Under what conditions is it surjective?

(d) Illustrate with n = 8 and c = d = 4. What is the image?

(e) Illustrate with n = 18 and c = 6 and d = 9. What is the image?

Automorphism Groups

We have already noted, in Section 1.2, that the bijections of a set form a group
using composition of functions as the group operation. The identity element is
the function that takes each element to itself, each bijection has an inverse that
is a bijection, and the composition of two bijections is a bijection. We will study
bijections of a finite set in the next section. For now, we are interested in bijections
of a group to itself that also happen to be homomorphisms.

Proposition 2.4.7 (Automorphisms). Let G be a group. The set of all isomor-
phisms from G to itself is a group under composition. This new group is called
Aut(G), the group of automorphisms of G.

Proof. The identity map idG is clearly an automorphism of G, so there is at least
one automorphism ofG. The composition of idG with any automorphism φ : G −→
G is φ, since the identity map takes each element to itself. Proposition 2.3.11 shows
that the inverse of an isomorphism is an isomorphism and the composition of two
isomorphisms is an isomorphism. Thus Aut(G) is a subgroup of the group of
bijections of G.
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Exercises 2.4.8. Automorphism groups of some cyclic groups

(a) Show that Aut(Z) has two elements and Aut(Z) ∼= Z2.

(b) Compute Aut(Zn) for n = 2, 3, 4, 5, 6, 7. [In each case the answer is a cyclic
group.]

(c) Show that Aut(Z8) is not cyclic.

Exercises 2.4.9. Automorphism group of the simplest non-cyclic groups

(a) Show that there is a unique homomorphism of Z2×Z2 that swaps (1, 0) with
(0, 1). What does it do to the other elements of Z2 × Z2?

(b) Show that there are two different homomorphisms of Z2 × Z2 that satisfy
the following property: the only element that gets mapped to itself is (0, 0).

(c) Can you extend to Z3 × Z3? [Think of matrices.]

(d) Can you extend to Z2 × Z2 × Z2? [Think of matrices.]

2.5 Permutation Groups

In this section we delve more deeply into the structure of the symmetric group
Sn, the group of permutations of {1, . . . , n}. The number of elements in Sn is n!.
Informally, we may justify this claim by noting that there are n possible images
for the number 1. Once the image for 1 is chosen, there are n − 1 choices for the
number 2. Continuing in this manner we count n! bijections from {1, . . . , n} to
itself. One can give a more formal inductive proof.

We will sometimes write an element π of Sn in tabular form with i in the top
row and π(i) in the bottom row.

Exercises 2.5.1. Some computations in Sn

(a) Here are two elements of S5:

π =

(
1 2 3 4 5
3 5 1 2 4

)
and σ =

(
1 2 3 4 5
1 3 4 2 5

)
.

(b) Compute the inverse of each.

(c) Compute the products πσ and σπ, using the usual convention for composi-
tions: (πσ)(i) = π(σ(i)). You should see that the results are not equal.

Example 2.5.2. Let n = 3, and enumerate the vertices of a triangle clockwise as
1, 2, 3. Each element of D3 gives rise to a permutation of {1, 2, 3}.

Let r be rotation clockwise by 2π/3. Then

r =

(
1 2 3
2 3 1

)
and r2 =

(
1 2 3
3 1 2

)
.
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There are three reflections, each fixes one element of {1, 2, 3} and transposes the
other two

u1 =

(
1 2 3
1 3 2

)
u2 =

(
1 2 3
3 2 1

)
u3 =

(
1 2 3
2 1 3

)
.

This exhausts all permutations of {1, 2, 3} so by enumerating the vertices of the
triangle we have established a bijection between D3 and S3. This is actually an
isomorphism since the operation for D3 is composition, as it is for Sn.

Exercises 2.5.3. Embeddings into Sn

(a) How many ways are there to embed Z4 in S4?

(b) How many ways are there to embed D4 in S4?

Cycle Decomposition

Definition 2.5.4. Let a1, a2, . . . , at be distinct elements of {1, . . . , n}. We use the
notation (a1, a2, . . . , at) to define an element of Sn called a t-cycle. This permu-
tation takes ai to ai+1, for i = 1, 2, 3 . . . , t− 1 and it takes at to a1. Every element
of {1, . . . , n} \ {a1, . . . , at} is fixed (i.e. taken to itself) by the cycle (a1, a2, . . . , at).
We will call the set {a1, . . . , at} the support of the cycle (a1, a2, . . . , at).

A two-cycle is often called a transposition.
Two cycles are called disjoint when their supports are disjoint sets.
When we use cycle notation we will use id for the identity permutation.

Exercises 2.5.5. Properties of cycles

(a) Show that disjoint cycles commute.

(b) Suppose σ is a t-cycle. For which r is σr a t-cycle? What can happen for
other r?

(c) Show that for a t-cycle σ, there is an injective homomorphism Zt −→ Sn
taking 1 to σ.

Definition 2.5.6. Let π ∈ Sn. The orbit of a ∈ {1, . . . , n} under π is the set{
πi(a) : i ∈ Z

}
.

Let π ∈ Sn. A cycle decomposition for π is a product of disjoint cycles that
is equal to π.

We want to show every permutation has a unique cycle decomposition. The
first step is this lemma.

Lemma 2.5.7. Let π ∈ Sn. Any two orbits of π are either equal or disjoint.
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Proof. Suppose two orbits of π ∈ Sn are not disjoint. We will show they are equal.
Let a, b, c be distinct elements of {1, 2, . . . , n}. Suppose that b is in the orbit of a
and also in the orbit of c. We will show that orb(a) = orb(c). We have assumed
πi(a) = b and πj(c) = b for some i, j ∈ Z. Then πi(a) = πj(c) so πi−j(a) = c
so c is in orb(a). Moreover, anything in the orbit of c must be in the orbit of
a since πk(c) = πk+i−j(a). The reverse is also true by the same reasoning, so
orb(a) = orb(c).

Proposition 2.5.8. Every permutation in Sn has a cycle decomposition, and it is
unique up to reordering the factors.

Proof. This is just a sketch that should make sense, and one could formalize it
using induction. Take an element a ∈ {1, . . . , n}. Since {1, . . . , n} is finite, there
is some pair of distinct positive integers such that πi(a) = πj(a). Notice that
πi(a) = πj(a) implies πi−1(a) = πj−1(a) and so forth until πi−j(a) = a. Thus,
there is some minimal positive integer, call it d, such that πd(a) = a. It should
be clear that, for m ∈ Z, πm(a) = πr(a) for r the remainder when m is divided
by d. Now consider the cycle (a, π(a), . . . , πr−1(a)). The orbit of a is this set
of elements, orb(a) =

{
a, π(a), . . . , πr−1(a)

}
. Consequently, π can be written as

the product of (a, π(a), . . . , πr−1(a)) and some other permutation that fixes each
element in orb(a). Now choose an element of {1, . . . , n} \ orb(a) and look at its
orbit; continue.

A permutation π ∈ Sn may take an element to itself. We say π fixes a ∈
{1, . . . , n} when π(a) = a. We can denote this one-cycle by (a). Usually we don’t
write the one cycles in the cycle decomposition if the context is clear. For example,
(1, 3, 5)(2, 7) as an element of S7 is really (1, 3, 5)(2, 7)(4)(6).

Definition 2.5.9. We will call the list of cycle lengths, in decreasing order, the
signature of the permutation.

For example, the permutation π in S5 from Exercise 2.5.1 has cycle decom-
position π = (1, 3)(2, 5, 4) and signature 3, 2. If we consider π as an element of
S6, we have π = (1, 3)(2, 5, 4)(6) and the signature is 3, 2, 1. The permutation
(1, 3, 5)(2, 7) as an element of S7 has signature 3, 2, 1, 1.

Exercises 2.5.10. The signature of a permutation

Prove the following results about the signature of a permutation.

(a) For π ∈ Sn, the sum of the signature list is n.

(b) If π = σ1σ2 · · ·σr is a cycle decomposition, then πk = σk1σ
k
2 · · ·σkr . Under

what conditions is this also a cycle decomposition in the sense that each σki
is a cycle?
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(c) The order of π ∈ Sn is the lcm of the signature list.

Exercises 2.5.11. A sanity check on symmetric groups

For n = 4 and n = 5 do the following to check that all elements of Sn are
accounted for.

(a) Identify all possible signatures for elements of Sn and find the order of an
element with the given signature.

(b) For each possible signature in Sn, count how many elements have that sig-
nature. Then check that you get the correct total number of elements in
Sn.

(c) What is the exponent of Sn for n = 4, 5, 6, 7?

Transpositions and the Alternating Group

There is another factorization that is important.

Proposition 2.5.12. Every permutation can be written as a product of transpo-
sitions.

Proof. Since every permutation is a product of cycles, it is enough to show that
every cycle is a product of transpositions. This is shown by verifying that

(a1, a2, . . . , at) = (a1, a2) ∗ (a2, a3) ∗ · · · ∗ (at−2, at−1) ∗ (at−1, at)

Recall that we treat permutations are functions and we apply the rightmost per-
mutation first. One can see that at gets mapped to at−1 then at−2 and so forth,
until the final transposition is applied and takes a2 (the image of at at this point)
to a1. Similar arguments apply to the other ai.

We may interpret the previous result as saying that Sn is generated by trans-
positions. That is somewhat good news: there are n! elements of Sn but only

(
n
2

)
transpositions. Thus n(n− 1)/2 elements of Sn are enough to generate Sn. In fact
we can do much better!

Exercises 2.5.13. Generators for Sn

(a) Show that Sn is generated by the n − 1 elements (1, k) for k = 2, . . . , n.
[Show that you can get an arbitrary transposition by conjugating (1, k) by
some (1, j), see Definition 2.7.10.]

(b) Show that Sn is generated by 2 elements: (1, 2) and (1, 2, 3, . . . , n − 1, n).
[Show that you can get all (1, k) from these two using conjugation and then
apply the previous exercise.]

Exercises 2.5.14. Preparing for the next proposition
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(a) Let a, b, c be distinct elements of {1, . . . , n}. Write down all possible factor-
izations of the 3-cycle (a, b, c) as a product of 2 transpositions.

(b) Let a be an element of {1, . . . , n}. Let τ1, τ2 be transpositions in Sn with
τ1 ̸= τ2. Show that there exist transpositions σ1, σ2 ∈ Sn such that σ1σ2 =
τ1τ2 and a is not in the support of σ2. [You will need to consider a few
different cases depending on whether a is in the support of τ1 or τ2.]

We know from the previous proposition that a permutation can be written
as a product of transpositions. This “factorization” is not unique, for example
id = (1, 2)(1, 2) = (1, 3)(1, 3), but the next proposition shows that the parity of
the factorization is.

Proposition 2.5.15. The identity element of Sn cannot be written as the product
of an odd number of transpositions.

Consequently, no permutation can be written as a product of an even number
of transpositions and also as a product of an odd number of transpositions.

Proof. We will show that if id is the product of n transpositions then it is the
product of n−2 transpositions. Consequently, if it is the product of an odd number
of transpositions, inductively we could show that id is a single transposition. This
is clearly false.

Suppose that id = τ1 · · · τm with τi = (b2i−1, b2i). The bi are not necessarily
distinct, except b2i ̸= b2i−1 so that τi is indeed a transposition. Let a = b1. Let
k be the largest integer such that a is in the support of τk (so either b2k−1 or b2k
is equal to a). Note that k ̸= 1 because if a was only in the support of τ1 then
τ1 · · · τm(a) = τ1(b1) = b2 ̸= a and the factorization would not be the identity.

Using the previous exercise we can rewrite the factorization of the identity
replacing τk−1τk with σk−1σk in which a is not in the support of σk (the indexing
of k − 1 and k on σk−1 and σk is just for notational convenience). We have a new
factorization of id with m terms, but now, only the transpositions τ1, . . . , τk−2 and
σk−1 can have a in the support. If τk−2 = σk−1 we can cancel and get a shorter
factorization of the identity using n− 2 transpositions, as claimed. Otherwise we
repeat the process: find the largest index such that the transposition with that
index has a in the support; use the exercise to move a into a lower index term;
cancel if possible; if not repeat. Eventually we either get a cancellation, or we arrive
at a factorization τ1σ2 · · · τk+1τk+2 · · · τm in which only the first two transpositions
τ1 and σ2 have a in their support. Then τ1σ2(a) = id(a) = a. This is possible
only if τ1 = σ2. Thus we may cancel and get id equal to the product of m − 2
transpositions as claimed.

For the second part, suppose that π is the product of transpositions in two
ways: π = σ1σ2 . . . σm = θ1θ2 . . . θk. Then id = σ1σ2 . . . σmθ

−1
1 θ−1

2 . . . θ−1
k . Thus

m+k must be even, and this implies that m and k must have the same parity.
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We now have an important and easy consequence.

Proposition 2.5.16. The set of even parity permutations forms a subgroup of Sn.
This is called the alternating group and is denoted An.

Furthermore, there is a homomorphism from Sn to Z2 whose kernel is An.

Proof. Define a function from f from Sn to Z2 that takes even permutations to 0
and odd permutations to 1. This is well defined by the proposition. Let π and σ
have the following decompositions as products of transpositions π = τ1 · · · , τk, σ =
τ ′1 · · · , τ ′m. Then πσ has the following decomposition as a product of transpositions:

πσ = τ1 · · · , τkτ ′1 · · · , τ ′m

Consequently,

f(πσ) = m+ k mod 2

= f(π) + f(σ)

This shows f is a homomorphism.
By construction, the kernel of f is An, the set of even permutations. Since the

kernel of a homomorphism is a subgroup of the domain, An is a subgroup of Sn.

Exercises 2.5.17. Parity of a t-cycle

(a) Show that the parity of a t-cycle is t+ 1 mod 2.

(b) Find a formula for the parity of σ ∈ Sn that uses the signature of σ.

Exercises 2.5.18. Details for proving the simplicity of An

(a) Suppose that σ is a k-cycle and τ is an m-cycle and there is exactly one
element of {1, . . . , n} that is in the support of both σ and τ . Show that στ
is a (k +m− 1)-cycle.

(b) Show that the product of two disjoint transpositions can also be written as
the product of two 3-cycles.

(c) Use part (a) (with k = m = 2) and part (b) to prove that An is generated
by 3 cycles.

(d) Compute (1, 2, a)(1, b, 2) for a, b distinct and not equal to 1 or 2. Use the
result as motivation to show that the 3-cycles of the form (1, 2, a) generate
An for n ≥ 4.

Exercises 2.5.19. More on An

(a) Find all subgroups of A4. Draw a diagram of the subgroup lattice.

(b) What is the intersection of A4 and D4 (generated by (1, 2, 3, 4) and (1, 3)?
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(c) There are other subgroups of S4 isomorphic to D4, for example the group
generated by (1, 3, 4, 2) and (1, 3). What is the intersection of these versions
of D4 with A4?

Cayley’s Theorem

For any set T , the set of bijections from T to itself forms a group under composition
with the indentity map, id(t) = t, acting as identity element and f mapping to the
inverse of a function f as the operation of inversion. In a manner similar to our
notation for permutations of {1, . . . , n}, we will write the group of bijections of an
arbitrary set T as ST . The elements of ST will also be called permutations of T .
It should be clear that if |T | = n then ST ∼= Sn.

For a group G, we can forget that G is a group and just look at arbitrary
bijections (set maps) from G to itself, that is SG. The next theorem shows there
is an injective homomorphism from G to SG.

Theorem 2.5.20. Any group G is isomorphic to a subgroup of SG, the group of
(set) bijections of G to itself. If |G| = n there is an embedding of G in Sn.

Proof. For each a ∈ G, left multiplication by a maps elements of G to elements
of G. Let us call this map λa : g −→ ag. We can see that λa is a permutation
of G as follows. For any g ∈ G, λa(a−1g) = a(a−1g) = g, so a−1g is a preimage
for g. Since g was arbitrary, λa is surjective. We also have λa is injective because
λa(g) = λa(g

′) implies ag = ag′, which by cancellation in G gives g = g′.
(We could also prove that λa is a permutation of G by showing that λa−1 and

λa are inverse functions of each other: both compositions, λa ◦ λa−1 and λa−1 ◦ λa
give the identity map.)

Define λ : G −→ SG by λ : a −→ λa. Since λa(e) = a, we have λa = λb can
only be true if a = b. Thus λ is injective. To show it is a homomorphism we have
to show that λab = λa ◦ λb. The following computation does that. We have for all
g ∈ G,

λab(g) = (ab)g = a(bg) = λa(bg) = λa(λb(g)) = (λa ◦ λb)(g)

For a finite set T of cardinality n, we noted earlier that ST is isomorphic to
Sn. It is worth explicitly giving a construction of an embedding of G into Sn
(for |G| = n) by enumerating the elements of G so G = {g1, . . . , gn}. For any
a ∈ G, we have shown that λa, left multipication by a, permutes the elements of
G. Define φa ∈ Sn by φa(i) is the unique j such that agi = gj . We may then write
agi = gφa(i). Observe that

gφab(i) = abgi = a(bgi) = a(gφb(i)) = gφa(φb(i)) = gφa◦φb(i)
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This shows that φab = φa ◦ φb so the function φ is a homomorphism.

Exercises 2.5.21. Cayley’s Theorem: three examples

(a) Let n = 5 and think of Zn in the usual way as {0, 1, 2, 3, 4} with addition
modulo n. For each a ∈ Zn write down in tabular form the function on Zn

defined by addition of a.

(b) Show that part (a) defines a function from Z5 to S5, provided you think of
S5 as the group of permutations of {0, 1, 2, 3, 4}. Show that this function is
a homomorphism.

(c) Now consider Z2 × Z2. Enumerate the 4 elements in any way you choose as
a1, a2, a3, a4. For each ai define a permutation σi by aia1 = aσi(1), aia2 =
aσi(2), aia3 = aσi(3), aia4 = aσi(4).

(d) Show in part (c) that this gives a homomorphism from Z2 × Z2 to S4.

(e) Similarly, the next steps define a homomorphism from D3 to S6. Enumerate
the elements of as follows

D3 =
{
a1 = r0, a2,= r, a3 = r2, a4 = t, a5 = rt, a6 = r2t

}
For each ai define a permutation σi in S6. Since a1 is the identity in D3, σ1
is the identity permutation in S3. One can see that σ2 is given by σ2(i) = k
whenever rai = ak. Verify that each σi is indeed a permutation by writing
it in permutation notation.

(f) Verify in three examples that for any a, b ∈ D3, the permutation correspond-
ing to ab equals the product of the permutations corresponding to a and b.

(g) Which elements of D3 correspond to odd permutations in S6?

Exercises 2.5.22. The product of two symmetric groups

(a) Let A and B be disjoint subsets of {1, . . . , n}. Explain how to think of
SA × SB as a subgroup of Sn.

(b) Generalize to any partition of {1, . . . , n}.
Exercises 2.5.23. Counting elements of Sn

(a) Let n be a positive integer and k > n/2. Find a formula for the number of
elements of Sn that include a k-cycle.

(b) Use Stirling’s formula to approximate the formula you just computed.

(c) Estimate the probability that a random element of Sn has a cycle of length
larger than n/2.
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2.6 Generators and Relations

There is another way to describe groups: using “generators” and “relations.” A
set of generators for the group is given, and then certain properties that must be
satisfied by those generators are listed. The latter are called the relations. Identi-
fying the generators and relations for a group is called giving a presentation of
the group. The group is then the set of all possible products of the generators and
their inverses (these are informally called “words”). The relations say that some
words are equal to the identity, so they give a way to simplify words. The descrip-
tion via generators and relations can be straightforward in the simplest instances,
but it is quite subtle in general. We give a few examples here and defer a more
thorough treatment to Section ??.

We have noted that Z requires only one generator, as do the groups Zn. We
may describe Zn (actually a group isomorphic to it) using the generator a, and the
relation an = 1, in which I use 1 for the identity element. This would be written

⟨a|an = 1⟩

The homomorphism Zn −→ ⟨a|an = 1⟩ taking 1 to a is clearly an isomorphism.
We could also describe Zn in other ways. For example when p and q are distinct

primes (or even just coprime to each other), we could use two generators.

Zpq
∼= ⟨a, b|ap = 1, bq = 1, ab = ba⟩

This tells us that a is an element of order p, b is an element of order q and that a
and b commute. The latter relation could also be written aba−1b−1 = 1.

Exercises 2.6.1. A presentation of Zpq

(a) Show that the presentation for Zpq in the previous paragraph is isomorphic
to the group with presentation ⟨c|cpq = 1⟩ via the function c→ ab.

(b) Show that the same presentation works provided only that p and q are co-
prime.

(c) Find a presentation for Zpqr with p, q, r pairwise coprime.

The dihedral group Dn has a presentation as follows

⟨a, b|an = 1, b2 = 1, ba = an−1b⟩

The generator a is clearly playing the role of rotation by 2π/n and b the role of
a reflection. The final relation tells us that in any product using a and b we can
switch any occurrence of ba to be an−1b and thereby rearrange so that all the as
are on the left and all the bs on the right. So, just using these relations we know
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that any element of this group can be uniquely written aibk for i ∈ {0, . . . , n− 1}
and k ∈ {0, 1}. The group product is easily summarized by the following

(ai)(ajbk) = ai+jbk

(aib)(ajbk) = ai−jbk+1

Exponents on a are computed modulo n and on b modulo 2. It is easy to verify
that our earlier discussion of Dn (Section 1.2) is consistent with the description
here: for any reflection ti, tir = r−1ti.

Exercises 2.6.2. The Quaternion Group

Consider the presentation

Q = ⟨a, b | a4 = 1, b2 = a2, ba = a−1b⟩

(a) Show that Q has 8 elements. List them in a useful fashion and show how to
multiply them as we did for the dihedral group.

(b) Find the order of each element of Q.

(c) Draw the lattice diagram for this group.

(d) Show that no two of the groups Z2 × Z2 × Z2, Z4 × Z2, Z8, D4, and Q are
isomorphic. [Investigate the number of elements of order 4. Or, Compare
lattice diagrams.]

Exercises 2.6.3. The infinite dihedral group

Let
D∞ = ⟨a, b | b2 = 1⟩

(a) Show that D∞ is a symmetry group of the following diagrams.

(b) What other symmetries do the diagrams have that are not captured by D∞?
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2.7 Cosets and Conjugates

Let H be a subset of G. In this section we define cosets of H and show an
extremely important result (Lagrange’s Theorem) that the cosets form a partition
of G. We also show there is another interesting partition of G that is determined
by a relation called conjugacy.

The following bit of notation is useful.

Notation 2.7.1. Let S and T be subsets of a group G.

ST = {st : s ∈ S, t ∈ T}

So, ST is the set of all products of an element in S (on the left) and an element of
T (on the right). Similarly, for g ∈ G, gS = {gs : s ∈ S}. We may use analogous
notation for the set of all products from 3 or more sets.

If a group is abelian and the operation is + we write S + T instead of ST .

Proposition 2.7.2. Associativity holds for the notation in 2.7.1. If S, T, U are
subsets of G then (ST )U = S(TU).

Proof.

(ST )U = {st : s ∈ S, t ∈ T}U
= {(st)u : s ∈ S, t ∈ T, u ∈ U}
= {s(tu) : s ∈ S, t ∈ T, u ∈ U}
= S {tu : t ∈ T, u ∈ U}
= S(TU)

The proposition shows that we may write unambigously STU for the product
of three sets (taken in the order given). Notice that ST and TS are not necessarily
equal when the group G is not abelian.

Exercises 2.7.3. Revisiting the properties of a subgroup.

(a) Let T be a nonempty subset of a group G. Prove that T is a subgroup of G
if and only if TT = T and T−1T = T .

(b) Let T be a nonempty subset of the finite group G. Prove that TT = T if
and only if T is a subgroup of G.

(c) Give an example to show that for an arbitrary group G and nonempty subset
T , TT = T is not sufficient to ensure T is a subgroup of G.
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Definition 2.7.4. Let H ≤ G and let g ∈ G. The set gH is a left coset of H in
G. Similarly, Hg is a right coset of H in G.

We will prove several results for left cosets. There are analogous results for
right cosets.

Lemma 2.7.5. Let G be a group and H a subgroup of G. The function

λg : H −→ gH

h 7−→ gh

is a bijection.

Proof. The function λg is a surjection by the definition of gH. Suppose gh = gh′.
Multiplying on the left by g−1 gives h = h′. This shows λg is injective.

Lemma 2.7.6. Let G be a group and H a subgroup of G. For a, g ∈ G, if
gH ∩ aH ̸= ∅ then gH = aH.

Proof. First, we show that if g ∈ aH then gH ⊆ aH. Let g ∈ aH, so there is some
k ∈ H such that g = ak. For any h ∈ H, we have gh = akh. This is an element of
aH because kh ∈ H since H is a subgroup of G. This shows gH ⊆ aH.

Suppose gH ∩ aH is nonempty, containing some element x. Then there are
h, k ∈ H such that x = gh = ak. Then g = akh−1 ∈ aH and similarly a =
ghk−1 ∈ gH. From the previous paragraph, we have aH ⊆ gH and gH ⊆ aH, so
aH = gH.

Theorem 2.7.7 (Lagrange). Let G be a group with subgroup H. The set of cosets
of H form a partition of G.

Consequently, if G is a finite group with subgroup H then the order of H divides
the order of G. In particular, the order of any element of G divides |G|.

Proof. Any g ∈ G is in some coset, namely gH, so the cosets cover G. The previous
lemma shows that any two unequal cosets are disjoint. Thus the cosets partition G.

Suppose G is finite. Since the cosets of H partition G, there are elements
a1, . . . , at such that G is the disjoint union of a1H, a2H, . . . , atH. The cosets of H
all have the same number of elements by Lemma 2.7.5. Thus |G| =

∑t
i=1|aiH| =

t|H|, and the number of elements of G is a multiple of |H|.
For any a ∈ G the number of elements in the subgroup ⟨a⟩ is ord(a). So ord(a)

divides |G|.

Definition 2.7.8. Let H ≤ G. The index of H in G, written [G : H], is the
number of cosets of H in G, which may be infinite.
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If G is finite and H ≤ G then [G : H] = |G|/|H|, since all cosets have |H|
elements.

Exercises 2.7.9. The exponent of a group

Recall that the exponent of a group G is the lcm of the orders of the elements
(if this is finite).

(a) Give an example to show that there may not be an element in G whose order
is the exponent of G, even if G is finite.

(b) Let G be a finite group with finite exponent t. Show that t divides the order
of G.

Conjugation

Now we consider conjugation.

Definition 2.7.10. Let a ∈ G and g ∈ G. The element aga−1 is called the con-
jugation of g by a. If S is a subset of G, we define aSa−1 to be

{
asa−1 : s ∈ S

}
.

It is the conjugation of S by a.

Proposition 2.7.11. Conjugacy on a group G determines an equivalence relation.

Proof. Let G be a group and define a relation on G by a is related to b if there
is some g such that b = gag−1. The relation is reflexive, because for any a ∈ G,
eae−1 = a. The relation is symmetic, because if a is related to b (say b = gag−1)

then we also have a = g−1b
(
g−1
)−1

so b is related to a. Finally suppose a is
related to b (again b = gag−1) and b is related to c (so there is some h ∈ G with
c = hbh−1). Then

c = hbh−1 = h
(
gag−1

)
h−1 =

(
hg
)
a
(
hg
)−1

This shows that a is related to c. We have shown that conjugacy determines an
equivalence relation on G.

Exercises 2.7.12. The Centralizer of an element

For a ∈ G we define the centralizer of a to be C(a) = {g ∈ G : ga = ag}.
(a) Show that C(a) is a subgroup of G.

(b) Let G be a finite group. Show that the number of elements of G conjugate
to a is |G|/|C(a)|. [Consider the cosets of C(a).]

Exercises 2.7.13. Conjugation in the symmetric and dihedral groups

(a) Show that An is invariant under conjugation: for any π ∈ Sn, πAnπ
−1 = An.

(b) Let Cn be the rotation subgroup of Dn. Find two elements of C4 that are
conjugate as elements of D4 but are not conjugate as elements of C4.
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(c) Find two elements of D4 that are conjugate as elements of S4 but are not
conjugate as elements of D4.

Exercises 2.7.14. Conjugates and subgroups.

Let H be a subgroup of a group G.

(a) Let a ∈ G. Show that aHa−1 is a subgroup of G.

(b) Show that there is an isomorphism between H and aHa−1.

Proposition 2.7.15. Let π ∈ Sn. For any σ ∈ Sn, the signature of σ and the
signature of πσπ−1 are the same.

One proof is contained in the following suite of exercises.

Exercises 2.7.16. Conjugation and cycle decomposition.

Consider conjugation by π ∈ Sn.
(a) Let (a1, a2, . . . , ak) ∈ Sn be a k-cycle, so the ai are distinct. Show that

π ∗ (a1, a2, . . . , ak) ∗ π−1 =
(
π(a1), π(a2), . . . , π(ak)

)
[Consider two cases, b = π(ai) for some i, and b ̸∈ {π(a1), π(a2), . . . π(ak)}.
Explain why this breakdown into two cases makes sense.]

(b) If A and B are disjoint subsets of {1, . . . , n} show that π(A) and π(B) are
also disjoint.

(c) If σ = σ1σ2 · · ·σk is the cycle decomposition of σ, find the cycle decomposi-
tion of πσπ−1 and justify your answer.

(d) Conclude that the conjugation of any σ ∈ Sn by π has the same signature
as σ.
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2.8 Normality and the First Isomorphism Theorem

Let’s pause for a moment to think about homomorphisms, particularly the spe-
cial cases: injective homomorphisms (one-to-one) and surjective homomorphisms
(onto).

SupposeH is a subgroup of G. There is a injective function fromH to G, which
is called the inclusion map, that simply takes h ∈ H to itself, as an element of
G. Since H is a subgroup of G (it’s multiplication is the same as the one on G),
the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that
φ : H −→ G is an injective homomorpism. Proposition 2.3.5 shows that φ(H) is
a subgroup of G. Thus the bijection φ : H −→ φ(H) is actually a homomorphism
of groups. This shows that the image of an injective homomorphism φ : H −→ G
is a subgroup of G that is isomorphic to H. Thus, the study of injective homo-
morphisms is essentially the study of subgroups and their automorphisms.

This section and Section 2.10 are focused on surjective homomorphisms, which
are intimately related to subgroups that have a special property, treated in the
next proposition.

Theorem 2.8.1 (Normal Subgroups). Let N be a subgroup of G. The following
are equivalent.

(1) Na = aN for all a ∈ G.

(2) aNbN = abN for all a, b ∈ G.

(3) aNa−1 ⊆ N for all a ∈ G.

(4) aNa−1 = N for all a ∈ G.

Proof. We prove a series of implications that shows the conditions are equivalent.
(1) =⇒ (2): Assume Na = aN for all a ∈ G. Then

(aN)(bN) = a(Nb)N = a(bN)N = (ab)N

Here we have used asociativity, then the assumption in (1), and finally, NN = N
since N is a subgroup of G.
(2) =⇒ (3): Assume aNbN = abN for all a, b ∈ G. Set b = a−1. Then, using (2),
aNa−1N = aa−1N = eN . In particular, this shows that aNa−1 ⊆ N .
(3) =⇒ (4): Assume aNa−1 ⊆ N for all a ∈ G. For any a ∈ G, applying (3) to
a−1, we have that a−1Na ⊆ N . Conjugating by a, we get

a(a−1Na)a−1 ⊆ aNa−1
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The left hand side is N . Thus, assuming (3) we have both aNa−1 ⊆ N and
N ⊆ aNa−1, which proves (4).
(4) =⇒ (1): Assume aNa−1 = N for all a ∈ G. Multiplying aNa−1 = N on the
right by a gives (1).

These arguments may seem slippery since they involve computations with sets.
The proofs can also be done elementwise. Consider (4) =⇒ (1). Let a ∈ G. Given
any n ∈ N , we know ana−1 ∈ N , say ana−1 = n′. Then an = n′a ∈ Na. Since
n was arbitrary, aN ⊆ Na. The reverse containment is proven analogously, using
a−1na ∈ N .

Definition 2.8.2. A group satisfying the conditions of the theorem is called nor-
mal. We write N ⊴ G for N a normal subgroup of G.

Exercises 2.8.3. A weaker requirement for normality

(a) Let H be a subgroup of a group G such that for any a ∈ G there is a b
in G such that aH = Hb. (Every left coset is also a right coset, but not
necessarily defined by the same element of G.) Prove that H is normal in G.

Let N be normal in G. Suppose aN = bN and rN = sN . Then a ∈ bN and
r ∈ sN , so ar ∈ bNsN = bsN . By Lemma 2.7.6, arN = bsN . Consequently,
there is a well-defined operation on cosets of N in G that takes the pair (aN, bN)
to abN (it doesn’t matter which element we choose to represent each coset, their
product always defines the same coset). The next theorem shows that this gives a
group structure on the cosets of N in G.

Theorem 2.8.4. Let N be a normal subgroup of G. Let G/N be the set of cosets
of N in G with the binary operation by aN ∗ bN = abN . Then G/N is a group.

Proof. We have proven above that the product aNbN is well defined and equal to
abN . Associativity is inherited from associativity of ∗G (check!). The identity is
eN . The inverse of aN is a−1N .

We call G/N the quotient of G by N and the homomorphism G −→ G/N is
called the quotient map. Some sources call G/N a factor group.

Every subgroup of an abelian group A is normal in A, so for any subgroup B
of A there is quotient group A/B.

Example 2.8.5. In Z the only subgroups are nZ. The quotient group Z/nZ has the
distinct elements a+nZ for a ∈ {0, . . . , n− 1}. Clearly this is just another way to
think about the additive group of integers modulo n. It is isomorphic to Zn.

Exercises 2.8.6. Additional properties of normal subgroups.

(a) Let N be a normal subgroup of G. For any subgroup H of G, H ∩ N is a
normal subgroup of H.
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(b) If φ : G −→ H is a homomorphism and N is normal in H, then φ−1(N) is
normal in G.

(c) Show that any subgroup of index 2 is normal.

Exercises 2.8.7. The Center of of a group

We defined Z(G), the center of G to be the set of elements in G that commute
with all elements of G, Z(G) = {a ∈ G : ag = ga for all g ∈ G}.

(a) Prove that any subgroup of the center of G, including Z(G) itself, is normal
in G.

(b) Find the center of D4; it is not trivial.

(c) Show that the centers of D3 and D5 are trivial.

Exercises 2.8.8. Example of normal subgroups.

(a) Find all normal subgroups of D4, D5, and D6.

(b) Find all normal subgroups of A4.

(c) Find all normal subgroups of the quaternions, Q.

Isomorphism and Factor Theorems

We are now in the position to say more about the relationship between homomor-
phisms and normal subgroups.

Theorem 2.8.9 (First Isomorphism). Let φ : G −→ H be a surjective homomor-
phism with kernel K. Then K is a normal subgroup of G and G/K is isomorphic
to H.

Proof. We showed in Proposition 2.3.7 that the kernel of any homomorphism of
groups is a normal subgroup of the domain.

Let g ∈ aK, so g = ak for some k ∈ K. Then φ(g) = φ(a)φ(k) = φ(a).
Consequently, all elements of a fixed coset of K ahve the same image under φ, so
there is a well defined map φ̃ : G/K → H taking aK to φ(a).

To show φ̃ is a homomorphism, let aK and bK be elements of G/K. Since
K is normal, φ̃(aKbK) = φ̃(abK) = φ(ab) by the definition of multiplication in
G/K and the definition of φ̃. Since φ is a homomorphism, φ(ab) = φ(a)φ(b) =
φ̃(aK)φ̃(bK). thus φ̃(aKbK) = φ̃(aK)φ̃(bK), which shows φ̃ is a homomorphism.

Since φ is surjective, for any h ∈ H there is some a ∈ G such that φ(a) = h.
Then φ̃(aK) = h, so φ̃ is surjective.

To show that φ̃ is injective, suppose φ̃(aK) = eH . Then φ(a) = eH so a ∈ K
and aK = eGK. Thus the kernel of φ̃ just contains just the identity element of
G/K.

Here is an important use of the First Isomorphism theorem.
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Theorem 2.8.10. Let G1, G2, . . . Gr be groups and let N1, N2, . . . , Nr be normal
subgroups, Ni ⊴Gi. There is a well defined map

(G1 ×G2 × · · · ×Gr)/(N1 ×N2 × · · · ×Nr) −→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr)

(g1, g2, . . . , gr) (N1 ×N2 × · · · ×Nr) 7−→ (g1N1, g2N2, . . . grNr)

and it is an isomorphism.

Proof. By the Direct Product Theorem 2.4.2, the projection of G1×G2×· · ·×Gr

onto Gi is a homomorphism. Composing this with the quotient map Gi −→
Gi/Ni, we get maps G1 ×G2 × · · · ×Gr −→ Gi/N . Proposition 2.4.4 then gives a
homomorphism

G1 ×G2 × · · · ×Gr
φ−→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr),

To be specific, let us show that φ respects products. Let (g1, g2, . . . , gr) and
(g′1, g

′
2, . . . , g

′
r) be elements of G1 ×G2 × · · · ×Gr. Then

φ
(
(g1, g2, . . . , gr) ∗ (g′1, g′2, . . . , g′r)

)
= φ

(
(g1g

′
1, g2g

′
2, . . . , grg

′
r)
)

= (g1g
′
1N1, g2g

′
2N, . . . , grg

′
rNr)

= (g1N1, g2N2, . . . , grNr) ∗ (g′1N1, g
′
2N2, . . . , g

′
rNr)

= φ(g1, g2, . . . , gr) ∗ φ(g′1, g′2, . . . , g′r)

We used, in order, the definition of multiplication in G1 × G2 × · · · × Gr, the
definition of φ, the definition of multiplication in G1/N1 ×G2/N/2× · · · ×Gr/Nr

(and the Ni being normal), and finally, the definition of φ.
The kernel of φ is the set of (g1, . . . , gr) such that g1N1, g2N2, . . . , grNr =

N1 ×N2 × · · · ×Nr. Each gi must be in Ni. So, the kernel is e1N1 × e2N2 × · · · ×
erNr. Surjectivity is easy to check, so the first isomorphism theorem now gives
the result.

A generalization of the first isomorphism theorem that we will often use treats
the case when φ : G −→ H is not necessarily surjective.

Theorem 2.8.11 (Factor). Let φ : G −→ H be a homomorphism of groups with
kernel K. Let N be a normal subgroup of G that is contained in K. Then φ can
be factored into the canonical surjective homomorphism π : G −→ G/N followed
by a homomorphism φ̄ : G/N −→ H.

By letting N = K we conclude that any homomorphism can be factored into a
surjective homomorphism followed by an injective homomorphism.
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Proof. Define φ̃ by gN 7−→ φ(g). This is well defined because N is contained in
the kernel of φ so for any n ∈ N , φ(gn) = φ(g)φ(n) = φ(g)eH = φ(g). From this
definition it is immediate that φ̃ ◦ π = φ.

The proof that φ̃ is a homomorphism is similar to the proof of the First Iso-
morphism Theorem.

When N = K, we want to show that φ̃ is injective. Suppose φ̃(gN) = eH . By
the definition of φ̃, we have φ(g) = eH . Thus g ∈ K, and therefore gK = eK, the
identity element of G/K.

The Factor Theorem and First Isomorphism Theorem give us a framework for
understanding the material that we have seen earlier. As we said above, the group
Zn is just the quotient of Z by its normal subgroup nZ.In the context of groups
we have given a shorthand notation to Z/nZ, calling it Zn.

Recall that Proposition 2.3.4 says that given any group G and g ∈ G there is
a homomorphism Z −→ G taking 1 to g. If g has infinite order then the cyclic
group, ⟨g⟩, is isomorphic to Z. If g has finite order n then the factor theorem says
that Zn is isomorphic to ⟨g⟩ via the homomorphism taking 1 (in Zn) to g.
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2.9 More Examples of Groups

Before continuing the theoretical development we introduce a few more interesting
families of groups. The first set are abelian, derived from the number systems
discussed in Section 1.2. The second family is matrix groups, which are (generally)
non-abelian.

Groups from Familiar Number Systems

We have already treated the additive group of the integers, Z as well as its sub-
groups nZ. We have also used the integers modulo n, which we can now identify
as the quotient group of Z by its subgroup nZ. As pointed out in Section 1.2,
the additive group of the fields Q (rational numbers), R (real numbers) and C
(complex numbers) are abelian groups. They are complicated as groups because
they are not finitely generated. The next exercise shows that the quotient Q/Z is
interesting; every element has finite order, but the group is not finitely generated.

Exercises 2.9.1. The group Q/Z
(a) Show that every element in Q/Z has finite order.

(b) On a number line, sketch a region that contains one element for each equiv-
alence class of Q/Z.

(c) Show that for any integer n there is an element of order n in Q/Z.
(d) How many elements of order n are there in Q/Z?
(e) Show that for any finite set {r1, r2, . . . , rt} of rational numbers,

⟨r1 + Z, r2 + Z, . . . , rt + Z⟩ ≠ Q/Z

This shows that the group Q/Z is not finitely generated.

We can also consider the multiplicative groups from familiar number systems.
We noted in Section 1.1 there is both an additive and a multiplicative structure

Z/n, to the integers modulo n. For an integer a that is comprime to n there are
integers u, v such that ua+ nv = 1 by the GCD theorem. Then u and a are mul-
tiplicative inverses of each other in Z/n. We call them units. In Proposition 2.1.8
we showed that Un, the set of units in Z/n, forms a group under multiplication: 1
is the identity element, every element has an inverse by definition, the product of
two units is also a unit (with (ab)−1 = a−1b−1), and multiplication is associative
and commutative.

For a prime number p, every nonzero element in Z/p is a unit, so Z/p is a field.
When considering it as a field we will write it Fp.

Exercises 2.9.2. Automorphism groups of Zn
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(a) Prove that Aut(Zn) ∼= Un, the group of units in Zn.

(b) We will prove in Section 3.2 that every finite abelian group is isomorphic to
a cyclic group or a direct product of such. For each of n = 8, 9, 10, 11, 12
find the product of cyclic groups that is isomorphic to Un.

Returning to the fields Q, R, C, we now consider their multiplicative groups,
which are written Q∗, R∗, and C∗.

Example 2.9.3. In Q∗, there is only one element of finite order Q∗, other than
the identity element, namely −1. It has order 2. Similarly the only non-identity
element of R∗ which has finite order is −1. To get elements of order n we are, in
effect, looking for solutions of xn − 1, that is nth roots of unity. These live in the
complex number field C.
Exercises 2.9.4. Subgroups of Q∗

(a) For any rational number r ̸= ±1 show that
{
ri : i ∈ Z

}
is a subgroup of Q∗

that is isomorphic to Z.
(b) Show that the subgroup generated by 2 and 2 is ⟨2, 3⟩ =

{
2i3j : i, j ∈ Z

}
and that it is isomorphic to Z× Z. Generalize.

(c) Show that the positive rational numbers Q∗∗ = {a ∈ Q : a > 0} form a sub-
group of Q∗.

(d) Show that Q∗ is isomorphic to the direct product of Q∗∗ and ⟨−1⟩.
(e) Extend this result to the multiplicative group of the real numbers, R∗.

Exercises 2.9.5. An additive group isomorphic to a multiplicative group.

(a) Show that there is a homomorphism from Q,+ to C∗, ∗, namely a 7−→ ea2πi.

(b) Show that the image is the set of all nth roots of unity (for n ∈ N) and that
this forms a subgroup of C∗ under multiplication.

(c) What is the kernel?

Matrix Groups

We will work primarily with matrix groups over the fields, Q, R, C and Fp, but
the general results below are true for any field, so we express them for a general
field F . We denote the multiplicative group of F by F ∗.

Definition 2.9.6. Let F be a field and let n be an integer. The set of n×nmatrices
over F with nonzero determinant is called the General Linear Group and is
written GLn(F ). The subgroup consisting of the matrices with determinant 1 is
the Special Linear Group and is written SLn(F ). The next proposition shows
that these are indeed groups with the identity matrix, In as identity element.
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Proposition 2.9.7. Let F be a field and let n be an integer. The set of n ×
n matrices over F with nonzero determinant forms a group. The determinant
function

det : GLn(F ) −→ F ∗

is a homomorphism, and its kernel is SLn(F ).

Proof. Matrix multiplication is associative: One can show that for n× n matrices
A,B,C, the i, j component of the product of A(BC) and of (AB)C is

n∑
s=1

n∑
t=1

aisbstctj

Thus A(BC) = (AB)C. (Associativity holds for any product of matrices that is
well defined. We are treating the special case where they are all square of the same
dimension.)

The result from linear algebra (which we assume here) that the determinant of
a product of two matrices is the product of their determinants shows, in particu-
lar, that the product of two matrices with nonzero determinant also has nonzero
determinant. So GLn(F ) is closed under multiplication. The identity matrix, In,
and the usual formula for the inverse of a matrix perform the expected roles to
make GLn(F ) a group. The determinant function respects products, so it gives a
homomorphism to F ∗. The kernel is the subgroup of matrices with determinant
1, that is SLn(F ).

Exercises 2.9.8. Interesting subgroups of the general linear group

Show that the general linear group has these subgroups:

(a) The matrices of the form aIn for a ∈ F are called the constant diagonal
matrices. Taking a nonzero we get the subgroup F ∗In of GLn(F ). Show
that F ∗In is the center of GLn(F ) when n > 1. [Show first that F ∗In is in
the center of (GLn(F )). Then show no other matrices are in the center.]

(b) The diagonal matrices with nonzero entries on the diagonal.

(c) The upper triangular matrices with nonzero entries on the diagonal.

(d) The orthogonal group O(n, F ) is the group of matrices Q such that Q−1

is the transpose of Q.

(e) For any subgroup H of F ∗ the set of all matrices with determinant in H.

There are two other matrix groups of particular interest. In the exercises above,
you showed that for n > 1, the constant diagonal matrices, F ∗In form the center
of GLn(F ). In particular F ∗In is normal in GLn(F ).
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Definition 2.9.9. The quotient group GLn(F )/F
∗In is called the Projective

General Linear Group and is written PGLn(F ). The quotient group SLn(F )/
(
F ∗In∩

SLn(F )
)
is called theProjective Special Linear Group and is written PSLn(F ).

Exercises 2.9.10. Upper and lower triangular matrices

(a) Show that the subgroup of upper triangular 2 × 2 matrices is conjugate to

the group of lower triangular matrices. [Hint:

[
0 1
1 0

]
.]

(b) Show that the set of matrices with nonzero determinant of the form

[
0 a
b c

]
is a coset of the upper triangular matrices.

Exercises 2.9.11. Another version of the quaternions

In GL(2,C) consider the matrices

I =

[
1 0
0 1

]
A =

[
i 0
0 −i

]
B =

[
0 1
−1 0

]
C =

[
0 i
i 0

]
(a) Show that the set of matrices {±I,±A,±B,±C} forms a subgroup of GLn(C).

It is called the quaternion matrix group.

(b) Show that this group is isomorphic to the quaternions as defined in Exer-
cise 2.6.2.

Exercises 2.9.12. Another version of the dihedral group D4

(a) Show thatD4 is isomorphic to the matrix group with elements {±I,±A,±B,±C}
where

I =

[
1 0
0 1

]
A =

[
0 1
−1 0

]
B =

[
1 0
0 −1

]
C =

[
0 1
1 0

]
(b) Draw the lattice diagram for this matrix group (it looks just like D4, but

use the elements here).

(c) More generally find a subgroup of GL2(R) that is isomorphic to Dn. (Re-
member your trigonometry.)

Consider the matrix P σ that has a single 1 in each column with the other
entries being 0, specifically, P σ

σ(i),i = 1. Notice that P σ can be considered as a

matrix over any field F . For v ∈ Fn, and i ∈ {1, . . . , n} the σ(i) component of
the vector P σ(v) is vi. So, P

σ permutes the components of v. Another way to say
this is that the ith component of P σ(v) is vσ−1(i).

In particular, the null space of P σ is trivial, so P σ ∈ GLn(F ).
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Proposition 2.9.13. The function from Sn to GLn(F ) taking σ to P σ is an
injective homomorphism.

Proof. We must check that P πP σ = P πσ, which we do by verifying that for any
v ∈ Fn, the ith components of P π

(
P σ(v)

)
= P πσ(v) are the same. The ith

component of P πσ(v) is v(πσ(i). The ith component of P π
(
P σ(v)

)
is the π(i)

component of P σ(v), which is the σ
(
π(i)

)
component of v. Since πσ = σ−1π−1,

the two matrices P πP σ and P πσ are giving the same answer.
Injectivity is clear because the only permutation σ such that P σ takes each

basis vector to itself is the identity permutation.
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2.10 Structure in the Quotient Group:
The Third Isomorphism Theorem and the Corre-
spondence Theorem

The next step is to understand the structure of a quotient group. The two main
results—the third isomorphism theorem and the correspondence theorem—have
fairly simple statements, which obscure some subtle issues. The proof of the third
isomorphism theorem is a consequence of the first isomorphism theorem.

Theorem 2.10.1 (Third Isomorphism). Let N and K be normal subgroups of G
with K contained in N . Then N/K is a normal subgroup of G/K and

(G/K)

(N/K)
∼= G/N.

Proof. We have two well defined quotient groups of G: G/K and G/N . I claim
that there is a well-defined function from G/K to G/N taking gK to gN . To prove
this, we have to check that if two cosets aK and bK are equal then the cosets aN
and bN are also equal. Suppose aK = bK. Then a−1b ∈ K and since K ⊆ N we
have a−1b ∈ N . Consequently aN = bN . Thus, there is a function taking aK to
aN .

We now do the straightforward verification that the function φ : G/K −→
G/N defined above is surjective and a homomorphism. Given any gN there is an
element, namely gK, that clearly maps to it, φ(gK) = gN , so we get surjectivity.
Also, φ respects multiplication: φ(gK ∗ g′K) = φ(gg′K) = gg′N = gN ∗ g′N =
φ(gK) ∗ φ(g′K)

The kernel of φ is {gK : gN = eN}. But gN = eN if and only if g ∈ N . So the
kernel is N/K. Applying the First Isomorphism Theorem 2.8.9 to φ : G/K −→
G/N ,

(G/K)

(N/K)
∼= G/N.

The more powerful theorem is the Correspondence Theorem, which we may be
seen as a strengthening of the First Isomorphism Theorem. Recall what we said
about isomorphic groups at the end of Section 2.3: If G and H are isomorphic
the isomorphism sets up a correspondence between subgroups of G and subgroups
of H, so the lattices of G and H have the same structure. Furthermore, normal
subgroups of G are paired with normal subgroups of H under this correspondence
by Exercise 2.8.6. The Correspondence Theorem gives similar information in the
more general setting of a surjective homomorphism φ : G −→ H.
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Before stating it, let us recall some simple facts about functions. Let f : X → Y
and let A ⊆ X and B ⊆ Y . Then A ⊆ f−1

(
f(A)

)
because for any a ∈ A,

a ∈ f−1
(
f(a)

)
. On the other hand, for an element b ∈ B, if x is a preimage

of b then f(x) = b, but there may be no preimage for b, so we know only that
f
(
f−1(B)

)
⊆ B.

If f is surjective then for each b ∈ B there is some x ∈ X such that f(x) = b.
Thus for f surjective, f

(
f−1(B)

)
= B. Respecting containment is also immediate:

If A ⊆ A′ ⊆ X then f(A) ⊆ f(A′) and similarly if B ⊆ B′ ⊆ Y then f−1(B) ⊆
f−1(B′).

Theorem 2.10.2 (Correspondence). Let φ : G −→ H be a surjective homomor-
phism with kernel K. There is a one-to-one correspondence, given by φ, between
subgroups of H and subgroups of G that contain K.

G −→ H

A←→ φ(A)

φ−1(B)←→ B

The correspondence respects containment, normality, and quotients as follows. For
A,A′ containing K,

(1) K ≤ A ≤ A′ if and only if φ(A) ≤ φ(A′).

(2) A is normal in G if and only if φ(A) is normal in H.

(3) When A is normal in G, the map φ induces an isomorphism G/A ∼= H/φ(A).

Proof. Let A be a subgroup of G containingK and let B be a subgroup ofH. From
Proposition 2.3.5 we know that φ(A) is a subgroup of H and φ−1(B) is a subgroup
of G. Based on the above discussion, we know φ(φ−1(B)) = B and A ⊆ φ−1(φ(A)
so we need to show that φ−1(φ(A)) ⊆ A to get the one-to-one correspondence. Let
g ∈ φ−1(φ(A)). Then φ(g) = φ(a) for some a ∈ A. Consequently, φ(ga−1) = eH
and therefore ga−1 ∈ ker(φ) = K. Since K ⊆ A, ga−1 ∈ A so g ∈ A. Thus
φ−1(φ(A)) = A. We have established the one-to-one correspondence.

We have also shown in a problem in Exercise 2.8.6 that if B is normal in H
then φ−1(B) is normal. These results are true for an arbitrary homomorphism.
Let’s now show that when φ is surjective, if A is normal in G then φ(A) is normal
in H.

Let h ∈ H. We need to show hφ(A)h−1 = φ(A), or equivalently, hφ(a)h−1 ∈
φ(A) for all a ∈ A. Since φ is surjective, there is some g ∈ G such that φ(g) = h.

hφ(a)h−1 = φ(g)φ(a)φ(g)−1 = φ(gag−1) ∈ φ(A)
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The last step holds because A is normal in G, so gag−1 ∈ A.
Now we apply the first isomorphism theorem. Let B be normal in H. We have

a composition of surjective homomorphisms

G −→ H −→ H/B

whose kernel is φ−1(B). Letting A = φ−1(B), the first isomorphism theorem says
that G/A ∼= H/φ(A).

If φ : G −→ H is a surjective homomorphism the First Isomorphism Theorem
says that H is isomorphic to G/ ker(φ). So the statements in the Correspondence
Theorem can be rewritten to say that there is a one-to-one correspondence between
sbgroups of G/K and subgroups of G containing K. In particular, we can derive
the Third Isomorphism Theorem as a corollary of the Correspondence Theorem.

Corollary 2.10.3 (Third Isomorphism Theorem). Let K and N be normal sub-

groups of G with K ≤ N . Then G/N ∼= (G/K)
/
(N/K).

Proof. Apply the correspondence theorem to G −→ G/K. The subgroup N of G

corresponds to the subgroup N/K of G/K. Thus G/N ∼= (G/K)
/
(N/K).

The Third Isomorphism Theorem gives a framework for understanding the
lattices of subgroups

ADD EXAMPLES

Exercises 2.10.4. Lattices and the Correspondence Theorem

For each of the following groups G and for each of the normal subgroups
N ⊴ G, identify the sublattice of the G that has the same structure as the
lattice of the quotient group G/N .

(a) D4

(b) A4

(c) Z45

(d) Z4 × Z4
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2.11 Problems

Exercises 2.11.1. Weakened group axioms

Define a hemigroup to be a set G with an operation ∗ that is associative, has
an identity element, and such that each element has a right inverse.

(a) Show that the right inverse of a is also a left inverse of a, so that a hemigroup
is actually a group.

Exercises 2.11.2. Unit groups of Zn

Let (Un, ∗) be the group of invertible elements of Z/n. Find all n such that
(Un, ∗) is isomorphic to the following.

(a) (Z2,+);

(b) (Z4,+);

(c) (Z2 × Z2,+).

Exercises 2.11.3. Some subgroups of abelian groups.

Let A be an abelian group and let m be an integer.

(a) Show that multiplication by m gives a homomorphism of A:

φm : A −→ A

a −→ ma

(b) Show that the image and kernel are the groups mA and A[m] from Exer-
cise 2.2.6.

(c) If A is a finite group that has no elements of order m then multiplication by
m gives an isomorphism of A.

(d) If m and n are coprime show that A[m] ∩A[n] = {0}.
Exercises 2.11.4. The torsion subgroup of an abelian group

Let A be an infinite abelian group. Let Tor(A) be the set of elements with
finite order, which is called the torsion subgroup of A.

(a) Show that Tor(A) is, indeed, a subgroup of A and that it is normal.

(b) Show that Tor(A) =
⋃

m∈NA[m]. (Note that, even inside an abelian group,
the union of subgroups is not usually a group!)

(c) Show that Tor(A/Tor(A)) is trivial. That is, letting T = Tor(A), the only
element of finite order in A/T is the identity element, e+ T .

(d) Give an example of a finitely generated abelian group in which the identity
element together with the elements of infinite order do not form a subgroup.
(As opposed to the torsion subgroup.)

Exercises 2.11.5. “Almost” abelian groups

A group is metabelian when it has a normal subgroup N such that N
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and G/N are both abelian. A group is metacyclic when it has a normal
subgroup N such that N and G/N are both cyclic.

(a) Show that S3 is metacyclic.

(b) Show that A4 is metabelian but not metacyclic.

(c) Prove that any subgroup of a metabelian group is also metabelian.

(d) Prove that any quotient group of a metabelian group is metabelian. [Look
carefully at the proof of the 2nd isomorphism theorem and adapt it to this
question.]

Exercises 2.11.6. The Heisenberg group

Let H = H(F ) be the set of 3 by 3 upper triangular matrices over a field F
with 1s on the diagonal.

(a) Give a brief explanation of why this is indeed a subgroup of GL(3, F ).

(b) (HW) Show that the center Z(H) consists of all matrices of the form1 0 c
0 1 0
0 0 1

. Furthermore Z(H) ∼= (F,+).

(c) (HW) Show that H/Z(H) is isomorphic to F × F .
(d) (HW) Conclude that H is metabelian.

(e) Show that the following 3 types of matrices generate the Heisenberg group.1 a 0
0 1 0
0 0 1

 ,
1 0 c
0 1 0
0 0 1

 ,
1 0 0
0 1 b
0 0 1


(f) Suppose that F = Fp. Explain why H is then generated by 3 matrices, those

in the form above with a = b = c = 1.

(g) Show that H(F2) ∼= D4.

Exercises 2.11.7. Upper triangular matrices

(a) Let F be a field and let F ∗ be its multiplicative group. Show that there is a
homomorphism

{upper triangular matrices in GL(2, F )} −→ (F ∗)2[
a b
0 c

]
7−→ (a, c)

(b) Show that kernel is isomorphic to (F,+) the additive group of F .

Exercises 2.11.8. Some normal subgroups

(a) Show that the intersection of two normal subgroups of G is normal in G.
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(b) Let G be a group, possibly infinite. Let I be some indexing set and for each
i ∈ I let Hi be a subgroup of G. Prove that for any a ∈ G,

a
(⋂

i∈I
Hi

)
a−1 =

⋂
i∈I

aHia
−1

(c) Let H be a subgroup of G and let N =
⋂

g∈G g
−1Hg. Prove that N is normal

in G.

(d) Let n ∈ N and let K be the intersection of all subgroups of G of order n.
Prove that K is normal in G.

Exercises 2.11.9. Normal subgroups and index

Exercise 2.8.6 showed that every group of index 2 is normal. Here is a
generalization due to Lam [MAA Monthly Mar. 2004 p. 256].

Theorem 2.11.10. Let H be a subgroup of G with [G : H] = p a prime
number. The following are equivalent.

(1) H is normal in G.

(2) For any a ∈ G \H, ap ∈ H.

(3) For any a ∈ G \ H, an ∈ H for some positive integer n that has no
prime divisor less than p.

(4) For any a ∈ G−H, a2, a3, . . . , ap−1 ̸∈ H.

(a) Prove Lam’s theorem by showing (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). The
last step is the one requiring some cleverness.

(b) Show that Lam’s theorem implies that any group whose index is the smallest
prime dividing |G| is normal in G.

Exercises 2.11.11. Inner automorphisms of a group

For a ∈ G let φa be the inner automorphism defined by a and consider
the function φ : a 7−→ φa.

φa : G −→ G φ : G −→ Aut(G)

g 7−→ aga−1 a 7−→ φa

Clearly im(φ) = Inn(G).

(a) Show that Inn(G) is a normal subgroup of Aut(G).

(b) Show that φ is a homomorphism and that im(φ) ∼= G/Z(G).

Exercises 2.11.12. Computing some simple automorphism groups.

(a) Compute Aut(Q) for Q the quaternion matrix group.

(b) Show that Aut(D4) ∼= D4
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Exercises 2.11.13. Classification of the groups of order 8

Let G be a group of order 8. Prove each of the following.

(a) If G has an element of order 8 then G ∼= Z8.

(b) If every nonzero element of G has order 2 then G is abelian and isomorphic
to Z2 × Z2 × Z2.

(c) Suppose G has no element of order 8 and some element a ∈ G has order 4.

• If G is abelian then it is isomorphic to Z4 × Z2.

• Suppose G is not abelian. Let b ̸∈ ⟨a⟩. Show that if b has order 2 then
G ∼= D4. If b has order 4 then G ∼= Q. [See Exercise 2.6.2

Exercises 2.11.14. Counting in Sn

(a) How many k-cycles are there in Sn?

(b) How many product of disjoint transpositions are there in Sn?

Exercises 2.11.15. The normalizer and centralizer of a subgroup

Let K be a subgroup of G and define

NG(K) =
{
g ∈ G : gKg−1 = K

}
CG(K) =

{
g ∈ G : gkg−1 = k for all k ∈ K

}
These are called the normalizer of K in G and the centralizer of K in G.

(a) Show that NG(K) is a subgroup of G.

(b) Show that K is a normal subgroup of NG(K).

(c) If H ≤ G and K is a normal subgroup of H show that H ≤ NG(H). So,
NG(K) is the largest subgroup of G in which K is normal.

(d) Show that CG(K) is a normal subgroup of NG(K).

(e) Show that NG(K)/CG(K) is isomorphic to a subgroup of Aut(K).

Exercises 2.11.16. The commutator subgroup

In a group G, the commutator of a, b is aba−1b−1. Notice that this is eG iff
a and b commute. The commutator subgroup of a group G is the group
G′ generated by the commutators.

G′ = ⟨aba−1b−1 : a, b ∈ G⟩

(a) Compute the commutator subgroup of Dn (two cases: n odd and n even).
Think of Dn as generated by r, t with rn = t2 = e and tr = rn−1t.

(b) Write down the commutator of the conjugation of a by x and the conjugation
of b by x.

(c) Prove that G′ is a normal subgroup of G. It is enough to show that the
conjugation of any commutator is another commutator.
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(d) Prove that G/G′ is abelian.

(e) Prove that G/N abelian implies G′ ≤ N . So, the commutator subgroup of
G is the smallest normal subgroup N group such that the quotient G/N is
abelian.
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Chapter 3

Classification and Structure of
Groups

3.1 Interaction between Two Subgroups:
The Second Isomorphism Theorem and Semi-Direct
Products

We now consider two subgroups of a group G and prove several results about the
interaction between them. At first we make no additional assumptions on the two
subgroups groups, then we assume that one is normal in G, and finally that both
are. The main result is the second isomorphism theorem. But,we also get two key
corollaries that introduce the notion of an internal direct product (as opposed to
the external direct product that we have been using), and the more general notion
of a semi-direct product (both internal and external).

Lemma 3.1.1. Let K,H be subgroups of G. The following are equivalent:

(1) G = KH and K ∩H = {eG}

(2) Every element of G can be uniquely written as kh for k ∈ K and h ∈ H.

Proof. G = KH is equivalent to saying that every element of G can be written
in the form kh. We’ll next show K ∩H = {eG} if and only if any expression for
g ∈ G as a product kh, with k ∈ K and h ∈ H, is unique.

Suppose K ∩ H = {eG} and k1h1 = k2h2. Then k−1
1 k2 = h1h

−1
2 . Since this

is in both K and in H, it must be the identity. Therefore, h1 = h2 and k1 = k2,
which proves uniqueness.
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Now suppose that K ∩ H ̸= eG; say g ∈ K ∩ H is not equal to eG. Setting
h = g and k = eG gives one way to express g in the form kh, while setting h = eG
and k = g gives a different way. Thus we have non-uniqueness.

As another prelude to the second isomorphism theorem we have the following
lemma. In it we use the following argument to prove that a subset B of a group
G is a subgroup: We show that B−1 ⊆ B (closure under inversion) and BB ⊆ B
(closure under products).

Lemma 3.1.2. Let H,K be subgroups of G.

HK = KH ⇐⇒ KH is a subgroup of G

Proof. Suppose HK = KH we will show KH is a subgroup of G. We see KH
is closed under inversion: (kh)−1 = h−1k−1 ∈ HK = KH. We can show that
KH is also closed under products with an element-wise argument, but let’s use
the associativity identified in Notation 2.7.1,

(KH)(KH) = K(HK)H

= K(KH)H since it is assumed that KH = HK

= (KK)(HH)

= KH since K and H are groups and closed under multiplication

Since KH is closed under inversion and under products, it is a subgroup of G.
For the converse, suppose KH is a subgroup of G. Since KH is closed under

inversion, KH = (KH)−1 = H−1K−1 = HK. This gives the reverse implication
of the lemma.

Suppose now that H,N are subgroups of G with N normal in G. We can
conclude the following.

• HN = NH since gN = Ng for any g ∈ G.

• HN is therefore a subgroup of G by the lemma.

• N is normal in HN , since it is normal in any subgroup of G that contains it.

Theorem 3.1.3 (Second Isomorphism). Let N be normal in G and H a subgroup
of G. Then H ∩N is normal in H and H/(H ∩N) ∼= HN/N .

When these groups are finite we may take cardinalities to get

|H||N | = |HN ||H ∩N |
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Proof. Consider the canonical homomorphism G
π−→ G/N and restrict it to the

subgroup H. Call the restricted homomorphism π′ : H −→ G/N . The kernel
of π′ contains the elements of H that map to eN , that is H ∩ N . The image is
{hN : h ∈ H} = HN/N and HN is a subgroup of G as we noted above. By the
first isomorphism theorem, H/(H ∩N) ∼= HN/N .

The following special case is of interest. It combines the assumptions of Theo-
rem 3.1.3 with those of Lemma 3.1.1.

Corollary 3.1.4. Let H and N be subgroups of G with N ⊴G. Suppose G = HN
and H ∩N = {eG}. Then G/N ∼= H.

Proof. One simply substitutes G for HN and notes H ∼= H/⟨eG⟩.

Definition 3.1.5. In the situation of Corollary 3.1.4, we say thatG is the internal
semi-direct product of N by H and we write G = N ⋊H.

Note that the order is important: N⋊H and H⋊N mean two different things.
The first assumes N is normal in G and the second assumes H is normal in G.

If both H and N are normal then the two semidirect products are isomorphic
to each other and to the direct product, as the following corollary shows.

Corollary 3.1.6. Suppose K ⊴ G and N ⊴ G. Suppose also that G = KN and
K ∩N = {eG}. Then elements of K and N commute: for any k ∈ K and n ∈ N ,
kn = nk. Furthermore, G ∼= K ×N .

Proof. To prove that elements of K and N commute with each other it is suffi-
cient to show that knk−1n−1 = e. Since N is normal, knk−1 ∈ N and therefore
(knk−1)n−1 ∈ N since it is the product of two elements of N . Similarly, since K
is normal, nk−1n−1 ∈ K so k(nk−1n−1) ∈ K. Now K ∩N = {e} gives the result.

Consider the map K × N φ−→ G defined by (k, n) 7−→ kn. The map is well
defined. It is injective since kn = e gives k = n−1 ∈ K ∩N = {e}. It is surjective
since G = KN . It respects multiplication (and is consequently a homomorphism):

φ
(
(k1, n1)

)
φ
(
(k2, n2)

)
= (k1n1)(k2n2)

= k1(n1k2)n2

= k1(k2n1)n2

= (k1k2)(n1n2)

= φ
(
(k1k2, n1n2)

)
= φ

(
(k1, n1)(k2, n2)

)
Thus φ is an isomorphism. Note that the product in the last line is in K × H,
while the products in every other line are in G.
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Definition 3.1.7. In the situation of the last corollary, G is often called the
internal direct product of K and N .

The distinction between the internal direct product and the usual (external)
direct product of two arbitrary groups G and H is subtle, as the next examples
show. The first example shows that the external direct product of two groups is
also the internal direct product of two of its subgroups (in a way that seems per-
haps pedantic). The second example shows the real motivation for distinguishing
internal direct products, they can be rather hidden, and they give insight into the
structure of a group.

Example 3.1.8. Let G and H be two groups and consider the external direct prod-
uct G × H. Let G = G × {eH} and similarly H = {eG} × H. These are two
subroups of G × H, and the interesection of G and H is the identity element of
G×H. It is easy to see that every element of G×H may be written as a product
of something in G and H. Thus G×H is the internal direct product of G and H.

Example 3.1.9. Consider Z6. It has two proper subgroups K = {0, 3} and N =
{0, 2, 4} both of which are normal since Z6 is abelian. It is easy to verify that
every element of Z6 can be written as a sum of something in K and something in
N . Clearly K ∩N = {0}. Thus Z6 is the internal direct product of H and K. Of
course, in Z6, the subgroup {0, 3} is isomorphic to Z2, and {0, 2, 4} is isomorphic
to Z3. We know from Corollary 2.4.5 that Z6 is isomorphic to the external direct
product Z2 × Z3. More generally, for m and n coprime, Zmn is the internal direct
product of its subgroups ⟨m⟩ and ⟨n⟩.

One can also define the external semi-direct product of of two groups.

Definition 3.1.10. Let N , H be two groups and let φ : H −→ Aut(N) be a
homomorphism. Write φ(h) as φh. Define a new group with elements N ×H and
multiplication defined by

(n1, h1) ∗ (n2, h2) = (n1φh1(n2), h1h2)

This is the external semi-direct product of N and H defined by φ and is
written N ⋊φ H.

The relationship between the internal and external semi-direct product is even
more subtle than that for the internal and external direct product. Consider a
group G that is the internal semi-direct product of the normal subgroup N and
another subgroup H. So, we are assuming that NH = G and N ∩H = {e}. This
is There is a bijective map from the Cartesian product N ×H to G taking (n, h)
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to nh. It is not a homomorphism. But it is true that in G,

n1h1n2h2 = n1h1n2h
−1
1 h1h2

= n1φh1(n2)h1h2

Where φh1 is conjugation by h1. Because N is normal in G, φh is an automorphism
of N and, indeed, we have a homomorphism φ : H −→ Aut(N) that takes h to
φh. Thus, if we use φ to to define the external semi-direct product N ⊴φH we get
an isomorphism with G.

Exercises 3.1.11. The definition makes sense!

Using the notation in Definition 3.1.10, verify the following.

(a) (eH , eN ) is the identity element.

(b) Each element does have an inverse.

(c) The associative law holds.

Exercises 3.1.12. Some familiar semidirect products.

Several familiar groups are internal semidirect products of much simpler
groups. Verify that each of the following is an internal semidirect product of
the two given subgroups by using Corollary 3.1.4. In each case identify the
homorphism from one subgroup to the automorphism group of the other.

(a) Dn is the semidirect product of its rotation group and the group generated
by any reflection. There is an implicit homomorphism φ : C2 −→ Aut(Cn).
What is it?

(b) Sn = An ⋊ ⟨(1, 2)⟩.
(c) S4 = V ⋊S3 where V is Klein-4 subgroup with elements of the form (a, b)(c, d)

with a, b, c, d distinct elements of {1, 2, 3, 4}.
(d) In GLn(F ), for F a field, let T be the upper triangular matrices with nonzeros

on the diagonal; let U be the upper triangular matrices with 1’s on the
diagonal and let D be the diagonal matrices with nonzero elements on the
diagonal. For n = 2, show that T = U ⋊D.

(e) Do the previous problem for arbitrary n.

Proposition 3.1.13. Let N be a normal subgroup of G and let π : G −→ G/N be
the quotient homomorphism. Suppose that there is a homomorphism α : G/N −→
G such that π ◦ α is the identity map on G/N . Then G is the internal direct
product N ⋊ α(G/N).

Proof. Let the image of α be H = α(G/N), which is a subgroup of G. By Corol-
lary 3.1.4, we need only show that HN = G and that H ∩N is trivial.
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Let g ∈ G. Let h = (α ◦ π)(g) = α(π(g)). This is an element of H, since it is
in the image of α. I claim g−1h ∈ N . This is because

π(g−1h) = π(g−1)π(h) = π(g−1)π
(
α ◦ π(g)

)
= π(g)

(
π ◦ α

)(
φ(g
)

Since π ◦ α is the identity map on G/N ,

= π(g1)(π(g)) = π(gg−1) = eN

Consequently g−1h = n for some n ∈ N and therefor g = hn. Since g was an
arbitrary element of G we have shown G = HN .

Now suppose that h ∈ H ∩ N . Since h ∈ H, there is some gN ∈ G/N such
that h = α(gN). We know that π ◦ α is the identity on H, so

α
(
π
(
α(g)

))
=
(
α ◦ π

)(
α(g)

)
= α(g) = h.

On the other hand, since h ∈ N ,

α
(
π
(
α(g)

))
= α

(
π(h)

)
= α(eN) = e.

Consequently, h = e and we have shown H ∩N = {e}.

Exercises 3.1.14. Semidirect products and matrix groups

Let F be a field. Let GLn(F ) be the general linear group: n × n matrices
over F with nonzero determinant. Let SLn(F )) be the special linear group:
n×n matrices with determinant 1. Let F ∗I be the nonzero multiples of the
identity matrix. In this problem we investigate the finite fields F and values
of n for which GLn(F ) ∼= SLn(F )× F ∗I.

(a) For the fields F = F3 and F = F5, show that GLn(F ) is a direct product as
above for n odd, but not for n even.

(b) For the field F = F7, show that GLn(F ) is a direct product as above for n
coprime to 6, and is not otherwise.

(c) (Challenge) For which prime numbers p and which n is GLn(Fp) a direct
product as above?

Exercises 3.1.15. External semidirect products of cyclic groups.

(a) Use the definition of external semidirect product to create the other non-
abelian group of order 12 (besides D6 and A4), Z3⋊φZ4 where φ is the only
possible map Z4 −→ Aut(Z3) that is not trivial. Let a be the generator for
Z3 and b the generator for Z4. Show the following:
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(1) Every element can be represented uniquely as aibj for i ∈ {0, 1, 2} and
j ∈ {0, 1, 2, 3}

(2) The group can be presented as ⟨a, b|a3 = b4 = 1, ba = a2b⟩
(3) Find the inverse of aibj .

(4) Find a general formula for (aibj)(ambn). It may be useful to break this
into cases.

(b) Use the definition of external semi-direct product to create the only non-
abelian group of order 21 (the smallest non-abelian group of odd order),
Z7 ⋊ Z3. Let a be the generator for Z7 and b the generator for Z3. Show
how to represent, invert, and multiply elements of this group as you did in
the previous problem.

(c) (Challenge Problem) Use the definition of external semi-direct product to
construct semi-direct products Zm ⋊ Zn. You will need to start with a
homomorphism φ : Zn −→ Aut(Zm). See how many of the small non-abelian
groups you can find in the table of small abelian groups on Wikipedia.

3.2 Finitely Generated Abelian Groups

In this section we show that the structure of finitely generated abelian groups
is fairly simple. Any finitely generated abelian group is isomorphic to a direct
product of cyclic groups that can be put in a standard, uniquely determined,
format. We proceed in several steps, each subsection below gives a complete story
about a particular class of abelian groups; each extends the result of the previous
subsection to a broader class of abelian groups.

Our first step is to show that a direct product of cyclic groups can be put into a
standard format that elucidates its structure. There are actually two such formats,
one using elementary divisors and the other using invariant factors. In particular,
two groups are isomorphic if and only if their standard formats are the same. Our
next step is to show that any finite abelian group is actually a direct product of
cyclic groups, and it therefore can be placed in the two standard formats. This
result has one very technical lemma whose proof we sketch. Finally, we state and
prove some aspects of the more general result that any finitely generated abelian
group can be written as a direct product of a finite group (with standard formats
above) and a group that is isomorphic to Zr for some integer r.

We will write the group operation additively. For A an abelian group, a ∈ A,
and m an integer, we write mA for a + · · · + a with m summands. Think of ma
as repeated addition, not multiplication. The order of a is the smallest positive
integer m such that ma = 0. One can check that ma + na = (m + n)a and
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(mn)a = m(na). If B is a subgroup of A (it is normal since A is abelian) we write
a coset as a+B and the identity element of A/B is 0 +B.

A key tool in this chapter is Corollary 2.4.5, which says that for coprime integers
m and n the group Zmn is isomorphic to Zm × Zn. The corollary says more, that
there is a unique isomorphism that takes [1]mn to

(
[1]m, [1]n

)
, but we only need

the existence of the isomorphism in this section. An easy induction argument
establishes the following result

Proposition 3.2.1. Let m1,m2, . . . ,mt be pairwise coprime positive integers and
let m =

∏t
i=1mi, then

Zm
∼= Zm1 × Zm2 × · · · × Zmt

Products of Cyclic Groups

Let’s start with abelian groups that we understand well, cyclic groups, and direct
products of cyclic groups. The notation in the theorems below is a bit heavy, so
we start with an example.

Example 3.2.2. Consider the group Z60×Z12×Z8×Z25. Using Proposition 3.2.1,

Z60
∼= Z4 × Z3 × Z5

Z12
∼= Z4 × Z3

Z8
∼= Z8

Z75
∼= Z3 × Z25

Let’s take the direct product of all these factors ordering them by the prime in-
volved (2, 3,or 5) and for each prime, the highest power of that prime first.

Z60 × Z12 × Z8 × Z25
∼= Z8 × Z4 × Z4 (3.1)

× Z3 × Z3 × Z3

× Z25 × Z5

Now, we regroup by combining the highest powers of each prime.

∼= Z8 × Z3 × Z25

× Z4 × Z3 × Z5

× Z4 × Z3

Finally, we have

Z60 × Z12 × Z8 × Z25
∼= Z600 × Z60 × Z12 (3.2)
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Both factorizations are of interest: one (3.1) into cyclic groups of prime power
order, the other (3.2) combining the factors prime power factors in a greedy fashion.

The following proofs are just adaptations of the computations in the example
to deal with the general context.

Theorem 3.2.3. Let m1, . . . ,mt be positive integers and A = Zm1 × · · · × Zmt.
Let P = {p1, . . . , ps} be the set of all primes dividing m1m2 · · ·mt and let the mj

have factorizations mj =
∏s

i=1 p
eij
i (allowing some eij = 0). Then

A ∼= A1 × · · · ×As

where Ai = Zp
ei1
i
× Zp

ei2
i
× · · ·Zp

eit
i
.

Furthermore |Ai| = pei where ei =
∑t

j=1 eij.

Proof. By Proposition 3.2.1, Zmj
∼= Z

p
e1j
1
× · · · × Z

p
esj
s

. Thus

A = Zm1 × · · · × Zmt

∼= Zp
e11
1
× · · · × Zp

es1
s

× Zp
e12
1
× · · · × Zp

es2
s

. . .

× Zp
e1t
1
× · · · × Zp

est
s

Rearranging terms so that the jth column of factors becomes the jth row, and the
ith row becomes the ith column, we have

∼= Zp
e11
1
× · · · × Zp

e1t
1

× Zp
e21
2
× · · · × Zp

e2t
2

. . .

× Zp
es1
s
× · · · × Zp

est
s

∼= A1 × · · · ×As

The cardinality of Ai is just the product of the cardinalities of its factors. So,
letting ei =

∑t
j=1 eij , we have |Ai| = pei .

Definition 3.2.4. The multiset
{
p
eij
i : i = 1, . . . , s; and j = 1, . . . t

}
is the set of

elementary divisors of A.

94



Theorem 3.2.5. With the notation of the previous theorem, for each i let fi1 ≥
fi2 · · · ≥ fit be a permutation of the exponents ei1, . . . eit putting them in decreasing

order. For j = 1, . . . , t, let nj =
∏s

i=1 p
fij
i . Then nt | nt−1 | · · · | n1 and A ∼=

Zn1 × · · · × Znt.

Proof. The fact that nj | nj−1 follows from fij ≤ fi,j−1 for each i. Revisiting the
previous proof, we enter after the point where we rearranged the factors. In each
line we then permute the eij to have them in decreasing order (fi1, . . . , fit). The
final step is to rearrange again by combining all the largest prime power factors to
create Zn1 and proceeding iteratively with the next largest prime power factors.
As with the previous theorem this is just an application of Proposition 3.2.1.

A = Zm1 × · · · × Zmt

∼= Zp
e11
1
× · · · × Zp

e1t
1

× Zp
e21
2
× · · · × Zp

e2t
2

. . .

× Zp
es1
s
× · · · × Zp

est
s

∼= Z
p
f11
1

× · · · × Z
p
f1t
1

× Z
p
f21
2

× · · · × Z
p
f2t
2

. . .

× Z
p
fs1
s
× · · · × Z

p
fst
1

∼= Z
p
f11
1

× · · · × Z
p
fs1
s

× Z
p
f12
1

× · · · × Z
p
fs2
s

. . .

× Z
p
f1t
1

× · · · × Z
p
fst
s

∼= Zn1 × · · · × Znt

Definition 3.2.6. The nj (that are not 1) in the previous theorem are called the
invariant factors of A.

Exercises 3.2.7.

(a) Find the elementary divisors and the invariant factors for Z50×Z75×Z136×
Z21000.
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(b) Let n1, n2, . . . , nr be integers larger than 1. Under what conditions will
Zn1 × Zn2 × · · · × Znr have r invariant factors?

Exercises 3.2.8. Dissecting a homomorphism.

For any d that divides 2400, there is a well defined homomorphism Z2400 −→
Zd that takes [1]2400 to [1]d. Given several divisors of 2400 we can use the
universal property of a direct product 2.4.4 to get a homomorphism into the
direct product of several such groups, for example

Z2400
φ−→ Z40 × Z30 × Z16

(a) What is the kernel of φ?

(b) Find the elementary divisors of (i) Z2400, (ii) Z40 × Z30 × Z16, and (iii) the
kernel of the homomorphism φ.

(c) Find the invariant factors of (i) Z2400, (ii) Z40×Z30×Z16, and (iii) the kernel
of the homomorphism φ.

Finite Abelian Groups

In the previous section we showed that a product of cyclic groups can be written
in two different forms that illuminate the structure better. One form uses cyclic
groups of prime power order (and gives the elementary divisors of the group) and
the other uses a format that identifies the largest cyclic component and, after
splitting off that component, the next largest cyclic component, and so forth.
This gives the invariant factors of the group. We now want to show that this
classification applies to any finite abelian group.

The first step is to split a group into pieces that are, in a sense, coprime. We
then apply induction to write the group as a direct product of groups that have
prime power order. The difficult step is to show that a group of prime power order
is actually a product of cyclic groups (whose orders are a power of the same prime).

Definition 3.2.9. Let A be an abelian group. For m ∈ N let

mA = {ma : a ∈ A}
A[m] = {a : ma = 0}

For p a prime define the p-torsion subgroup of A to be

A(p) =
{
a ∈ A : ord(a) = pk for some k

}
An abelian group such that A = A(p) is called a p-group.
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Exercises 3.2.10.

(a) Prove that mA, A[m] and A(p) are all subgroups of A.

(b) Prove that A(p) = ∪∞i=0A[p
i], and that, for A finite, A(p) = A[pk] for some

large enough k.

Proposition 3.2.11. Suppose that A is abelian with |A| = mn and m,n coprime.
Then

(1) mA = A[n]

(2) A is the internal direct product of A[m] and A[n]

Proof. Let u, v ∈ Z be such that um + vn = 1. Let a ∈ A[n]. Then a = (um +
vn)a = u(ma) + v(na) = m(ua), since we assume na = 0. This shows that
A[n] ⊆ mA. On the other hand, an arbitrary element of mA can be written ma
for a ∈ A. Since |A| = mn, n(ma) = (nm)a = 0, and this shows mA ⊆ A[n] (we
have used Lagrange’s Theorem that the order of a divides the order of the group).

For the second claim of the proposition, we show that A[m] ∩ A[n] = {0} and
that A[m] +A[n] = A. Then, by Corollary 3.1.6, A ∼= A[m]×A[n].

Let a ∈ A. Since a = (mu+ nv)a = m(ua) + n(va) we see that a ∈ mA+ nA,
which, by the argument above, is equal to A[n]+A[m]. Thus A[m]+A[n] = A. On
the other hand, if a ∈ A[m]∩A[n] then and a = (um+vn)a = u(ma)+v(na) = 0+0.
Thus A[m] ∩ A[n] = {0}. We have shown that A is the internal direct product of
A[m] and A[n].

The next proposition shows that our decomposition is uniquely determined.

Proposition 3.2.12. Let A1, A2, B1 and B2 be finite groups. Suppose that A1 ×
B1
∼= A2 × B2 where everything in Ai has order dividing m and everything in Bi

has order dividing n, with m and n coprime. Then A1
∼= A2 and B1

∼= B2.

Proof. Assume A1 ×B1
∼= A2 ×B2.

m(Ai ×Bi) = mAi ×mBi

= {(0,mb) : b ∈ Bi}
= {0} ×Bi

The first step because m(a, b) = (ma,mb) and the last step because multiplication
bym (coprime to n) gives an automorphism of Bi. Sincem(A1×B1) ∼= m(A2×B2)
we get B1

∼= B2. Similarly we show A1
∼= A2.
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Corollary 3.2.13. Let |A| = pe11 . . . pess then

A ∼= A[pe11 ]× · · · ×A[pess ] = A(p1)× · · · ×A(ps)

This factorization is unique up to reordering.

Proof. Existence of the factorization follows from Proposition 3.2.11 by induction:

A ∼= A[pe11 ]×A[pe22 p
e3
3 · · · p

es
s ]

∼= A[pe11 ]×A[pe22 ]×A[pe33 p
e4
4 · · · p

es
s ]

and so forth. There is one subtlety though; we have usedA[pe22 ] =
(
A[pe22 p

e3
3 · · · pess ]

)
[pe22 ].

This is easily verified. Any nonzero element of A whose order is a power of p2 is
in each of these groups, and nothing else is.

Uniqueness follows from a similar inductive application of Proposition 3.2.12

The previous corollary is the first step in the classification of finite abelian
groups. The next step is to classify groups satisfying the following definition.

Definition 3.2.14. Let p be a prime number. An abelian p-group is an abelian
group A in which every element of A has order that is a power of p.

The key lemma follows. Its proof is quite technical and not very illuminating,
so I sketch the proof in [Hun12][Sec 8.2].

Lemma 3.2.15. Let A be an abelian p-group and let a be an element of maximal
order. Then A = K + ⟨a⟩ and K ∩ ⟨a⟩ = {0} for some subgroup K of A. Thus A
is isomorphic to the direct product of K and ⟨a⟩.

Proof. Let a be an element of maximal order in the abelian p-group A; this order
is a power of p. Let K be as large as possible such that K ∩ ⟨a⟩ = {0}. We want
to show that K + ⟨a⟩ = A. Then Corollary 3.1.6 says that A ∼= K × ⟨a⟩.

Suppose b ∈ A \ (K + ⟨a⟩). Do some tricks to show:

(1) There is a c ∈ A \ (K + ⟨a⟩) such that pc ∈ K + ⟨a⟩. [ Take the minimal r
such that prb ∈ K + ⟨a⟩, then let c = pr−1b.]

(2) There is a d ∈ A \ (K + ⟨a⟩) such that pd ∈ K. [ Let pc = k +ma, argue
that m = pm′, for some integer m′ using that a has maximal degree in A
and K ∩ ⟨a⟩ = {0}. Then set d = c−m′a.]
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By assumption on K, (K + ⟨d⟩) ∩ ⟨a⟩ ≠ {0}, so there is some k ∈ K, and nonzero
r, s ∈ Z such that k + rd = sa.

Now we consider two cases: If p | r then rd ∈ K and consequently sa ∈ K.
This contradicts K ∩ ⟨a⟩ = {0}. If p ∤ r then there are u, v such that up+ vr = 1.
Then d = u(pd) + v(rd). The first term is in K and the second in K + ⟨a⟩, so
d ∈ K + ⟨a⟩, which is a contradiction.

Summarizing, we assumed K maximal such that K∩⟨a⟩ = {0}. Supposing the
existence of some b ∈ A \ (K + ⟨a⟩), we showed there was some d ∈ A \ (K + ⟨a⟩)
such that pd ∈ K. From the maximality assumption on K, there is some element
of (K + ⟨d⟩) ∩ ⟨a⟩, which we can write as k + rd = sa for k ∈ K and r, s ∈ Z.
There are two possibilities, p divides r or not. Both lead to a contradiction. Thus
A must be equal to K + ⟨a⟩.

Theorem 3.2.16. Let A = A(p) be an abelian p-group. Then A is the direct
product of cyclic groups each of which has order a power of p. Consequently, the
order of A is also a power of p.

The decomposition is unique (up to reordering). Put another way, two abelian
p-groups are isomorphic if and only if their decompositions have the same number
of factors for each power of p.

Proof. Note first that a non-trivial abelian p-group must have order divisible by
p since Lagrange’s Theorem 2.7.7 says that the order of an element of the group
(which, by assumption, is a power of p) must divide the order of the group. We
will show that the order of an abelian p-group must actually be equal to a power
of p.

We proceed by induction on the largest power of p that divides the cardinality
of the abelian group. Our induction hypothesis for t ≥ 0 is that any abelian p-
group with order that is divisible by pt but not by pt+1 is isomorphic to the direct
product of cyclic groups whose orders are a power of p. An immediate consequence
is that the order of such a group is a power of p, so the order is exactly pt. We
noted above that the induction hypothesis is true for t = 0, in which case the
abelian p-group is trivial.

Let t ≥ 1. Let A be an abelian p-group of cardinality ptm with m not divisible
by p. Using the lemma we can write A as a direct sum A = K + ⟨a⟩ with K ∩
⟨a⟩ = {0}. The subgroup ⟨a⟩ is cyclic of order ps for some s > 0 and therefore
|K| ≤ pt−sm. Applying the induction hypothesis to K, shows that m = 1 and K
is isomorphic to the direct product of cyclic groups whose order is a power of p.
Since ⟨a⟩ is also cyclic of order ps, we have that A is the direct product of cyclic
groups of order a power of p.

To prove uniqueness (up to reordering) we note first that if two groups have
the same number of factors for each power of p they are isomorphic. We will write
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factorizations by writing the factors in increasing powers of p as follows

A ∼= (Zp)
k1 × (Z2

p)
k2 × · · · × (Zr

p)
kr

We now show that we can recover the ki by operating on A. In other words,
two factorizations, one with k1, k2 . . . and one with m− 1,m2, . . . are isomorphic
if and only if ki = mi.

We can recover the ki iteratively. Since logp(|Zn
p |) = n, we have logp(|A|) =∑r

i=1 iki. Notice that pn−1Zn
p
∼= Zp and pkZn

p is trivial for k ≥ n. Thus the
subgroup pr−1A is isomorphic to

pr−1A ∼= (Zp)
kr

Thus we have logp(|pr−1A|) = kr. Similar computations for piA with i = r−2, r−
3, . . . , 1 allows one to recover the other ki. (Try it as an exercise!)

From Corollary 3.2.13 and the previous theorem we obtain the fundamental
theorem for finite abelian groups..

Theorem 3.2.17 (Fundamental Theorem of Finite Abelian Groups). Let A be an
abelian group of order pe11 . . . perr . Then A is a direct product of cyclic groups, each
having order a power of one of the pi. If we write

A(pi) ∼= Z
p
ei,1
i
× Z

p
ei,2
i
× . . .Z

p
ei,si
i

then for each i,
∑si

ℓ=1 ei,ℓ = ei. The decomposition is unique, up to reordering.

Exercises 3.2.18. Classifying abelian groups

Consider the following problems for n = 72000 and n = 84000 and n =
p6q5r4 with p, q, r distinct primes.

(a) How many abelian groups of order n are there?

(b) List all possibilities (you can use “choose one of these, one of these, ...”.

(c) How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check your answer
against the response to the first question.

Exercises 3.2.19. Another approach to proving uniqueness

Here is another approach to proving uniqueness in the classification of finite
abelian groups.

(a) Show that pkZpn
∼= Zpn−k for k ≤ n. Seen another way, there is an exact

sequence

0 −→ Zpm
·pk−→ Zpk+m −→ Zpk −→ 0
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(b) Show that pk−1Zpn

/
pkZpn

∼= Zp for k ≤ n.

(c) Suppose that A ∼= (Zp)
k1 × (Zp2)

k2 × · × (Zpn)
kn . Show that pt−1A/ptA ∼=

(Zp)
kt+···+kn .

(d) Conclude the uniqueness part of the classification of finite abelian groups: If

(Zp)
k1 × (Zp2)

k2 × · × (Zpn)
kn ∼= (Zp)

m1 × (Zp2)
m2 × · × (Zpn)

mn

then ki = mi.

Finitely Generated Abelian Groups

Our final step is to generalize the results on classification to finitely generated
abelian groups. The strategy is simple. Let A be a finitely generated group. The
torsion subgroup of A is the set of elements of finite order. The first proposition
below shows that it is indeed a subgroup of A. The torsion subgroup has to be a
finite group, since it is finitely generated, so it is classified by the results above.
The next big step is to show that A has a subgroup that is isomorphic to Zr

such that A is the direct product of that subgroup and Tor(A). Thus, a finitely
generated abelian group is isomorphic to a finite direct product of cyclic groups
that are either infinite or of prime power order.

Proposition 3.2.20. Let A be an abelian group. Let

Tor(A) = {a ∈ A : a has finite order}

(1) Tor(A) is a normal subgroup of A.

(2) All elements of A/Tor(A) (except the identity) have infinite order.

Proof. This was Exercise 2.11.4. Let T = Tor(A). Clearly 0 ∈ T , so T is nonempty.
If a ∈ T has order m then so does −a = (m − 1)a. If b is another element in T
and it has order n, then a+ b has order at most mn since

mn(a+ b) = (mn)a+ (mn)b = n(ma) + n(mb) = 0

Thus T is closed under inversion and multiplication, so it is a subgroup of A.
Normality is immediate since A is abelian.

If b+ T has finite order m in A/T then

mb+ T = m(b+ T ) = 0 + T

This shows that mb ∈ T , so mb has some finite order n in A. Then (nm)b =
n(mb) = 0, so b itself has finite order. Thus b ∈ T and b+ T = 0+ T . So the only
element of finite order in A/Tor(A) is the identity element.
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Definition 3.2.21. A group that has no elements of finite order, other than the
identity, is said to be torsion free.

Let A be an abelian group and let S = {a1, a2, . . . , ar} be a set of elements
in A. We say that the elements of S are independent when for any integers
m1, . . .mr that are not all zero, m1a1 +m2a2 + · · ·+mrar ̸= 0.

A free abelian group of rank r is a group that is isomorphic to Zr. It will
have r elements that are independent and also generate A. We will generally use
ei for the element of Zr that is 1 in the ith component and 0 elsewhere. Borrowing
from the language of vector spaces, we say that the ei are the standard basis for
Zr.

Proposition 3.2.22. The rank of a finitely generated free abelian group is unique.

Proof. Let A ∼= Zr. Then A/2A ∼= Zr/(2Zr) ∼= (Z2Z)r. The final isomorphism
comes from Theorem 2.8.10 and the observation that 2Zr = 2Z × 2Z × · · · × 2Z
(both containments are easy to show). Since (Z2Z)r has 2r elements, we may
recover the rank by computing log2(|A/2A|).

Exercises 3.2.23.

(a) Let A be an abelian group. Suppose f : A→ Z is a surjective homomorphism
with kernel K. Show that A has an element a such that A is the internal
direct product K × ⟨a⟩.

(b) In the previous problem, suppose f is not surjective but f(A) = nZ for some
n ∈ N. Show that it still holds that there is an element a ∈ A such that A
is the internal direct product K × ⟨a⟩.

(c) Suppose that A is torsion free and mA ∼= Zr. Show that A ∼= Zr.

We need two results before proving that a finitely generated torsion free abelian
group is actually isomorphic to Zr for some r.

Proposition 3.2.24. Let A ≤ Zr. Then A is isomorphic to Zs for some integer
s ≤ r.

Proof. We proceed by induction on r. For r = 1 we already know the subgroups
of Z. They are the trivial group (rank 0) and nZ, which is isomorphic to Z.

Assume the statement of the theorem is true for integers less than r. Let
A ≤ Zr and let ei be the element of Zr that is 1 in the ith component and 0
elsewhere. Consider projection onto the rth component Zr π−→ Z. The kernel of
this map is Zr−1 with generators {e1, . . . , er−1}. Let A

ι−→ Zr be the embedding of
A in Zr and consider the composite π ◦ ι. The kernel of this map is B = A∩Zr−1.
By the induction hypothesis, B is isomorphic to Zs for some integer s ≤ r − 1.

102



If B = A we are done. Otherwise, π ◦ ι has image nZ for some n > 0. Let
a ∈ A be a preimage of n. By Exercise 3.2.23(b) we have A ∼= B× ⟨a⟩ ∼= Zs×Z =
Zs+1.

Proposition 3.2.25. Let A be a finitely generated, torsion-free abelian group.
Then A is a free abelian group of finite rank.

Proof. Let b1, . . . , br be a maximal independent set in A. These elements are
independent and there is no set of r + 1 elements in A that is independent.

LetB be the subgroup ofA generated by b1, . . . , br, that isB = {
∑r

i=1mibi : mi ∈ Z}.
Consider A/B. I claim that it is a torsion group; every element has finite order.

For any a ∈ A, there are integers m0, . . . ,mr such that m0a+m1b1 +m2b2 +
· · · +mrbr = 0, for otherwise {a, b1, . . . br} would be an independent set, contra-
dicting maximality of {b1, . . . br}. Furthermore m0 is not zero, since {b1, . . . br} is
independent, so m0a is a nonzero element of B. Thus for any a ∈ A there is an
m0 such that m0(a+B) = m0a+B = 0 +B.

We have shown every element of A/B has finite order. Since it is also finitely
generated it is a finite group. Thus the exponent of A/B (the lcm of the orders
of elements of A/B) is some finite m ∈ N. Then, m(A/B) is the trivial subgroup
{0 +B} inside A/B. This shows mA is a subgroup of the free abelian group B.
Thus by Proposition 3.2.24 mA is free abelian of rank s ≤ r, where r is the rank
of B. Applying Exercise 3.2.23(c) we have that A itself is free of rank s. This
concludes the proof.

It is worth noting that, since B ≤ A, Proposition 3.2.24 says that the rank of
B is at most the rank of A, so r ≤ s. We already showed s ≤ r, so A and B have
the same rank.

The proof of the following theorem is similar to Proposition 3.1.13. Exer-
cise 3.2.23(a) was a special case (with r = 1).

Proposition 3.2.26. Let A be a finitely generated abelian group. and let φ : A −→
Zr be a surjective homomorphism with kernel K. There exists a subgroup B ≤ A
such that φ restricted to B is an isomorphism. Furthermore A = K ×B (We use
= rather than ∼= because A is the internal direct product of the two subgroups).

Proof. Let b1, . . . , br ∈ A map to the elements ei of Zr. Let B = ⟨b1, . . . , br⟩ =
{m1b1 + · · ·+mrbr : mi ∈ Z}. We know that the bi are independent, because
their images in Zr are independent. In other words, since φ is a homomorphism,∑r

i=1mibi = 0 would imply that
∑r

i=1miei = 0. The latter is only true if all mi

are zero. Thus φ|B is injective. Furthermore φ : B −→ Zr is surjective since the
ei are in the image and they generate Zr. Thus φ|B is an isomorphism.
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The conclusion that now follows from Proposition 3.1.13, but we will prove it
directly by using Corollary 3.1.6. The argument above shows that K ∩ B = {0}.
We will show K +B = A, which gives A ∼= K ×B.

Let a ∈ A and let φ(a) =
∑r

i=1miei. Let b =
∑r

i=1mibi and consider a− b. It
is easy to see that φ(a − b) = 0 so a − b = k for some k ∈ K. Thus a ∈ K + B.
Since a was arbitrary A = K +B.

Theorem 3.2.27. Let A be a finitely generated abelian group. There is a unique
integer r ≥ 0 such that A has a subgroup B that is a free abelian group of rank r.
For any such B, A is the internal direct product of Tor(A) and B. Furthermore
Tor(A) is a finite abelian group, so it is the direct product of cyclic groups of prime
power order.

Proof. Proposition 3.2.20 shows that A/Tor(A) is torsion free. Proposition 3.2.25
shows that A/Tor(A) must then be free of some uniquely defined rank r. Proposi-
tion 3.2.26 shows that A has a subgroup B that maps isomorphically to A/Tor(A)
and that A = Tor(A)×B.

Finally, we note that A is finitely generated and the quotient group A/B is
isomorphic to Tor(A). Thus Tor(A) is finitely generated and a torsion group.
Therefore it is finite and is classified by Theorem 3.2.17, Tor(A) is also finitely
generated.

Exercises 3.2.28. Infinitely generated abelian groups

These can be much more complicated than finite ones. Consider the group
Q/Z.

(a) On a number line, sketch a region that contains exactly one element for each
equivalence class of Q/Z.

(b) Show that for any integer n there is an element of order n in Q/Z.
(c) How many elements of order n are there in Q/Z?
(d) Show that every element has finite order.

(e) Show that every nontrivial cyclic subgroup is generated by 1
n for some integer

n > 1.

(f) Show that Q/Z is not finitely generated as an abelian group.

(g) Show that Q/Z cannot be written as a direct product of ⟨a⟩ and another
group H for any nonzero a ∈ Q/Z.
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3.3 Simple Groups and the Classification of Finite Groups

In the previous section we saw that finite abelian groups have a very simple struc-
ture; they are direct products of cyclic groups, each having order a power of a
prime. In this section we take steps to understand the the classification of arbi-
trary finite groups.

The model for classification is unique factorization of integers: Every positive
integer is the product of prime numbers in a unique way. Finite abelian groups
have a somewhat more complicated factorization because the constituents of the
unique factorization may involve Zpr for arbitrary r. So, Zp × Zp and Zp2 are
distinct even though they have the same number of elements.

The classification of finite groups is vastly more complicated than the classi-
fication of finite abelian groups. We would like to say that every finite group is
“built” from a set of groups that are analogous to the prime numbers, indivisible
themselves. The “building” process is much more complicated then simply form-
ing a direct product. As we have seen, for example, S3 is the semi-direct product
Z3⋊Z2 (with the action of Z2 on Z3 being a 7→ −a), while Z6 is the direct product
Z3×Z2. We will consider S3 as built from the groups Z2 and Z3, just in a different
way than Z6 is built, so S3 and Z6 have the same constituent parts, but a different
pasting together of the parts.

As another example consider the quaternion group Q, which is not even a
semi-direct product. We will say that it is built from 3 copies of Z2 (as are all
groups of order 8). The reasoning is this: Q = {±1,±i,±j,±k} has a normal
subgroup generated by i with 4 elements. The quotient Q/⟨i⟩ is isomorphic to
Z2. That normal subgroup generated by i is isomorphic to Z4, and has a proper
normal subgroup generated by i2 that is isomorphic to Z2. The quotient ⟨i⟩/⟨i2⟩
is isomorphic to Z2. We have what is called a composition series

⟨1⟩⊴ ⟨i2⟩⊴ ⟨i⟩⊴Q

Each subgroup is normal in the next in the sequence. Furthermore, the quotients
in this case are Z2 at each step, and Z2 is a group that has no normal subgroup
except for the group itself and the trivial group.

Definition 3.3.1. A group G is simple when the only normal subgroups of G
are ⟨eG⟩ and G.

A composition series for a group G is a sequence of subgroups
G0 = ⟨eG⟩, G1, G2, . . . , Gn = G such that Gi is a normal subgroup of Gi+1 and
Gi+1/Gi is simple. The simple quotients are called composition factors of G.
We will write

G = G0 ⊴G1 ⊴G2 ⊴ . . . Gn−1 ⊴Gn = G
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The length of the composition series is n.

Proposition 3.3.2. The only simple finite abelian groups are Zp for p prime.

Proof. We have already shown that every finite abelian group A is isomorphic to
the direct product of cyclic groups of prime power order. Each of the factors of
the direct product corresponds to a normal subgroup of A. Since a simple group
has no proper normal subgroups, the only possible simple groups are those whose
order is a power of a prime. But Zpr is not simple for r > 1. It is contructed from
r copies of Zp. There is in fact a unique composition series for Zpr when r > 1.

⟨0⟩⊴ ⟨pr−1⟩⊴ ⟨pr−2⟩⊴ . . . ⟨p2⟩⊴ ⟨p⟩⊴ ⟨1⟩ = Zpr

Here are the two big theorems on classifying finite groups. The first is essen-
tially a uniqueness theorem about the composition factors of a group.

Theorem 3.3.3 (Jordan Holder). Suppose G has two composition series

⟨eG⟩ = G0 ⊴G1 ⊴G2 ⊴G3 . . . Gn−1 ⊴Gn = G

⟨eG⟩ = G′
0 ⊴G′

1 ⊴G′
2 ⊴G′

3 . . . G
′
m−1 ⊴G′

m = G

Thenm = n and the lists of simple groups from the two series, G1/G0, . . . , Gn/Gn−1

and G′
1/G

′
0, . . . , G

′
m/G

′
m−1 are the same up to reordering.

The proof takes several steps and is a bit technical, so we will skip it here and
suggest other references. [Hun03][Chap 8].

The second big theorem identifies all the simple groups. It was a massive
project in the late 20th century. See the Wikipedia article.

Theorem 3.3.4 (Finite Simple Groups). Every finite simple group is isomorphic
to one of the following:

(1) a cyclic group of prime order, Zp,

(2) an alternating group An, for n ≥ 5,

(3) a group of Lie type,

(4) one of 27 “sporadic groups” (including the Tits group).

We have already shown that Zp is simple. In the rest of this section we get
halfway through the identification of simple groups ;-) by proving that An is simple
for n ≥ 5. We start with two simple lemmas, then prove A5 is simple, then extend
by induction to An for n > 5.
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Lemma 3.3.5. Let n ≥ 4. If N ⊴An and N contains a 3-cycle then N = An.

Proof. Suppose for simplicity (1, 2, 3) ∈ N . Let a ∈ {4, . . . , n}. Conjugate with
(1, 2)(3, a) to get another element of N .

(1, 2)(3, a)(1, 2, 3)(1, 2)(3, a) = (2, 1, a) ∈ N

Now for b ̸= 1, 2, a conjugate with (1, a)(2, b)

(1, a)(2, b)(1, a, 2)(1, a)(2, b) = (a, 1, b) ∈ N

Finally, the same trick can be used to give an arbitrary (a, b, c) ∈ N . We know
from Exercise 2.5.18 that the 3-cycles generate An, so N = An.

Lemma 3.3.6. Let N ⊴ An with n ≥ 5. If N contains a product of two distinct
transpositions then N = An.

Proof. Let σ = τ1τ2 ∈ N . If τ1 and τ2 do not have disjoint support then their
product is a 3-cycle, and we can apply the last lemma. Suppose they have disjoint
support, σ = (a, b)(c, d). Since n ≥ 5 there is another element in {1, . . . , n}, call it
x. Since N is normal, conjugating gives another element of N ,

(a, b, x)
(
(a, b)(c, d)

)
(a, x, b) = (x, a)(c, d) ∈ N.

Now take the product of the two elements of N that we have identified,(
(a, b)(c, d)

)(
x, a)(c, d)

)
= (a, x, b) ∈ N

Since N has a 3-cycle, N = An by the previous lemma.

Proposition 3.3.7. A5 is simple.

Proof. Let N be a non-trivial normal subgroup in A5. Let σ be an element of
N that is not the identity and consider its signature. The possibilities are 2, 2, 1
or 3, 1, 1 or 5. In the lemmas above, we have shown that if σ is a product of
disjoint transpositions, or if it is a 3-cycle, then N = An. Suppose the 5-cycle
σ = (a, b, c, d, f) is in N and let δ = (a, b, c). Note that σ−1(δσδ−1) ∈ N because
the conjugation of σ by an element of An lands in N , and N is closed under
multiplication. On the other hand,

(σ−1δσ)δ−1 = (b, c, d)(c, b, a)

= (a, d, b)

This shows N contains a 3-cycle, so N = An.
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Theorem 3.3.8. An is simple for n ≥ 5.

Proof. We proceed by induction, the case n = 5 has been established. Assume that
Ai is simple for i < n; we’ll prove that An is simple. We start with several obser-
vations about Gi = {σ ∈ An : σ(i) = i}. First, Gi is a subgroup and Gi

∼= An−1.
Second, the Gi are all conjugate subgroups in An since Gi = (1, i, 2)G1(1, 2, i)
(check!). Finally, we show in the next paragraph that An = ⟨G1, . . . , Gn⟩.

Any σ ∈ An can be written as a product of an even number of transpositions.
Since n ≥ 5, the product of a pair of transpositions must fix some i, and is
therefore in Gi. For example (1, 2)(3, 4) ∈ G5. Pairing off consecutive terms in
the factorization of σ we see that σ can be written as a product of elements in the
groups Gi. Thus An = ⟨G1, . . . , Gn⟩.

The strategy now is to show that if N is normal in An with N ̸= {id} then
N ∩ Gi ̸= {id} for some i. This in turn, by the following argument, implies that
N = An. By the induction hypothesis, each Gi is simple. Since N ∩ Gi is a
nontrivial normal subgroup of Gi, we have N ∩Gi = Gi. We noted above that the
Gi are conjugate, so for any j there is some π ∈ An such that Gj = πGiπ

−1. But
then

Gj = πGiπ
−1

= π(N ∩Gi)π
−1

= (πNπ−1) ∩ (πGiπ
−1)

= N ∩Gj

Since N ∩Gj = Gj for all j and the Gj generate An we have N = An.
Finally, to complete the proof, we will show that for a nontrivial N ⊴ An we

must have N ∩ Gi ̸= {id} for some i. Suppose that N contains an element σ
whose cycle decomposition has a cycle of length at least 3; say σ(a) = b, σ(b) = c
with a, b, c distinct. Let d, f be different from a, b, c (we are using n ≥ 5) and
let τ = (a, d, f). Then (τστ−1)σ−1 ∈ N and straightforward computation shows
τστ−1σ−1(c) = c. This shows that N ∩Gc ̸= {id} and therefore, by the previous
paragraph, that N = An.

If N contains no element whose cycle decomposition has a cycle of length at
least 3, then all elements of N are products of disjoint transpositions. Suppose σ
is such a nontrivial element of N . We may assume that σ doesn’t fix anything, for
we have already shown this would imply An = G. We are assuming n ≥ 6, so σ
has at least 3 transpositions σ = (a, b)(c, d)(f, g) · · · . Conjugate by τ = (a, b)(c, f)
and multiply by σ−1 and we have (τστ−1)σ−1 ∈ N and τστ−1σ−1(b) = b. As
above this implies that N = An.

Thus for n ≥ 5, any normal subgroup of An is either trivial or An itself.
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Exercises 3.3.9. Details simplicity of An

This problem fleshes out some details in the proof of Theorem 3.3.8: An is
simple for n > 5.

(a) Within the alternating groupAn for each i = 1, . . . , n, letGi = {σ ∈ An : σ(i) = i}.
Show that Gi is a subgroup of An.

(b) Find a π ∈ An such that each Gi = πGjπ
−1.

(c) Justify the statement in the fourth paragraph of the proof of 3.3.8 “Then
(τστ−1)σ−1 ∈ N and straightforward computation shows τστ−1σ−1(c) = c.”

(d) Justify the statement in the fifth paragraph of the proof of 3.3.8 “(τστ−1)σ−1 ∈
N and τστ−1σ−1(b) = b.”
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Chapter 4

Rings

Of the three main topics in this book—groups, rings, and fields—the study of rings
will probably be the most familiar to the reader. The first section of Chapter 1 con-
cerned the protypical ring, the integers. The main properties examined—quotients
and remainders, divisibility, prime numbers, factorization—are familiar from grade
school. At the end of that chapter, these properties are extended to the polynomial
ring F [x] for F a field. Polynomials over the rational numbers, Q, are a major
portion of the secondary school curriculum, although the focus is on the geom-
etry of solutions to polynomial equations more than algebraic properties. Still,
the division of polynomials and factorization do play an important role in the
curriculum.

In this chapter, we deal with general rings, with the caveat that multiplication
is assumed to be commutative. The special roles of the integers and of polynomial
rings will be evident, and the properties of divisibility and factorization are major
themes. Recall that the two GCD Theorems (1.1.4 for integers and 1.3.3 for
polynomial rings) involve a construction that also plays a major role. The GCD
of two integers is a linear combination of the two integers and the GCD of two
polynomials a(x) and b(x) is a polynomial combination of a(x) and b(x). Ideals are
subsets of a ring that generalize the construction of linear/polynomial combinations
of two elements. Ideals are used to define quotient rings in Section 4.4. Section 4.5
presents the relatively straightforward generalizations to rings of the isomorphism
theorems for groups (2.8.9, 2.10.1, 3.1.3) and of the related Factor Theorem 2.8.11
and Correspondence Theorem 2.10.2. Key properties of ideals and the relationship
to properties of the quotient rings are studied in Section 4.6. The culminating topic
of this chapter is rings of fractions, in Section 4.7, which generalizes the techniques
used to derive the rational numbers from the integers.

110



4.1 Rings

In this section we recall the definition of a ring and introduce three particular
types of rings: fields, integral domains, reduced rings. The integers and F [x]
provide ways to construct examples and non-examples of these three types of rings
using the modular arithmetic introduced in Sections 1.1 and 1.3.

Definition 4.1.1. A ring is a set R, with two operations + and ∗ that satisfy the
following properties.

(1) + and ∗ are both associative. That is, (a+b)+c = a+(b+c) and a∗(b∗c) =
(a ∗ b) ∗ c.

(2) + and ∗ are both commutative. That is, a+ b = b+ a and a ∗ b = b ∗ a.

(3) + and ∗ both have identity elements. There is some element in R, that we
call 0, such that a+0 = a, and there is an element, that we call 1, such that
a ∗ 1 = a.

(4) + admits inverses. That is, for each a ∈ R there is some other element, that
we write −a, such that a+ (−a) = 0.

(5) ∗ distributes over +. That is a ∗ (b+ c) = a ∗ b+ a ∗ c.

A few comments are in order. Strictly speaking, the definition above is for a
commutative ring with identity. The modifier “commutative” is referring to
commutativity of multiplication, and “with identity” is referring to the multiplica-
tive identity. There is a rich study of rings where multiplication is non-commutative
(for example the ring of n× n matrices over R, see Section 4.3), but treating the
subject would spread our efforts too thinly. It is common when treating only com-
mutative rings to simplify the terminology at the outset as we do here: A ring for
us is assumed to be commutative and have an identity.

One may also say that a ring R is a commutative group under + and that
R∗ = R \ {0} is a commutative monoid (look it up!) under ∗, with the additional
property that ∗ distributes over +.

One can show by induction that a sum of several terms (or a product of several
terms) may be computed in any order. There is also a distributive law for several
terms: for r, a1, . . . , an in a ring R, we have r ∗ (a1 + a2 + · · ·+ an) = r ∗ a1 + r ∗
a2 + · · ·+ r ∗ an.

There are a bunch of little results one should verify. Since any ring R is a group
under +, several results follow from Proposition 2.1.2. The additive identity 0 is
unique, and the additive inverse of r ∈ R is unique (we write it as −r), We know
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that −(−r) = r and that for s ∈ R, −(r+ s) = (−r) + (−s) (using commutativity
of +). Additionally we have the following properties. Proofs are left as an exercise.

Proposition 4.1.2. Let R be a ring and r, s ∈ R

(1) For an integer m, the following equality holds, and we write its value as mr.(
1 + 1 + · · ·+ 1︸ ︷︷ ︸

m terms

)
∗ r = r + r + · · ·+ r︸ ︷︷ ︸

m terms

(2) For any r ∈ R, r ∗ 0 = 0.

(3) The multiplicative identity element, 1, is unique.

(4) The additive inverse and multiplication operate as expected.

• r ∗ (−s) = −(r ∗ s)
• (−r) ∗ (−s) = r ∗ s

We haven’t excluded the possibility that 1 = 0. In this case for any r ∈ R,
r = r ∗ 1 = r ∗ 0 = 0. Thus we have a unique situation, a ring that has just one
element. We call it the trivial ring.

We will write the product without the multiplication symbol when there is no
concern about ambiguity, that is rs instead of r ∗ s. But for clarity and emphasis
on the basic properties of a ring, we will continue to explicitly show the product
symbol in this section.

There are three special types of elements in a ring, and, based on their existence
or not, three special types of rings.

Definition 4.1.3. An element u of a ring R is a unit when there is another
element v such that u ∗ v = 1. An element a of a ring R is a zero-divisor when
a ̸= 0 and there is some b ̸= 0 in R such that a ∗ b = 0. An element a of a ring R
is nilpotent when there exists some positive integer n such that an = 0.

Definition 4.1.4. A field is a nontrivial ring in which every nonzero element is
a unit. An integral domain is a nontrivial ring that has no zero-divisors. A
nontrivial ring is reduced if it has no nilpotent elements other than 0.

Exercises 4.1.5. Basic properties of rings.

Prove the results in Proposition 4.1.2, and in addition prove the following.

(a) The inverse of a unit is unique.

(b) The inverse of a unit is also a unit.
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(c) A unit cannot be a zero-divisor.

(d) A nilpotent element is either 0 or a zero-divisor.

Exercises 4.1.6. Cancellation in integral domains.

(a) Let R be an integral domain. Show that the cancellation law holds: If
ar = as then r = s.

(b) Let R be an integral domain that is finite. Show that R is a field. (For a
nonzero a ∈ R, consider the function R −→ R that takes r to a ∗ r. Use the
cancellation law to show injectivity.)

The Integers and F [x] for F a Field

We can now fully appreciate the integers Z, having ignored multiplication when
we studied the integers as a group. The integers, the number system we learn in
elementary school, form the first example of a ring. One of the key properties of
the integers (used in solving a quadratic equation!) is that ab = 0 implies a = 0 or
b = 0. In terms defined above, Z has no zero-divisors, so it is an integral domain.

Let us now turn to modular arithmetic, which we introduced in Section 1.1. We
will use [a]n for the equivalence class of a modulo n and we will omit the subscript
n when the modulus is obvious. The following expands on Exercise 1.1.18.

Theorem 4.1.7 (Units, Zero-Divisors in Z/n). Let n ≥ 2 be an integer and let a
be an integer.

(1) [a]n is a unit if and only if gcd(a, n) = 1.

(2) [a]n is a zero-divisor if and only if 1 < gcd(a, n) < n.

In particular, an element of Z/n is either 0, or a unit, or a zero-divisor, and these
are mutually exclusive.

Proof. Let d = gcd(a, n). There are three mutually exclusive cases, d = 1, d = n
and 1 < d < n.

If d = 1 then, by the GCD Theorem 1.1.4 there are integers u, v such that
ua+ vn = 1. Reducing modulo n we have

[u]n ∗ [a]n + [v]n ∗ [n]n = [1]n

[u]n ∗ [a]n = [1]n

so [u]n is the multiplicative inverse of [a]n and [a]n is a unit in Z/n.
If d = n, then [a]n = [0]n.
If 1 < d < n then a = db and n = dc for some integers b and c with c < n.

Then [c]n ∗ [a]n = [c]n ∗ [db]n = [cd]n ∗ [b]n = [n]n ∗ [b]n = [0]n. But [a]n ̸= [0]n and,
since c < n, [c]n ̸= [0]n. Thus [a]n is a zero-divisor.

113



We are particularly interested in the following special case, to which we will
return in depth later.

Corollary 4.1.8. Let p be a prime number. Then Z/p is a field; every nonzero
element has an inverse.

When working with the integers modulo a prime we usually use the notation
Fp instead of Z/p to emphasize that we have a field.

A general theme emphasized in these notes is the similarity between the integers
and a polynomial ring over a field F [x]. We have similar results when working
modulo a polynomial as we did for modular arithmetic.

Theorem 4.1.9 (Units, Zero-Divisors in F [x]/m(x)). Let F be a field and let m(x)
be a polyomial of degree δ > 0. Let a(x) ∈ F (x) and let [a(x)] be its congruence
class modulo m(x).

(1) [a(x)] is a unit if and only if gcd(a(x),m(x)) = 1.

(2) [a(x)] is a zero-divisor if and only if gcd(a(x),m(x)) has degree greater than
0 and less than δ.

In particular, an element of F [x]/m(x) is either 0, or a unit, or a zero-divisor,
and these are mutually exclusive.

Proof. Let d(x) = gcd(a(x),m(x)). There are three mutually exclusive cases,
d(x) = 1, d(x) = m(x) and 0 < deg(d(x)) < deg(m(x)). These lead to [a(x)] a
unit, [a(x)] = [0] and [a(x)] a zero divisor, respectively. The proof for each case is
entirely similar to that for the integers.

As with the integers, the following case is of special interest and we will return
to it in depth later.

Corollary 4.1.10. Let m(x) be an irreducible polynomial in F [x] for F a field.
Then every nonzero element in F [x]/m(x) has an inverse, so F [x]/m(x) is a field.
Conversely, if m(x) is reducible, F [x]/m(x) is not even an integral domain.

Exercises 4.1.11. Nilpotent elements in familiar rings.

(a) Find the nilpotent elements of Z/8, of Z/12, and of Z/30.
(b) Under what conditions on n does Z/n have nonzero nilpotent elements?

(c) Identify the nilpotent elements of Z/n using the unique factorization of n.

(d) Let F be a field and m(x) ∈ F [x]. Under what conditions on m(x) does
F [x]/m(x) have nonzero nilpotent elements? Identify the nilpotents a(x) ∈
F [x]/m(x) using unique factorization into irreducibles of m(x) and a(x).
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4.2 Ring Homomorphisms

As with groups, the functions that preserve structure on rings are of primary
interest. We first treat subrings, then introduce homomorphisms.

Definition 4.2.1. Let R be a ring. A subset T ⊆ R is a subring of R when T is
an additive subgroup of R, T is closed under multiplication, and T contains 1R.

Example 4.2.2. The ring of integers Z is a subring of Q. We will see other subrings
of Q in Section 4.7.

Example 4.2.3. The rings Z/n have no proper subrings because of the requirement
that the unitary element, 1, be contained in a subring. Adding 1 to itself will give
all of Zn.

Example 4.2.4. The polynomial ring F [x] for F a field has many subrings: F itself,
any subring of F , and subrings generated by a polynomial. For example, F [x2]
would contain all polynomials in which each term has even degree. One can check
that it is indeed a subring of F [x].

Exercises 4.2.5. Basic properties of subrings.

Suppose R,S are subrings of a ring T .

(a) Show that R ∩ S is also a subring of T .

(b) If R and S are integral domains, show that R∩S is also an integral domain.

(c) If R and S are fields, show that R ∩ S is also a field.

(d) More generally, show that for any subset A of T , that the intersection of all
rings containing A is a subring of T .

(e) Similarly, show that for any subset A of T , that the intersection of all fields
containing A is a subring of T . Show that, if it is nonempty, it is actually a
field under the operations +, ∗ in T .

(f) Give an example to show that R ∪ S may not be a ring.

Definition 4.2.6. Let R,S be rings. A funtion φ : R −→ S is a ring homomor-
phism when

(1) φ is a homomorphism of the additive groups R,+R and S,+S , and

(2) φ(1R) = 1S , and

(3) for r1, r2 ∈ R,

φ(r1 ∗R r2) = φ(r1) ∗S φ(r2)
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Notice that the operation on the left-hand side is in R and the operation ∗ on
the right-hand side is in S. When we want to be careful we specify the ring for the
operation as we did here, but generally this is left to the reader to infer. We say φ
it respects the ring structure. Specifically, φ respects addition, multiplication, and
the identity element. Recall from group theory that it is sufficient to check that
a function φ respects the group operation to ensure that φ is a homomorphism.
Thus, to check if φ : R −→ S is a ring homomorphism, one verifies that

(1) φ(1R) = 1S ,

(2) φ(r1 +R r2) = φ(r1) +S φ(r2), and

(3) φ(r1 ∗R r2) = φ(r1) ∗S φ(r2).

Proposition 4.2.7. Let R,S, T be rings. If φ : R −→ S and θ : S −→ T are ring
homomorphisms then the composition θ ◦ φ is also a ring homomorphism.

The proof is left as an exercise.

Definition 4.2.8. The kernel of a ring homomorphism φ : R −→ S is the preim-
age of 0S ; that is {r ∈ R : φ(r) = 0S}. A homomorphism that is injective is called
an embedding. A homomorphism that is a bijection (injective and surjective) is
called an isomorphism.

If R is a subring of S then the function with domain R and codomain S that
takes each element of R to itself as an element of S is a homomorphism, called the
inclusion homomorphism, from R to S.

From group theory we know that the kernel of a group homomorphism is a
normal subgroup (since addition in rings is commutative, any subgroup is normal).
The kernel of a ring homomorphism is not just an additive subgroup. It has an
additional important property, which is item (3) in the following theorem.

Theorem 4.2.9. Let φ : R −→ S be a homomorphism of rings and let K be the
kernel.

(1) The image of R is a subring of S.

(2) φ is injective if and only if K = {0R}.

(3) For any r ∈ R and any k ∈ K, r ∗R k ∈ K.

Proof. We know that φ(R) is a subgroup of S. From the requirement that φ(1R) =
1S we have 1S ∈ φ(R). To show that φ(R) is closed under multiplication, let φ(r1)
and φ(r2) be arbitrary elements of φ(R). Then φ(r1) ∗S φ(r2) = φ(r1 ∗R r2), and
this is in φ(R). This shows that φ(R) is a subring of S.
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For the properties of the kernel, note first that if φ is injective there can only
be one element that maps to 0S , and that is 0R. Conversely, suppose K = {0R},
and suppose φ(r) = φ(r′). Then φ(r − r′) = φ(r) − φ(r′) = 0S . Since the kernel
is trivial, r − r′ = 0R so r = r′. This establishes injectivity.

Let k ∈ K and r ∈ R. We have

φ(r ∗R k) = φ(r) ∗S φ(k) = φ(r) ∗S 0S = 0S

Thus r ∗R k ∈ K.

As with isomorphisms of groups, the isomorphisms between rings set up an
equivalence relation. Every ring is clearly isomorphic to itself via the identity
map. The following theorem establishes symmetry and transitivity.

Theorem 4.2.10. If φ : R −→ S is an isomorphism then φ−1 is also an isomor-
phism. The composition of two isomorphisms is an isomorphism.

Proof. Let φ : R −→ S be an isomorphism of rings. Since φ is a bijection,
φ−1 : S −→ R is also a bijection. We must show it is a homomorphism. Since φ
is a homomorphism, φ(1R) = 1S and therefore φ−1(1S) = 1R (since φ is injective,
this is the sole preimage).

To show φ−1 respects addition and multiplication, let s, s′ be arbitrary elements
of S. Since φ is a bijection, there are unique r, r′ ∈ R such that φ(r) = s and
φ(r′) = s′.

φ−1(s ∗S s′) = φ−1
(
φ(r) ∗S φ(r′)

)
= φ−1

(
φ(r ∗R r′)

)
= r ∗R r′

= φ−1(s) ∗R φ−1(s′)

This shows φ−1 respects multiplication. A completely analogous proof is used for
addition.

Definition 4.2.11. Two rings R,S are isomorphic if there is an isomorphism
from R to S (and therefore, by the theorem, also an isomorphism from S to R).

Exercises 4.2.12. Homomorphisms and subrings

Let φ : R −→ S be a ring homomorphism.

(a) Show that for any subring R′ in R, the image φ(R′) is a subring of S.

(b) Show that any subring S′ of S, the preimage φ−1(S′) is a subring of R.
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The Integers and F [x] for F a Field

The following theorem shows that the Integers are the “original” (or “initial”) ring.

Theorem 4.2.13 (The Initial Ring). For any ring R there is a unique homomor-
phism from Z to R. The kernel is the set of multiples of some integer m. If m = 0
then R has a subring isomorphic to Z. If m > 0, there is an isomorphism of Z/m
with a subring of R.

Proof. A homomorphism φ : Z −→ R, if it exists, would have to take 1Z to
1R. Applying the requirement that a homomorphism respects addition we see
inductively that we must have, for m > 0,

φ(m) = φ(1Z + · · ·+ 1Z︸ ︷︷ ︸
m terms

) = 1R + · · ·+ 1R︸ ︷︷ ︸
m terms

= m1R

We also must have φ(−m) = −φ(m). Thus, there is at most one way to define a
homomorphism from Z to R. This function respects addition:

φ(m+ n) = (m+ n)1R

= 1R + 1R + · · ·+ 1R︸ ︷︷ ︸
m+n terms

= 1R + · · ·+ 1R︸ ︷︷ ︸
m terms

+1R + · · ·+ 1R︸ ︷︷ ︸
n terms

= m1R + n1R

= φ(m) + φ(n)

It also respects multiplication:

φ(mn) = mn1R

= φ
(
1R + 1R + · · ·+ 1R︸ ︷︷ ︸

mn terms

)
=
(
1R + · · ·+ 1R︸ ︷︷ ︸

m terms

)
∗R
(
1R + · · ·+ 1R︸ ︷︷ ︸

n terms

)
= (m1R) ∗ (n1R)
= φ(m) ∗R φ(n)

The kernel is a subgroup of Z, and we have shown any subgroup of Z is cyclic.
If m generates the kernel, the first isomorphism theorem for groups says that Z/m
is isomorphic to a subgroup of R. Since multiplication is just repeated addition,
the map from Z/m to the subring of R is an isomorphism of rings.
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The integer m in the theorem is called the characteristic of R.
The Arithmetic Modulo n Theorem 1.1.16 shows that the function taking a ∈ Z

to [a]n ∈ Z/n is a homomorphism. We actually define addition and multiplication
in Z/n via addition and multiplication in Z, so it is an immediate consequence
that the map is a homomorphism.

If d dividesm there is a well-defined function from [a]m to [a]d— this is because
d|m andm|(b−a) implies d|(b−a)—so any two integers that are congruent modulo
m are also congruent modulo d. On the other hand if d ∤ m, there is no well-defined
homomorphism from Z/m to Z/d. If φ were a homomorphism from Z/m to Z/d it
would have to take [1]m to [1]d. But m[1]m = [0]m and m[1]d ̸= [0]d, so this would
lead to φ([0]m) = [m]d ̸= [0]d, which contradicts φ being a homomorphism.

Since the arithmetic on Z/m is determined by the addition and multiplication
in Z it often colloquially said that it is “inherited” from Z. Summarizing the
discussion above we have

Theorem 4.2.14 (Homomorphism mod m). The function Z −→ Z/n taking a to
[a]n is a homomorphism.

There is a homomorphism from Z/m to Z/d if and only if d divides m. The
homomomorphism is unique (since it takes [1]m to [1]d).

We have a similar result for polynomial rings.

Theorem 4.2.15 (Homomorphism mod m(x)). Let F be a field and m(x) ∈ F [x]
The function F [x] −→ F [x]/m(x) taking a(x) to its equivalence class [a(x)] is a
homomorphism.

There is a homomorphism from F [x]/m(x) to F [x]/r(x) that is the identity on
F and takes [x]m(x) to [x]r(x) if and only if r(x) divides m(x).

4.3 Constructions

In this section we introduce three ways to construct new rings: using direct prod-
ucts, using an indeterminate to create a polynomial ring, and using matrices to
create a noncommutative ring.

Direct Products

In Section 2.4 we showed that the Cartesian product of groups has the structure
of a group. Not surprisingly, we have the same situation with rings, but there is
one subtle difference, discussed below.
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Definition 4.3.1. Let R and S be rings. The Cartesian product R × S, along
with the operations below form the direct product of R and S.

−(r, s) = (−r,−s)
(r1, s1) +R×S (r2, s2) = (r1 +R r2, s1 +S s2)

(r1, s1) ∗R×S (r2, s2) = (r1 ∗R r2, s1 ∗S s2)

The additive identity and multiplicative identies are of course (0R, 0S) and (1R, 1S).
The following proposition shows that the direct product of rings is in fact a ring
and gives other important properties.

Proposition 4.3.2 (Direct Product). Let R and S be rings.

(1) The above definition does, indeed, make R× S a ring.

(2) The associative law for products of several rings holds: R1 × (R2 × R3) ∼=
(R1 ×R2)×R3. Hence we write the product as R1 ×R2 ×R3.

(3) If R′ is a subring of R and S′ is a subring of S then R′ × S′ is a subring of
R× S.

(4) The projection maps pR : R × S −→ R and pS : R × S −→ S are surjective
homomorphisms.

(5) The construction and the observations above can be generalized to the direct
product of any set of rings {Ri : i ∈ I} indexed by a finite set I. (It extends
with some modification due to subtle issues when I is infinite.)

Proof. (1) It is straighforward to check that the ring properties hold for R× S by
using the ring properties of R and S in each component.

(2) It is clear that the function from R1 ×
(
R2 × R3

)
to
(
R1 × R2

)
× R3 that

takes
(
r1, (r2, r3)

)
to
(
(r1, r2), r3

)
is a bijection. It is straightforward to show it

satisfies the three requirements for it to be a ring homomorphism.
(3)-(5) are similarly straightforward to verify.

The subtle difference between the product of groups and the product of rings
is that there does not exist a natural homomorphism R −→ R × S. The choice
that one might expect would be to send r to (r, 0), which does lead to a homomor-
phism of additive groups. But this violates the requirement that the multiplicative
identity on R must map to the multiplicative identity on R× S.
Exercises 4.3.3. Units and zero-divisors in direct products.

Let R and S be rings and consider R × S. [You might want to consider
Z/m× Z/n to get a start on these problems.]
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(a) Identify all the units R× S by reference to the units in R and S.

(b) Identify all the zero-divisors in R× S by reference to the zero-divisors in R
and S. [You might want to consider Z/m× Z/n to get started.]

(c) Identify all of the nilpotent elements in R× S.
The following property of the direct product of rings is analogous to the one for

groups, Proposition 2.4.4. The proof is easily adapted from the proof for groups.

Proposition 4.3.4 (Universal Property of the Product). Let R,S and T be rings,
and let φ : T −→ R and ψ : T −→ S be homomorphisms. The function α :
T −→ R × S defined by t 7−→ (φ(t), ψ(t)) is a homomorphism. It is the unique
homomorphism such that pR ◦ α = φ and pS ◦ α = ψ.

Exercises 4.3.5. Idempotent elements come in pairs.

An element e in a ring R is idempotent when e2 = e. Evidently, both 0R
and 1R are idempotents. If R and S are rings, then R×S has two additional
idempotents (1, 0) and (0, 1).

(a) let R be a ring with an idempotent e with e ̸= 0 and e ̸= 1.

(1) Prove that the set Re = {re : r ∈ R} with the operations inherited from
R has the structure of a ring, with identity e. It is not a subring of R
because the multiplicative identity element is different.

(2) Prove that (1− e) is also an idempotent in R.

(3) Prove that every element in R may be uniquely expressed as the sum
of an element in Re and an element in R(1− e).

(b) Find the idempotents in Z/12 and comment on the decomposition above.

(c) Find the idempotents in Z/30 and comment on the decomposition above.

Polynomial Rings

We have already discussed polynomial rings that have coefficients in a field, such
as Q[x], and Fp[x]. The construction generalizes to any ring. For R a ring, the
polynomial ring R[x] is the set of elements of the form

a0 + a1x+ a2x
2 + · · ·+ aδx

δ
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with the ai ∈ R and δ ∈ N0. The sum of two elements and product of two elements
are familiar formulas. For example,

(a0 + a1x+ a2x
2 + a3x

3) + (b0 + b1x+ b2x
2 + b3x

3)

= (a0 + b0) + (a1 + b1)x+ (a2 + b2)x
2 + (a3 + b3)x

3

(a0 + a1x+ a2x
2)(b0 + b1x+ b2x

2)

= a0b0 + (a1b0 + a0b1)x+ (a2b0 + a1b1 + a0b2)x
2

Some care is in order to stipulate that, for example, a0+a1x = a0+a1x+0x2.
I’ll introduce the following formal definition, but your instincts should be your
guide.

Definition 4.3.6. Let R be a ring. A polynomial in x over R is a sum a(x) =∑∞
i=0 aix

i in which only a finite number of the ai are nonzero. The support of
a(x) is the set of powers of x for the nonzero terms

{
xi : ai ̸= 0

}
, or depending on

the context, the indices of those terms, {i : ai ̸= 0}. For a(x) nonzero, the degree
is the maximal index with a nonzero term, deg(a(x)) = maxi∈N≥0

{i : ai ̸= 0}. We
set the degree of the 0 polynomial to be −∞.

The polynomial ring over R with indeterminate x is the set of all poly-
nomials. { ∞∑

i=0

aix
i : ai ∈ R, and {i : ai ̸= 0} is finite

}
The sum is defined by

∞∑
i=0

aix
i +

∞∑
i=0

bix
i =

∞∑
i=0

(ai + bi)x
i

and it is clear that the additive inverse of
∑∞

i=0 aix
i is

∑∞
i=0(−ai)xi. The product

is defined by (axi)∗(bxj) = abxi+j and applying distributivity, commutativity and
distributivity. Consequently,

( ∞∑
i=0

aix
i
)( ∞∑

j=0

bjx
j
)
=

∞∑
i=0

∞∑
j=0

aibjx
i+j

We can rearrange the sum by reindexing using k = i + j, and gathering terms in
xk,

( ∞∑
i=0

aix
i
)( ∞∑

j=0

bjx
j
)
=

∞∑
k=0

xk
k∑

i=0

(aibk−i)
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As an aside, if we don’t require the support to be finite we still get a valid ring,
which is called the ring of formal power series.

One should check that all the properties of a ring hold, a somewhat tedious
exercise. As an example, for associativity one can show that(

a(x)b(x)
)
c(x) =

∑
m

∑
i,j,k≥0

i+j+k=m

aibjck = a(x)
(
b(x)c(x)

)

Proposition 4.3.7. For any ring R and a(x), b(x) ∈ R,

deg
(
a(x)b(x)

)
≤ deg

(
a(x)

)
+ deg

(
b(x)

)
If R is an integral domain then equality holds, the degree of a product of poly-

nomials is the sum of the degrees of the factors:

deg
(
a(x)b(x)

)
= deg

(
a(x)

)
+ deg

(
b(x)

)
In particular, if R is an integral domain, then R[x] is also an integral domain.

Proof. Let γ = deg(a(x)) and δ = deg(b(x)). From the formula for the product the

degree k term in a(x)b(x) is
(∑k

i=0 aibk−i

)
. When k > γ+ δ, the kth term will be

0 because for i > γ, ai = 0, and for i ≤ γ, k− i > δ so bk−i = 0. For k = γ + δ the
kth term in the product is aγbδ. This may be 0 in a ring with zero-divisors, hence
the degree of a product may be less than the sum of the degrees of the factors over
a ring R with zero-divisors.

In an integral domain, aγbδ ̸= 0 since we assume aγ and bδ are nonzero. In
particular, a product of nonzero polynomials over an integral domain cannot be
zero. This proves the proposition.

The key lemma (1.3.1) that was used to prove the Quotient Remainder Theo-
rem (1.3.2) in F [x] does not apply over an arbitrary ring.

Exercises 4.3.8. Polynomial rings and zero-divisors.

(a) Give an example to show the analogue of Lemma 1.3.1 does not hold in the
polynomial ring over Z/4.

(b) Show that Z/4[x] has a polynomial of degree 1 that is a unit (in fact its
square is 1).

(c) Give an example of two polynomials of degree 2 in Z/8[x] such that their
product has degree 1. Show that this is not possible in Z/4[x] and Z/6[x].

Here is an additional result about polynomial rings that will be useful. It is
similar to The Initial Ring Theorem 4.2.13 for the integers.
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Theorem 4.3.9 (Universal property of polynomial rings). Let R,S be rings and
let φ : R −→ S be a ring homomorphism. For any s ∈ S there is a unique
homomorphism from R[x] to S that agrees with φ on R and takes x to s, namely

φ : R[x] −→ S∑
i

rix
i 7−→

∑
i

φ(ri)s
i

Proof. To simplify the notation, the summations in the text below are implicitly
over the nonnegative integers unless expressed otherwise. If there is a homomor-
phism φ taking x to s and agreeing with φ on R then we must have

φ
(∑

i

rix
i
)
=
∑
i

φ(rix
i) =

∑
i

φ(ri)φ(x)
i =

∑
i

φ(ri)s
i

So there is only one possible way to define φ. The key observation is that φ is well
defined because there is a unique way to write each element of R[x] and we have
used this unique formulation to define φ. We also note that the sums are all finite
sums.

To show this function is indeed a homomorphism we check that it respects
the operations. Here we check just products. As we saw above, commutativity,
associativity, and distributivity in the polynomial ring give

(
∑
i

aix
i)(
∑
j

rjx
j) =

∑
k

xk
k∑

i=0

(airk−i)

A similar derivation shows that for bi, ti ∈ S

(
∑
i

bis
i)(
∑
i

tis
i) =

∑
k

sk
k∑

i=0

(bitk−i)

Thus we have

φ
((∑

i

aix
i
)(∑

i

bix
i
))

= φ
(∑

k

xk
( k∑

i=0

aibk−i

))
=
∑
k

sk
( k∑

i=0

φ(aibk−i)
)

=
(∑

i

φ(ai)s
i
)(∑

j

φ(bj)s
j
)

= φ
(∑

i

aix
i
)
φ
(∑

i

bix
i
)
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This shows φ respects products.

In the first encounter a student has with polynomials they are treated as func-
tions. For a polynomial over Q, one substitutes a rational number for x and com-
putes a rational number as output. Up to this point we have treated polynomials
algebraically by adding and multiplying. The previous theorem has applications
in which we treat polynomials as functions.

Exercises 4.3.10. Evaluating polynomials.

(a) Consider R = S = Q and s ∈ Q. Apply the theorem to show that evaluating
polynomials in Q[x] at s yields a homomorphism from Q[x] to Q.

(b) More generally, apply the theorem to the situation where S = R and s is
some particular element of R. Interpret the theorem for this situation as
saying that “evaluating at a fixed s ∈ R” determines a homomorphism.

(c) Apply the theorem to the situation where S = R[x] and the particular ele-
ment s(x) ∈ R[x]. The theorem says that there is a homomorphism

φ : R[x] −→ R[x]

x −→ s(x)

Show that an arbitrary f(x) ∈ R[x] maps to f
(
s(x)

)
. Show that, as a

function, this is the composition of the function defined by f(x) and the
function defined by s(x).

By iteratively applying the polynomial ring construction we can create a poly-
nomial ring in several indeterminates over a ring R.

Definition 4.3.11. The polynomial ring over the ringR in indeterminates x1, x2, . . . , xn,
which we write asR[x1, x2, . . . , xn−1, xn], is defined inductively asR[x1, . . . , xn−1][xn].
An element xα1

1 xα2
2 · · ·xαn

n is called a monomial. We will say that (α1, α2, . . . , αn)
is the multidegree of this monomial. The total degree is α1+ · · ·+αn. The ele-
ments ofR[x1, x2, . . . , xn−1, xn] are finite sums of terms of the form axα1

1 xα2
2 · · ·xαn

n .

This has the following important property.

Theorem 4.3.12 (Universal property of polynomial rings). Let R,S be rings and
let φ : R −→ S be a ring homomorphism. For any s1, . . . , sn ∈ S there is a unique
homomorphism from R[x1, x2, . . . , xn] to S that agrees with φ on R and takes xi
to si.
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Matrix Rings

Although we are focusing on rings that are commutative, and moreover, have de-
fined a ring to be commutative, it is worth presenting one very important example
of a noncommutative ring.

Definition 4.3.13. Let R be a ring and let n be a positive integer. The n × n
matrix ring over R, written Mn(R), is the set of n× n matrices using the usual
formulas for addition and multiplication.

Even for a field, the matrix ring is noncommutative, as you may recall from
your experience with linear algebra.

Exercises 4.3.14. Matrix rings over Q.

Consider M2(Q) and recall the various spaces associated to a matrix (e.g.
rowspace, nullspace).

(a) Show that A =

[
1 0
1 0

]
is a zero-divisor in M2(Q). Find a B such that

AB = 0 (the zero matrix). Find a C such that CA = 0.

(b) What property from linear algebra characterizes the zero-divisors inM2(Q)?

(c) Show that every nonzero element of M2(Q) (or more broadly Mn(F ) for F
a field) is either a zero-divisor or a unit.

In linear algebra, matrices over a field arise as functions that map one vector
space to another. A square matrix maps a vector space to itself. Matrices over a
ring can also be treated as functions: an m × n matrix over R maps a “vector”
of length n over R to a “vector” of length m over R, using the familiar formulas
for the product of a matrix and vector. I put vector in quotes because Rn is
not a vector space when R is not a field. Yet, Rn, with rules for addition and
scalar multiplication analogous to those for vector spaces, is an interesting object
to study. Modules over a ring are the generalization of vector spaces. The subject
is a bit more complex because not every nonzero element is a unit, and, even more
challenging, there may be zero-divisors in the ring.

4.4 Ideals and Quotient Rings

For a group G, ∗ and a normal subgroup N , we showed in Section 2.8 that the set
of cosets, G/N , has the structure of a group using the product aNbN = abN . For
rings, all additive subgroups are normal, but, to create a quotient ring, we want
both addition and multiplication to extend to cosets. The appropriate subgroups
of a ring that allow for this are ideals.
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Definition 4.4.1. An ideal of a ring R is a nonempty subset I ⊆ R which is
closed under addition and closed under multiplication by an arbitrary element of
R:

(1) For a, b ∈ I, the sum a+ b must be an element of I.

(2) For a ∈ I and any r ∈ R the product ra must be an element of I.

We will say that I absorbs products.

One might wonder why the definition of an ideal does not include a requirement
that the additive inverse of an element in I is also in I. This is implied by I
absorbing products. For a ∈ I we have (−1) ∗ a−−a is in I.

Proposition 4.4.2. Let R be a ring.
If an ideal I of R contains a unit, then I = R.
For any a1, a2, . . . , an ∈ R, the following set is an ideal of R.

I = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}

Proof. Let R be a ring. Let u be a unit in R with inverse v. If I is an ideal
containing u then uv = 1 is also in I since I absorbs products. Again, since I
absorbs products, for any r ∈ R, r1 = r ∈ R. Thus I = R.

Let a1, . . . , an be arbitrary elements of r. We want to show

I = {r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}

is an ideal of R. We can see that I is closed under addition because

(r1a1 + r2a2 + · · ·+ rnan) + (s1a1 + s2a2 + · · ·+ snan)

= r1a1 + s1a1 + r2a2 + s2a2 + · · ·+ rnan + snan

= (r1 + s1)a1 + (r2 + s2)a2 + · · ·+ (rn + sn)an

The first step repeatedly uses commutativity and associativity of addition. The
last step uses distributivity. The final expression is in a form that shows it is an
element of I.

The product of any t ∈ R with r1a1 + r2a2 + · · ·+ rnan is

t
(
r1a1 + r2a2 + · · ·+ rnan

)
= (tr1)a1 + (tr2)a2 + · · ·+ (trn)an

using distributivity and associativity of multiplication. The result is in a form to
show it is in I.
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Definition 4.4.3. We say I is generated by a1, a2, . . . , an if I = {r1a1 + r2a2 +
· · · + rnan : ri ∈ R}. We write I = ⟨a1, a2, . . . , an⟩. The ideal I is principal if
there exists some a ∈ I such that I = {ra : r ∈ R}. A ring in which all ideals are
principal is called a principal ideal domain, or a PID for short.

An ideal generated by several elements may also be generated by a single
element, and therefore be principal.

Proposition 4.4.4. Every ideal in Z is principal. Every ideal in F [x] for F a
field is principal. Therefore, Z and F [x] are principal ideal domains.

Proof. Let I be an ideal of Z. If I = {0}, there is nothing to prove. Otherwise,
let a be the smallest positive integer in I. Let b be any other nonzero element of
I. Then, by the properties of ideals, any linear combination of a and b is in I. By
the GCD Theorem 1.1.4, gcd(a, b) ∈ I. But the gcd of a and b is positive and less
than or equal to a. Since a is the smallest positive element of I, we must have
gcd(a, b) = a. Consequently, an arbitrary element of I is divisible by a, so I = ⟨a⟩
is principal.

The same proof applies to F [x] with minor modification. We observe that if
a nonzero ideal in F [x] contains a a nonzero element of F (that is a polynomial
of degree 0), then it contains a unit. It must then be the whole ring and we can
write it as ⟨1⟩, in which 1 is a monic polynomial of degree 0. Otherwise, for I a
proper nonzero ideal, one uses the monic polynomial of lowest degree in I, call it
m(x). The argument above is easily adapted to show that m(x) generates I.

From the proof we see that the ideals of Z are in one correspondence with the
nonnegative integers. Similarly, the principal ideals of F [x], other than the 0-ideal,
are in one to one correspondence with the monic polynomials.

Exercises 4.4.5. Ideals and subrings.

(a) Let R be a subring of a ring S. Let I be an ideal in S. Show that I ∩ R is
an ideal in R.

Exercises 4.4.6. Ideals in direct products.

Let R and S be rings and consider R× S.
(a) Let I be an ideal in R and J and ideal in S. Show that I × J is an ideal in

R× S.
(b) Show that all ideals in R× S are of the form I × J .
Note that the previous problem shows an important difference between rings

and groups. The direct product of groups G and H may have many subgroups
that are not of the form G′ ×H ′ for G′ a subgroup of G and H ′ a subgroup of H.
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Exercises 4.4.7. Homomorphisms and ideals.

Let φ : R −→ S be a homomorphism of rings.

(a) Let J be an ideal in S. Prove that φ−1(J) is an ideal in R.

(b) Assume that φ is surjective. Let I be an ideal in R. Show that φ(I) is an
ideal in S.

(c) Using Z and Q show that when a homomorphism is not surjective, the image
of an ideal is not necessarily an ideal.

Quotient Rings

A ring R is an abelian group under addition, so, for any subgroup, we can form
the quotient group of R by that subgroup. It is natural, when we take the mul-
tiplicative structure of R into account, to want the quotient group to also have a
multiplicative structure. The necessary property to make this work is the “absorbs
products” requirement in the definition of ideal. We have actually seen this appear
in Proposition 4.2.9, which said that the kernel of a homomorphism is closed under
multiplication by an arbitrary element of R.

We will write cosets of an ideal I in R in the same form as we did for abelian
groups. For any r ∈ R, its coset is r + I. The coset r + I may be written in
other ways; for any a ∈ I, the cosets defined by r and by r + a are the same. For
s ∈ R, and b ∈ I the cosets defined by s and s + b are also the same. We would
like to define multiplication of cosets, but for that to work, the product should be
independent of the way we name the coset (as r + I or as (r + a) + I). In other
words we want the products rs and (r + a)(s + b) to define the same cosets. We
have

(r + a)(s+ b) = rs+ as+ rb+ ab

Since a, b ∈ I and I absorbs products, as+ rb+ ab ∈ I. Thus rs+ I = (r+ a)(s+
b) + I, and we have a well-defined product for cosets of I.

The following proposition summarizes this discussion, and we note that multi-
plication of cosets is determined by multiplication in R so we get a homomorphism
from R to R/I.

Proposition 4.4.8. Let R be a ring and let I be a proper ideal in R (that is I ̸= R).
Let R/I = {r + I : r ∈ R}. Then R/I is a ring, with additive structure defined by
R/I as the quotient of the abelian group R by its subgroup I, and multiplicative
structure defined by

(r + I)(s+ I) = rs+ I

The additive identity is 0 + I and the multiplicative identity is 1 + I.
The function R −→ R/I that takes r to r + I is a homomorphism of rings.
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Example 4.4.9. In Z, the subgroups ⟨n⟩ are also ideals, because multiplication
is simply repeated addition, and a subgroup is closed under addition. Thus the
quotient of Z by its subgroup ⟨n⟩ is a ring.

Example 4.4.10. Let F be a field. We have seen that any ideal in F [x] is principal,
generated by some monic m(x) ∈ F [x]. Every polynomial is congruent modulo
m(x) to its remainder upon division by m(x).

We have already seen two familiar examples of quotient rings in Chapter 1, the
integers modulo n and, for F a field, F [x] modulo m(x). The treatment of these in
Chapter 1 is from a modular arithmetic perspective and we used brackets to define
the equivalence class for elements. We now see them each as a quotients of a ring
(Z or F [x] repectively) and we now write the equivalence classes as cosets rather
than using brackets. One convenient aspect of working with these quotient rings is
that each element can be uniquely represented by the remainder upon division by
the modulus. One can use {0, 1, . . . , n− 1} as the elements of Z/n and omit the
brackets or coset notation when the context makes clear that we are working in Z/n
rather than Z. Similarly one can use polynomials of degree less than deg(m(x))
as the elements of F [x]/m(x) when the context makes clear that we are working
in F [x]/m(x) and not in F [x].

Definition 4.4.11. Let R be a ring and I an ideal in R. A system of repre-
sentatives for R/I is a set S ⊆ R such that each r ∈ R is congruent modulo I to
exactly one element of S.

It can be more challenging to find a system or representatives for R/I in other
rings, even in F [x, y] with F a field. In polynomial rings over a field, monomial
ideals and principal ideals admit a clear system or representatives, but things get
much more complicated when there are several polynomial generators or when the
base ring is not a field.

Definition 4.4.12. In a polynomial ring R[x1, x2, . . . , xn], a monomial ideal is
an ideal generated by monomials.

For the following two examples it is helpful to think of F [x, y] as a vector space
over F with basis xiyj for i, j ≥ 0.

Example 4.4.13. Consider a field F and F [x, y]/⟨xαyβ⟩. Since an ideal is closed
under multiplication, every monomial axα

′
yβ

′
with α′ ≥ α and β′ ≥ β is in ⟨xαyβ⟩.

Since an ideal is closed under addition, any sum of monomials with x-degree at
least α and y-degree at least β is in ⟨xαyβ⟩. Conversely, any multiple of xαyβ must
be a polynomial whose terms all have x-degree at least α and y-degree at least
β. The multidegrees of the monomials in ⟨xαyβ⟩ are those in the region marked Γ
shown in Figure 4.1.
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Figure 4.1

Given any polynomial we may subtract off the monomials that are multiples
of xαyβ and be left with a polynomial that has terms that have x-degree less
than α or y-degree less than β. The multidegrees of these monomials are in the
region marked ∆ in Figure 4.1. These monomials are a basis for the quotient ring
F [x, y]/⟨xαyβ⟩. A set of representatives for F [x, y]/⟨xαyβ⟩ is all polynomials whose
terms have multidegree in ∆.

Example 4.4.14. Consider a field F and F [x, y]/⟨x3, xy, y2⟩. A monomial that
is in ⟨x3, xy, y2⟩ has multidegree that is in the region marked Γ in Figure 4.2.
As in the previous example any polynomial whose terms involve just monomials
with multidegree in Γ will be in ⟨x3, xy, y2⟩. Given any other polynomial we may
subtract off elements of ⟨x3, xy, y2⟩ and be left with a polynomial all of whose
terms are in the set ∆ in Figure 4.2. The monomials with multidegree in ∆ form a
basis for a set of representatives for F [x, y]/⟨x3, xy, y2⟩. The set of representatives
is all polynomials whose terms have multidegree in ∆.

Example 4.4.15. Consider now a principal ideal that is non-monomial, F [x, y]/⟨y2 + x3⟩.
In this quotient ring y2 = −x3. Given an arbitary polynomial we can replace y2

with −x3 and get a polynomial that is equivalent modulo y2 + x3 and has terms
that are at most degree 1 in y. Thus

{
xi : i ∈ N0

}
∪
{
xiy : i ∈ N0

}
is a basis for

F [x, y]/⟨y2 + x3⟩. (It should be clear that no sum of these monomials can be a

131



Figure 4.2

multiple of y2+x3.) Alternatively, we could replace each occurence of x3 with −y2
and obtain a basis

{
yj : j ∈ N0

}
∪
{
xyj : j ∈ N0

}
∪
{
x2yj : j ∈ N0

}
.

We have emphasized the strong relationship between the ring integers of Z and
polynomial rings F [x] for F a field. We have seen a couple of examples in F [x, y].
There are analogous examples for Z[y]. We substitute a prime, say 2, for x and
consider something analogous to a monomial ideal.

Example 4.4.16. Consider the ideal ⟨4y3, 8y2⟩ in Z[y]. The multiples of 4y3 will
all have degree at least 4 (in y) and will have coefficient a multiple of 4. A set
of representatives for Z[y]/⟨4y3, 8y2⟩ is a0 + a1y + a2y

2 + a3y
3 + . . . in which

ak ∈ {0, 1, 2, 3} for k ≥ 3 and a2 ∈ {0, 1, 2, 3, 4, 5, 6, 7} and a0, a1 ∈ Z.
Exercises 4.4.17. Nilpotents, zero-divisors, and units in quotients of
F [x, y].

(a) Find the nilpotents, zero-divisors, and units in F [x, y]/⟨x3y2⟩.
(b) Find the nilpotents, zero-divisors, and units in F [x, y]/⟨x3, y2⟩.
(c) Find the nilpotents, zero-divisors, and units in F [x, y]/⟨x3, xy, y2⟩.
(d) Find the nilpotents, zero-divisors, and units in F [x, y]/⟨y2 − x3⟩.

Exercises 4.4.18. Nilpotents, zero-divisors, and units in quotients of
Z[y].
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(a) We were careful in the last example to use powers of 2 as the coefficients in
the ideal in Z[y]. Find a system of representatives for Z[y]/⟨4y3, 7y2⟩.

(b) Find a system of representatives for Z[y]/⟨ay5, by4, cy2, dy⟩. [Hint: GCD.]

4.5 Isomorphism Theorems

The First and Third Isomorphism Theorems for rings are quite straightforward
extensions of the theorems for groups, as are the Factor Theorem and Correspon-
dence Theorem. The first theorem below combines the First Isomorphism Theorem
and the Factor Theorem. The Second Isomorphism Theorem, treated at the end
of the section, is less central in ring theory.

Theorem 4.5.1 (First Isomorphism and Factor Theorems). Let φ : R −→ S be
a ring homomorphism and let K be the kernel. For any ideal J contained in K
the homomorphism φ factors through R/J in the following sense: there is a ring
homomorphism φ̃ : R/J −→ S defined by r + J −→ φ(r) such that φ̃ ◦ π = φ.

R
φ //

π
��

S

R/J

φ̃

==

Additionally,

(1) If J = K then φ̃ is injective.

(2) If φ is surjective then so is φ̃.

(3) If J = K and φ is surjective then φ̃ is an isomorphism.

Proof. Let φ : R −→ S be a ring homomorphism with kernel K and J an ideal
contained in K. By the Factor Theorem for groups 2.8.11, we know there is well
defined group homomorphism φ̃ : R/J −→ S. This is because for any r ∈ R and
j ∈ J we have φ(r + j) = φ(r), so we can define φ̃(r + J) = φ(r) unambiguously.
The map is a group homomorphism because

φ̃(r1 + r2 + J) = φ(r1 + r2) = φ(r1) + φ(r2) = φ̃(r1 + J) + φ̃(r2 + J)

Similarly the map respects multiplication because

φ̃(r1r2 + J) = φ(r1r2) = φ(r1)φ(r2) = φ̃(r1 + J) ∗ φ̃(r2 + J)
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Finally, φ̃(1R + J) = φ(1R) = 1S , so φ̃ is a homomorphism of rings. By
construction, φ = φ̃ ◦ π.

The kernel of φ̃ is {r + J : φ(r) = 0}. This is clearly K/J = {k + J : k ∈ K}.
When J = K, φ̃ is injective since {k +K : k ∈ K} = {0 +K}.

Suppose φ is surjective. For any s ∈ S, there is some ∈ R such that φ(r) = s.
Then φ̃(r+ J) = φ(r) = s, so φ̃ is also surjective. If J = K and φ is surjective we
have an isomorphism φ̃ : R/K −→ S.

We can derive the Third Isomorphism Theorem as a corollary. Consider the
case φ : R −→ R/K and let J be an ideal of R with J ⊆ K. The previ-
ous theorem says that φ̃ : R/J −→ R/K is a surjective homomorphism. The
kernel is {r + J : φ̃(r + J) = 0 +K}. But φ̃(r + J) = φ(r), so the kernel is
{r + J : r ∈ K} = K/J . Now applying item (3) of the theorem to φ̃ we get an
isomorphism between (R/J)/(K/J) and R/K.

We can also prove the Third Isomorphism Theorem directly, which we do below.

Theorem 4.5.2 (Third Isomorphism Theorem). Let R be a ring with ideals K
and J such that J ⊆ K. Then K/J is an ideal of R/J and (R/J)/(K/J) ∼= R/K.

Proof. I claim there is a well defined function from R/J to R/K defined by φ(r+
J) = r +K. We need only check that if r1 + J = r2 + J then r1 +K = r2 +K.
This is clearly true because if r1 + J = r2 + J then r1 − r2 ∈ J. Since J ⊆ K we
have r1 = r2 ∈ K so r1 +K = r2 +K. We also have

φ
(
(r1 + J) + (r2 + J)

)
= φ(r1 + r2 + J)

= r1 + r2 +K

= (r1 +K) + (r2 +K)

= φ(r1 +K) + φ(r2 +K)

and a similar computation holds for multiplication. Thus φ is a homomorphism
and it is surjective.

The kernel is {r + J : r +K = 0 +K}, but this is {r + J : r ∈ K} = K/J . So
by the first isomorphism theorem, (R/J)/(K/J) ∼= R/K.

From Theorem 4.5.1 any surjective homomorphism R −→ S gives rise to an iso-
morphism between R/K and S where K is the kernel of R −→ S. A strengthening
of Theorem 4.5.2 is the following.

Theorem 4.5.3 (Correspondence). Let R −→ S be a surjective homomorphism
of rings with kernel K. There is a one-to-one correspondence, given by φ, between
ideals of S and ideals of R containing K.
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R −→ S

I ←→ φ(I)

φ−1(J)←→ J

The correspondence respects containment, and quotients as follows. For I, I ′ con-
taining K,

• K ≤ I ≤ I ′ if and only if φ(I) ≤ φ(I ′).

• The map φ induces an isomorphism R/I ∼= S/φ(I).

Proof. From the correspondence theorem for groups, we already have a bijection
between additive subgroups of R containing I and additive subgroups of S (all
subgroups are normal since addition is commutative). Furthermore, the correspon-
dence respects containment. Therefore, we need only show that ideals correspond
to ideals and that the quotients R/I and S/φ(I) are isomorphic.

We have already seen in Problem 4.4.7 that, if J is an ideal in S, then φ−1(J)
is an ideal in R. It must also contain K. That problem also shows that the image
of an ideal under a surjective homomorphism is an ideal. Here is the proof. Let
I be an ideal in R that contains K, we need to show that φ(I) is an ideal in S.
We know that it is an additive subgroup of S from the correspondence theorem
for groups, so it remains to show that it absorbs products. This is where we use
surjectivity. Let s be an element of S and let b ∈ φ(I). Since φ is surjective, there
is some r ∈ R such that φ(r) = s. There is also an a ∈ I such that φ(a) = b. Since
ar ∈ I, bs = φ(a)φ(r) = φ(ar) ∈ φ(I). This shows φ(I) absorbs products and is
thus an ideal.

For J an ideal in S, consider the composition R
φ−→ S

π−→ S/J where π is the
canonical quotient homomorphism. The kernel is φ−1(J). The First Isomorphism
Theorem applies to show that π ◦φ gives an isomorphism between R/φ−1(J) and
S/J .

Theorem 4.5.4 (Second Isomorphism). Let S be a subring of R and let J be an
ideal in R.

(1) S + J is a subring of R.

(2) S ∩ J is an ideal in S.

(3) S/(S ∩ J) ∼= (S + J)/J .
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Proof. The first two items are left as exercises. Consider the homomorphism φ :
S −→ R/J , which is the composition of the inclusion map : S −→ R and the
quotient map R −→ R/J . The image of φ is {s+ J : s ∈ S} and it is the quotient
of the subring S + J in R by the ideal J . The kernel of φ is S ∩ J . By the first
isomorphism theorem, S/(S ∩ J) ∼= (S + J)/J .

Exercises 4.5.5. The second isomorphism theorem, proofs.

Let S be a subring of R, and J an ideal in R.

(a) Prove that S + J is a subring of R.

(b) Prove that S ∩ J is an ideal in S.

Exercises 4.5.6. Ideals and homomorphisms.

Let φ : R −→ S be a homomorphism of rings, not necessarily surjective.

(a) Let J be an ideal in S. Show that φ−1(J) is an ideal in R.

(b) Give an example to show that for I an ideal in R, φ(I) may not be an ideal
in S.

4.6 Operations on Ideals and Properties of Ideals

This section has two different goals. The first is to establish the most important
operations on ideals. Given two (or more) ideals one can form their intersection,
sum, or product to get a new ideal. There are other operations on ideals that we
explore ing the problems in Section 4.8.

We also look at three properties that an ideal may have. It may be maximal,
prime, or radical (or none of these). These properties are related to the existence
of units, zero-divisors, and nilpotents in the quotient ring.

Intersection, Sum and Product of Ideals

Proposition 4.6.1. Let I and J be ideals. Then I∩J is an ideal. More generally,
if A is a set of ideals in R then ⋂

I∈A
I

is an ideal in R.

Proof. Let a, b ∈
⋂

I∈A I. Then we have a, b ∈ I for each I ∈ A. Since each I is
closed under addition, a+ b ∈ I for all I ∈ A. Consequently, a+ b ∈

⋂
I∈A I.

Similarly, we can show that
⋂

I∈A I absorbs products. For r ∈ R and a ∈⋂
I∈A I we have a ∈ I for each I ∈ A. Since each I absorbs products, ra ∈ I for

each I ∈ A. Thus ra ∈
⋂

I∈A I.
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Definition 4.6.2. Let I and J be ideals. The sum of I and J is I + J =
{a+ b : a ∈ I and b ∈ J}. The product of I and J is IJ = ⟨ab : a ∈ I and b ∈ J⟩.
Similarly for ideals I1, . . . , In in R we can define

I1 + I1 + · · ·+ In = {r1a1 + r2a2 + · · ·+ rnan : rk ∈ R, ak ∈ Ik}
I1I2 . . . In = ⟨a1a2 · · · an : ak ∈ Ik for all k ∈ {1, . . . , n}⟩

There is a subtle, but very important, difference in the two definitions. The
product of ideals I and J is defined to be generated by the set of elements ab with
a ∈ I and b ∈ J . The sum of I and J is the set of all sums a + b with a ∈ I and
b ∈ J . We must show that this set is in fact an ideal.

Proposition 4.6.3. Let I1, . . . , In be ideals in R. Then I1 + · · · + In is also an
ideal.

Proof. We have to show I1 + · · · + In is closed under sums and that it absorbs
products. Consider two arbitrary elements of I1 + I2 + · · · + In, which we may
write as a1+a2+· · ·+an and b1+b2+· · ·+bn with ak, bk ∈ Ik for k = 1, . . . , n. (Note
that some of these terms may be zero.) Their sum is, after using commutativity
and associativity to rearrange terms, (a1 + b1) + (a2 + b2) + · · ·+ (an + bn). Since
each (ak + bk) ∈ Ik, the sum is an element of I1 + I2 + · · ·+ In.

Let r ∈ R and a1 + a2 + · · ·+ an with ak ∈ Ik. Then by distributivity

r(a1 + a2 + · · ·+ an) = ra1 + ra2 + · · ·+ ran

Since each Ik absorbs products, each rak ∈ Ik. Thus

ra1 + ra2 + · · ·+ ran ∈ I1 + I2 + · · ·+ In

this shows I1 + I2 + · · ·+ In absorbs products.

Exercises 4.6.4. Sum and intersection of ideals in Z and F [x].

(a) In the ring Z, show that the sum ⟨a⟩+ ⟨b⟩ = ⟨gcd(a, b)⟩.
(b) In the ring Z, show that the intersection ⟨a⟩ ∩ ⟨b⟩ = ⟨lcm(a, b)⟩.
(c) Extend these results to F [x] for F a field.

Proposition 4.6.5. Let I1, . . . , In be ideals. Then

I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In

Proof. The product I1I2 · · · In is generated by elements of the form a1a2 · · · an
with each ak ∈ Ik. Since each Ik absorbs products, a1a2 · · · an ∈ Ik for all k.
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Thus a1a2 · · · an ∈ I1 ∩ I2 ∩ · · · ∩ In. Since the generators of I1I2 · · · In are all in
I1 ∩ I2 ∩ · · · ∩ In we have

I1I2 · · · In ⊆ I1 ∩ I2 ∩ · · · ∩ In

The sum of an arbitrary set of ideals in R (including an infinite set) is defined
in a similar fashion, but requires care because we must restrict to finite sums.

Definition 4.6.6. Let A be a set of ideals in R. The sum of these ideals is∑
I∈A

I =

{∑
I∈B

aI : aI ∈ I, and B is a finite subset of A

}

Exercises 4.6.7. Ideals and homomorphisms.

Let φ : R −→ S be a homomorphism.

(a) For I and ideal in R show that φ−1(φ(I)) = I +K where K = kerφ.

(b) In particular, if I contains K, then φ−1φ(I) = I.

Maximal, Prime and Radical Ideals

There are three key properties that ideals may have. Recall that a proper subset of
a set A is a subset that does not equal A. We may also say that A properly contains
the subset. Similar meaning attaches to proper subgroups or proper ideals.

Definition 4.6.8. Let I be a proper ideal of R (that is I ̸= R). An ideal I is
maximal if the only ideal properly containing I is R. The ideal I is prime when
ab ∈ I implies that either a ∈ I or b ∈ I. The ideal I is radical when an ∈ I for
n ∈ N implies a ∈ I.

In any integral domain, the zero ideal is prime. This follows directly from the
definition of integral domain, ab = 0 implies a = 0 or b = 0.

Let I be a nonzero ideal in the integers, and let d be its positive generator, so
I = ⟨d⟩. If d is not a prime number, say d = ab with a, b < d, then I is not a prime
ideal since ab ∈ I, but a, b ̸∈ I. If d is a prime number then ab ∈ I implies that
d|ab, and by primality of d, either d|a, and therefore a ∈ I, or d|b, and then b ∈ I.
Consequently, I is prime. We conclude that, for the integers, an ideal is prime if
and only if it is generated either by 0 or a prime integer.

Exercises 4.6.9. Maximal and prime ideals in Z.
(a) Show that the nonzero prime ideals in Z are also maximal ideals. [Suppose

p is a prime number. Try to enlarge ⟨p⟩ and show that you get all of Z.]
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(b) Let I be a nonzero ideal in Z. We know I is principle; let a be the small-
est positive integer in I. Show that I is radical if and only if the prime
factorization of a is a = p1p2 · · · pr for distinct primes pi.

(c) Extend these results to F [x] for F a field.

Theorem 4.6.10. All prime ideals are radical. All maximal ideals are prime.
Consequently, for a ring R

{maximal ideals in R} ⊆ {prime ideals in R} ⊆ {radical ideals in R}

Proof. Let P be a prime ideal. We will show that if an ∈ P then a ∈ P . This
establishes that P is a radical ideal. Suppose an ∈ P . Let m ≤ n be the smallest
power of a that lies in P . If m > 1, then we have a∗am−1 = am ∈ P . By primality,
either a or am−1 is in P . This contradicts our assumption on m. Thus m = 1 and
a ∈ P .

Let M be a maximal ideal. We will show that ab ∈ M implies either a or b is
in M . This establishes that M is prime. Let ab ∈M . Suppose that a ̸∈M . Since
M is a maximal idealM + ⟨a⟩ = R. Consequently there is some m ∈M and r ∈ R
such that m + ra = 1. Multiplying both sides by b we get mb + rab = b. Since
ab ∈ M , we have b = mb+ rab ∈ M . Thus if ab ∈ M and a ̸∈ M then b ∈ M , as
was to be shown.

The proof that a maximal ideal is prime echoes the proof that an irreducible
integer (or polynomial in F [x] for F a field) is prime, Theorem 1.1.10.

Now we show that these properties of ideals are intimately connected with
properties of the quotient ring.

Theorem 4.6.11. Let R be a ring and I and ideal in R.

• I is a maximal ideal if and only if R/I is a field.

• I is a prime ideal if and only if R/I is an integral domain.

• I is a radical ideal if and only if R/I is reduced.

Proof. We will prove one direction for each claim and leave the other as an exercise.
Let I be maximal. Let r+ I be an arbitrary element of R/I with r+ I ̸= 0+ I.

Since I is maximal, I + ⟨r⟩ = R, so there is some a ∈ I and s ∈ R such that
a+ sr = 1. Then sr+ I = (1− a) + I = 1+ I, because a ∈ I. Consequently, s+ I
is the inverse of r + I. Thus an arbitrary nonzero element of R/I has an inverse,
and R/I is a field.

Let I be a prime ideal. Let r+ I and s+ I be such that (r+ I)(s+ I) = 0+ I.
Then rs+ I = 0+ I so rs ∈ I. Since I is prime, either r ∈ I or s ∈ I. Thus, either
r + I = 0 + I or s+ I = 0 + I. This shows R/I has no zero-divisors.
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Let I be a radical ideal. Suppose that r + I is nilpotent in R/I; that is
(r + I)n = 0 + I. Then rn + I = 0 + I, so rn ∈ I. Since I is radical, we must
have r ∈ I, and consequently r + I = 0 + I. This shows that R/I has no nonzero
nilpotent elements, so R/I is reduced.

Exercises 4.6.12. Homomorphisms and properties of ideals

Let φ : R −→ S be a homomorphism of rings and let J be an ideal in S.
From Exercise 4.5.6 we know that φ−1(J) is an ideal in R.

(a) If J is a radical ideal, show that φ−1(J) is a radical ideal in R.

(b) If J is a prime ideal, show that φ−1(J) is a prime ideal in R.

(c) Using R = Z and S = Q show that φ−1(J) may not be maximal when J is
maximal.

Exercises 4.6.13. Intersections and properties of ideals.

(a) Show that the intersection of two radical ideals is radical.

(b) Illustrate with an example from F [x] for F a field.

(c) Given an example in F [x] to show that the intersection of two prime ideals
may not be prime.

Exercises 4.6.14. Nilpotents and the nilradical.

(a) Let N = {a ∈ R : an = 0 for some n ∈ N} be the set of all the nilpotent
elements in a ring R. Show that N is an ideal of R. It is called the nilradical
of R.

(b) Show that R/N is reduced (it has no nonzero nilpotent elements).

(c) Show that N is contained in the intersection of all prime ideals in R. (The
reverse containment is also true, but much more difficult to prove.)

(d) Show that if a ∈ N then 1− a and 1 + a are units.

Comaximality and the Chinese Remainder Theorem

Recall that two integers a, b are coprime if they have no common factor other
than 1. A consequence—the GCD Theorem 1.1.4—is that some linear combination
of a and b is equal to 1. Interpreting this in the context of ideals, when a and b
are coprime, the ideal ⟨a, b⟩ is equal to Z. We can extend this notion of coprime
integers (or polynomials) to ideals in a general ring R.

There is another way to look at coprimality. For any two integers a, b we have
a homomorphism Z/ab −→ Z/a and a homomorphism Z/ab −→ Z/b. This gives a
homomorphism into the direct product by Proposition 4.3.4: Z/ab −→ Z/a×Z/b.
The Chinese Remainder Theorem says this is an isomorphism when a and b are
coprime.
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Theorem 4.6.15 (Chinese Remainder Theorem). Let a, b be coprime integers.
The natural maps from Theorem 4.2.14 and Proposition 4.3.4 give an isomorphism
Z/ab −→ Z/a× Z/b.

Proof. The kernel of the homomorphism is the set of elements [r]ab in Z/ab such
that r is a multiple of both a and b. By coprimality, r must be a multiple of
both a and b, so [r]ab = [0]ab. Since the kernel is trivial, the homomorphism
Z/ab −→ Z/a × Z/b is injective. Since both Z/ab and Za × Zb have ab elements,
the homomorphism also be surjective, so it is an isomorphism.

Another way to prove surjectivity is by applying the GCD Theorem 1.1.4.
There are integers u and v such that au+ bv = 1. The image of [bv]ab in Z/a×Z/b
is ([1]a, [0]b) because it is clearly a multiple of b and [bv]a = [1 − au]a = [1]a.
Similarly, the image of [au]ab is ([0]a, [1]b). From this it is fairly easy to prove
surjectivity. There is a more general theorem that uses this principle as its starting
point. We have the property of comaximality for ideals, and a Chinese Remainder
Theorem for comaximal ideals whose proof essentially mimics the proof of the
Chinese Remainder Theorem for integers.

Definition 4.6.16. Two ideals I and J in a ring R are comaximal if I + J = R.

Theorem 4.6.17. Let I and J be proper ideals of R that are comaximal. Then
IJ = I ∩ J and R/IJ ∼= R/I ×R/J .

Proof. Since I and J are comaximal there exist a ∈ I and b ∈ J such that a+b = 1.
We now show that the homomorphism R −→ R/I ×R/J is surjective. The image
of a in R/J is a+ J = (1− b) + J = 1 + J because b ∈ J . The image of a in R/I
is a+ I = 0 + I because a ∈ I. Similarly, the image of b is 1 + I in R/I and it is
0 + J in R/J . Thus for an arbitrary element (r1 + I, r2 + J) in R/I ×R/J , there
is a preimage, r1a+ r2b.

The kernel of R −→ R/I ×R/J is I ∩ J . By the First Isomorphism Theorem,
the proof is complete once we show IJ = I ∩J . We already know that IJ ⊆ I ∩J .
Let c ∈ I ∩J . Then ac+ bc = c, but ac and bc are both in IJ so we have expressed
an arbitrary element of I∩J as a sum of two elements in IJ . Thus IJ = I∩J .

4.7 Fractions

Dealing with fractions is one of the big challenges for primary school students.
A key reason for the difficulties is that a fraction can be written in an infinite
number of equivalent ways (for example 1/2 = 2/4 = 3/6 . . . ) and it is necessary
to use multiple expressions for a number in order to do arithmetic with fractions.
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Underlying our use of fractions is an equivalence relation on ordered pairs of in-
tegers; which is not something we dare to explain to students. In this section, we
show that the method used to construct the rational numbers from the integers
extends with little modification to an arbitrary integral domain (and hint at how
to generalize to an arbitrary ring).

First let’s consider some examples to show that there are other rings of interest
in between the integers and the rational numbers, that is, rings properly containing
Z but properly contained in Q.

Example 4.7.1. One can verify that the following sets are in fact subrings of Q.

• R =
{
a/2i : a ∈ Z, i ∈ N0

}
.

• S = {a/b : a ∈ Z and b is an odd integer}.

• T =
{
a/100i : a ∈ Z, i ∈ N0

}
.

Exercises 4.7.2. Units and prime ideals in some rings of fractions.

For the rings R, S, and T :

(a) Verify that each is a ring.

(b) Identify all the units in each of these rings.

(c) Show that in each of these rings every ideal is principal, generated by some
nonnegative integer.

(d) In Z, any two distinct positive integers generate different ideals. Show that
is not true in R, S, T . For each of these rings, identify a set of integers that
uniquely define all ideals.

(e) Which of these ideals are prime?

The rings in the previous example and exercise are all constructed via the
process we now describe.

Definition 4.7.3. Let R be an integral domain. A subset D of R \ {0} that
contains 1 and is closed under multiplication is called a multiplicatively closed
set.

Let D be a multiplicatively closed set in R. Define a relation on R×D by

(r1, d1) ∼ (r2, d2) when r1d2 = r2d1

Proposition 4.7.4. Let R be an integral domain and D a multiplicatively closed
subset. The relation above is an equivalence relation. Under this relation, for any
r ∈ R and c, d ∈ D, (r, d) ∼ (rc, dc)
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Proof. The relation is reflexive:(r, d) ∼ (r, d) since rd = rd.
The relation is symmetric: Suppose (r1, d1) ∼ (r2, d2) so r1d2 = r2d1. Then

r2d1 = r1d2 so (r2, d2) ∼ (r1, d1).
The relation is transitive: Suppose (r1, d1) ∼ (r2, d2) and (r2, d2) ∼ (r3, d3).

Then r1d2 = r2d1 and r2d3 = r3d2. Multiplying the first by d3 and the second by
d1 we get

r1d2d3 = r2d1d3 = r2d3d1 = r3d2d1

Since R is an integral domain, we can cancel d2 (see Exercise 4.1.6) to obtain
r1d3 = r3d1. This shows (r1, d1) ∼ (r3, d3).

The final claim follows from the definition of the relation rdc = drc. It may be
seen as simplification of fractions.

A key step in the above proof involved the cancellation law for integral do-
mains. The construction of rings of fractions can be generalized to arbitrary rings
provided D contains no zero-divisors. It can be further generalized to allow D to
contain zero-divisors with one small modification to the definition of the equiva-
lence relation.

Theorem 4.7.5. Let D be a multiplicatively closed set in R. Let [r, d] denote the
equivalence class of (r, d). The operations

• [r, c] + [s, d] := [rd+ sc, cd], and

• [r, c] ⋆ [s, d] := [rs, cd],

are well defined. The set R ×D/ ∼ with these operations is a ring with additive
identity [0, 1] and multiplicative identity [1, 1]. We denote this ring D−1R. The
map R −→ D−1R taking r to [r, 1] is an embedding.

Proof. Let (r, c) and (s, d) be in R×D. Since D is multiplicatively closed, cd ∈ D
so both (rd+ sc, cd) and (rs, cd) are in R×D and their equivalence classes exist.

To show that the operations are well defined, suppose two different represen-
tatives for each equivalence class: (r, c) ∼ (r′, c′) and (s, d) ∼ (s′, d′). We want to
show that the formula for the equivalence class of the product (and for the sum)
is independent of the representatives chosen. We deal with the product first. We
want to show that (rs, cd) ∼ (r′s′, c′d′), which reduces to rsc′d′ = r′s′cd. We know

rc′ = r′c (4.1)

sd′ = s′d (4.2)

Multiplying the first equation by sd′ and the second by rc′ we get

rc′sd′ = r′csd′ = r′csd′ = r′cs′d
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Rearranging the factors on the first and last terms gives rsc′d′ = r′s′cd.
For the sum we want to show (rd+sc, cd) ∼ (r′d′+s′c′, c′d′). Multiplying (4.1)

bu dd′ we get rc′dd′ = r′cdd′, and multiplying (4.2) by cc′ gives sd′cc′ = s′dcc′.
Adding the two equations

rc′dd′ + sd′cc′ = r′cdd′ + s′dcc′

(rd+ sc)c′d′ = (r′d′ + s′c′)cd

This establishes (rd+ sc, cd) ∼ (r′d′ + s′c′, c′d′), as claimed.
Verifying the claims about the additive and multiplicative identity are routine

computations. Verification of commutativity and associativity are more involved,
but are fairly straightforward and are left to the reader. We next show that
multiplication distributes over addition.

[r, c]
(
[s, d] + [t, f ]

)
= [r, c]

[
sf + td, df ]

)
= [rsf + rtd, cdf ]

[r, c] ∗ [s, d] + [r, c] ∗ [t, f ] = [rs, cd] + [rt, cf ]

= [rscf + rtcd, cdcf ]

= [(rsf)c+ (rtd)c, (cdf)c]

= [rsf + rtd, cdf ]

The function ι : R −→ D−1R taking r to [r, 1] takes the identity to the identity
element of R to the identity element of D−1R. It respects sums since [r, 1]+[s, 1] =
[r ∗ 1 + s ∗ 1, 1 ∗ 1] = [r + s, 1] which is the image of r + s. The map ι respects
products since [r, 1] ∗ [s, 1] = [rs, 1 ∗ 1] which is the image of rs. Thus ι is a
homomorphism. Suppose ι(r) = ι(s). Then [r, 1] = [s, 1]. By the definition of the
equivalence relation, r ∗ 1 = s ∗ 1. This shows ι is injective.

The ring D−1R is often called a localization of R.

Exercises 4.7.6. Units and prime ideals in a ring of fractions.

(a) LetD = {30i : i ∈ N0}. Verify thatD is multiplicatively closed in Z. Identify
all of the prime ideals in D−1Z.

(b) Let D = {(x3 − x)i : i ∈ N0}. Verify that D is multiplicatively closed in
Q[x]. Identify all of the prime ideals in D−1Q[x].

(c) Under what conditions on D does D−1Z have just one maximal ideal?

(d) Let D be multiplicatively close I be an

Exercises 4.7.7. Characterizing all localizations of Z.
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(a) Let D = {d1, d2, . . . , dt} ⊆ Z \ {0}. What is the smallest multiplicatively
closed subset of Z containing D and 1? What if D is an infinite subset of
Z \ {0}? We will abuse notation and write D−1Z for the localization due to
the smallest multiplicatively closed subset of Z \ {0} containing D.

(b) Suppose D ⊆ N ⊆ Z \ {0}. Show that there is an injective ring homomor-
phism D−1Z→ N−1Z.

(c) Show that any localization of Z is of the form P−1Z where P is a subset of
the set of primes in N. [You need to identify the set P for a given D and
show that P−1Z ∼= D−1Z].

(d) Let P be a subset of the prime integers. Identify all the ideals in P−1Z.
Which ideals are prime?

Exercises 4.7.8. Ideals in a ring of fractions.

Let R be an integral domain and let D be a multiplicative subset of R. We
will consider R as a subset of D−1R via the embedding φ : R −→ D−1R
which takes r to r/1.

(a) Let D−1I = {a/s : a ∈ I, s ∈ D}. Show D−1I is an ideal in D−1R.

(b) Show that D−1I = D−1R if and only if I ∩D ̸= ∅.
(c) Let J be an ideal of D−1R. Show that J ∩R is an ideal in R.

Parts a - c show we have a function from the set of ideals in D−1R to the set
of ideals in R given by J 7→ J ∩ R and a function from the set of ideals in R to
the set of ideals in D−1R given by I 7→ D−1I.

(d) Show that I 7→ D−1I is surjective: That is, show that every ideal in D−1R is
D−1I for some ideal I in R. (Hints: If J is an ideal in D−1R then an element
of J may be written a/s for a ∈ R and s ∈ D. Show that D−1(J ∩R) = J .)

(e) Show that these two maps of ideals respect intersections. For example,
D−1(I ∩ I ′) = D−1(I) ∩D−1(I ′).

(f) The map I 7→ D−1I is not injective. Show that it is injective on prime ideals
that don’t meet D. Conclude that the functions J 7→ J ∩ R and I 7→ D−1I
give a 1-1 correspondence between prime ideals of D−1R and prime ideals of
R not meeting D.

Exercises 4.7.9. Saturation of a multiplicatively closed subset.

Let R be an integral domain. A multiplicatively closed setD ⊆ R is saturated
when

xy ∈ D ⇐⇒ x ∈ D and y ∈ D.

There is a theorem saying D is saturated if and only if R \D is a union of
prime ideals. Prove one direction of this result as follows.
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(a) Let P be a set of prime ideals and let D = R \
(
∪P∈P P

)
. Show that D is

multiplicatively closed and saturated.

4.8 Ring Problems
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Chapter 5

Fields

subfield / extension field vector spaces basis. prome field
focus on number fields and finite fields

5.1 First Fields and Automorphisms

Definition 5.1.1. A field is a set F with two binary operations, + and ∗, called
addition and multiplication, two special elements 0 and 1, and two unary opera-
tions, a 7−→ −a, and, for all but the 0 element, a 7−→ a−1 such that

• F is an abelian group under + with identity element 0 and additive inverse
a 7−→ −a.

• F ∗ = F \ 0 is an abelian group under ∗ with identity element 1 and multi-
plicative inverse a 7−→ a−1.

• Multiplication distributes over addition: a ∗ (b+ c) = a ∗ b+ a ∗ c.

There are a few fields that should be familiar to you. The following were
discussed in the first chapter.

• The rational numbers Q. This is the smallest field that contains the integers.

• The prime fields, Fp for each prime number p. A fundamental result from
modular arithmetic is that each nonzero element in Z/p, the ring of integers
modulo p, is invertible. One can compute the inverse of a nonzero element
by using the extended Euclidean algorithm. This shows that Z/p is a field.
When studying fields we will write Fp instead of Z/p.

• The real field, R.
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• The field of complex numbers C. The complex numbers also form a vector
space of dimension 2 over R with basis {1, i} where i =

√
−1. That is,

every element can be written in a unique way as a+ bi for a, b ∈ R, and the
properties of a vector space hold for scalar multiplication by a real number.
Just as we have r(a, b) = (ra, rb) for (a, b) ∈ R2 and r ∈ R, we have r(a+bi) =
(ra) + (rb)i.

• Inside the field of complex numbers is the field of Gaussian rationals (see
Section 1.2)

Q(i) = {a+ bi : a, b ∈ Q}

This is a field, and also a two-dimensional vector space over Q.

Definition 5.1.2. Let K be a field and let F be a subset of K such that F is a
field using the operations ∗K and +K . We say F is a subfield of K and K is an
extension field of F . We will write F ≤ K and also K/F depending on whether
the emphasis is on F being a subfield of K or K an extension of F .

Exercises 5.1.3. Intersection of fields.

(a) Let F and E be subfields of K. Show that F ∩ E is a subfield of K.

(b) Let F be a set of subfields of K, then⋂
F∈F

F

is a subfield of K.

(c) We have a similar property for rings: Let R be a set of subrings of a ring S,
then ⋂

R∈R
R

is a subring of S.

Exercises 5.1.4. Field extension as a vector space

A vector space over a field F is an abelian group V,+ that also admits a
multiplication by elements of F , that is called scalar multiplication. Scalar
multiplication satisfies three properties that coordinate the operations on F
with addition on V .

• For a ∈ F and v ∈ V , av = va.

• For all v ∈ V , 1F v = v.

• For a, b ∈ F and v ∈ V , (ab)v = a(bv).

• For a, b ∈ F and v ∈ V , (a+ b)v = av + bv.
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• For a ∈ F and v, w ∈ V , a(v + w) = av + aw.

(a) Let V be a vector space over F . Verify that the properties above imply that
0F v = 0V for all v ∈ V . Verify also that (−1)v is the additive inverse of v.

(b) Let K be an extension field of F . Show that K is a vector space over F . This
involves checking that the properties of a vector space over F are satisfied
by K.

The previous exercise shows that when F ≤ K, K is a vector space over F .

Definition 5.1.5. For K and extension field of F , write [K : F ] for the dimension
when it is finite. It is also called the degree of the extension.

We have seen that [C : R] = 2 and [Q(i) : Q] = 2. Our focus in the study of
fields is to identify the structure (whatever that means, we will see!) of finite field
extensions.

The Prime Field

For any field F , there is a ring homomorphism Z −→ F taking 1 to 1F , by
Theorem 4.2.13. If the kernel is trivial, then F contains a subring isomorphic
to the integers. We will simply say that F contains the integers since there is only
one ring homomorphism from Z to F . Since F is a field, it must also contain the
inverses of all the integers. Thus, it must contain the rationals, Q. 1

Suppose now that the kernel of Z −→ F is not trivial. By the first isomorphism
theorem for rings, F contains a subring isomorphic to Z/m for some integer m.
Since F is a field, Z/m cannot have zero-divisors, so m must be prime. We will
write this subfield as Fp (p indicating a prime!) rather than Z/p.

Thus we have two cases, a field F either contains Fp or it contains Q. This
smallest field contained in F is called its prime field. We say F has character-
istic p, when Fp ≤ F and F has characteristic 0 in the case Q ≤ F .

Homomorphisms are just Embeddings

As with groups and with rings, a natural topic to investigate is the functions that
respect the structure of fields.

Definition 5.1.6. For fields F and K, a function φ : F −→ K is a field homo-
morphism when

1Strictly speaking, there is a field isomorphic to the rationals inside of F . But, as with the
integers inside of F , there is a unique way for Q to map to F , so we will just think of F containing
Q.
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(1) φ is a homomorphim from the group F,+F to K,+K , and

(2) φ is a homomorphism from the group F ∗, ∗F to K∗, ∗K .

Applying Proposition 2.3.2, φ : F −→ K is a homomorphism of fields if it
respects addition and multiplication:

φ(a1 +F a2) = φ(a1) +K φ(a2), and

φ(a1 ∗F a2) = φ(a1) ∗K φ(a2)

In these two equations I have emphasized that the addition and multiplication
on the left is done in F and the addition and multiplication on the right is in
K. Generally, we follow standard practice and do not write the subscripts on
the operation signs to make the equations more legible. But, don’t forget the
distinction! We will also usually not write the multiplication sign, unless there is
some important reason to use it.

It turns out that a homomorphism of fields is always injective!

Proposition 5.1.7. Let φ : F −→ K be a homomorphism of fields. Then φ(a) =
φ(b) implies a = b, so φ is injective.

Proof. Let φ : F −→ K be a homomorphism. Let a be a nonzero element of F .
Since aa−1 = 1F , applying φ we get φ(a)φ(a−1) = 1K . Since 0K does not have a
multiplicative inverse, φ(a) cannot be 0K . Thus a ̸= 0F implies φ(a) ̸= 0K .

Now suppose φ(a) = φ(b). Then φ(a−b) = 0K , and the contrapositive of what
we showed in the previous paragraph gives a− b = 0, so a = b.

A homomorphism of fields φ : F −→ K is often called an embedding of F in
K since it places an isomorphic copy of F , namely φ(F ) inside of K.

The next proposition is completely analogous to results about the composition
of homomorphisms of groups, Proposition 2.3.2, and properties of isomorphisms,
Proposition 2.3.11.

Proposition 5.1.8.

(1) The composition of two field homomorphisms is a field homomorphism.

(2) The composition of two isomorphisms of fields is an isomorphism of fields.

(3) Let φ : F −→ K be an isomorphism of fields. The inverse function φ−1 :
K −→ F is also an isomorphism of fields.
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Proof. (1) We have already shown that the composition of group homomor-
phisms is a group homomorphism. Thus the composition of two field ho-
momorphisms α : F −→ H and β : H −→ K is both a homomorphism of the
additive group F,+F to K,+K and a homomorphism of the multiplicative
group F, ∗F to K, ∗K . Therefore β ◦ α is a field homomorphism.

(2) The composition of two bijections is a bijection and the composition of two
homomorphisms is a homomorphism.

(3) We can apply the fact that the inverse of an isomorphism of groups is also
an isomorphism of groups to prove the result in a similar fashion to the first
item.

5.1.1 The Automorphism Group

And now the culmination of this section!

Definition 5.1.9. Let K be a field. The automorphism group of K is the set of
all isomorphisms from K to itself, with the operation of composition. It is written
Aut(K). Let F be a subfield of K. An automorphism σ such that σ(a) = a for
all a ∈ F is said to fix F . The set of automorphisms K that fix F is denoted
Aut(K/F ).

Proposition 5.1.8 shows that the composition of two field isomorphisms is a field
isomorphism. When the isomorphism is from K to itself, we call it an automor-
phism of K. Proposition 5.1.8 shows that the composition of two automorphisms
of K is an automorphism of K and that the inverse of an automorphism of K is
also an automorphism ofK. Thus, Aut(K) is a group, which justifies the definition
above. It is a simple exercise to show that the composition of two automorphisms
that fix F also fixes F and that the inverse of an automorphism that fixes F also
fixes F . So, Aut(K/F ) is a group.

Corollary 5.1.10. For K a field, Aut(K) is a group under composition. If F is a
subfield of K, Aut(K/F ), the automorphisms of K that fix F , form a group under
composition.

What can we say about automorphisms of the examples of fields discussed
earlier? First, note that any automorphism has to take 1 to itself. Consider an
automorphism φ of Q. We must have φ(1) = 1. Since φ respects addition,

φ(1 + · · ·+ 1︸ ︷︷ ︸
b terms

) = φ(1) + · · ·+ φ(1)︸ ︷︷ ︸
b terms
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which shows that φ(b) = b for each positive integer b. Since φ also respects
additive inverses, φ(−b) = −b for positive integers b, so φ is the identity map on
the integers. Since φ respects multiplicative inverses, φ(1/b) = 1/φ(b) = 1/b for
any integer b, and since φ respects products φ(a/b) = φ(a)φ(1/b) = a/b. Thus
we have shown that the only automorphism of Q is the identity map. A similar
(shorter argument) shows that the only automorphism of Fp is the identity map.

Notice also that there can be no homomorphism from Q to Fp since any homo-
morphism must be injective. There can’t be a homomorphism from Fp to Q since
we would have to map 1Fp to 1Q, but 1 + · · ·+ 1︸ ︷︷ ︸

p terms

= 0 in Fp while 1 + · · ·+ 1︸ ︷︷ ︸
p terms

̸= 0

in Q.
The reals are vastly more complicated, so let’s consider automorphims of C

that fix R. That is, we consider automorphisms φ such that φ(r) = r for r ∈ R.
We know that i∗ i = −1 so φ(i)∗φ(i) = φ(−1) = −1. We know there are only two
square roots of 1 in C, so there are only two possibilities: φ(i) is either i itself or −i.
In the first case φ has to be the identity map, φ(a+ bi) = φ(a)+φ(b)φ(i) = a+ bi
since φ fixes the reals. In the second case φ is the conjugation map:

φ(a+ bi) = φ(a) + φ(b)φ(i) = a+ b(−i) = a− bi

It is clear that the composition of the conjugation map with itself is the identity
map. Thus, Aut

(
C/R

) ∼= Z2.
A similar argument applies to the field Q(i). The field Q has to be fixed,

and the only non-identity automorphism takes a + bi to a − bi. Thus we have
Aut

(
Q(i)

) ∼= Z2.
This simple example is the model for much of our work in this chapter. For a

field K containing another field F , we seek to understand the automorphisms of
K that fix F , and to use that knowledge to better understand the field K.

5.2 Constructing Fields

We have three main tools for constructing new fields.

Construction I: In Section 1.1 we showed that the ring of integers modulo a
prime forms a field, which we write Fp. Similarly, in Section 1.3 we showed
that for F a field and m(x) irreducible, F [x]/m(x) is a field (see also Theo-
rem 4.1.9). More generally, for any ring R, Theorem 4.6.11 shows that R/I
is a field whenever I is a maximal ideal.

Construction II: The second method is based on the construction of the ratio-
nal numbers from the integers. For an integral domain R, let D = R \ {0}
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and form the ring of fractions D−1R as in Section 4.7. This is a field.
For the ring of integers Z, the field thus constructed is Q. For the in-
tegral domain F [x] over a field F , the resulting field is written F (x) =
{a(x)/b(x) : a(x), b(x) ∈ F [x] with b(x) ̸= 0}.

Construction III: The third method is to take a subfield of a given field. We did
this in Section 1.2 when we introduced the subfield of the complex numbers
Q(i). Given any field K and a subset S ⊆ K we can take the intersection
of all subfields of K containing S. Exercise 5.1.3 show that this is a field
(letting F be the set of all fields containing S). It contains S and it is, by
construction, a subfield of every field containing S. Thus it makes sense
to call it the smallest subfield containing S. We often are interested in the
smallest subfield of K containing a specific subfield F and some additional
set of elements S ⊆ K \ F . We write this F (S). If no subfield is specificied,
we know that this field must contain one of the prime fields Q, or Fp, so we
may write it Fp(S) or Q(S) as appropriate.

With the notation of Construction III, given a subset S of K we may also take
the intersection of all rings containing S and some subfield F , which we write F [S].
It is a ring, and is, by construction, the smallest subring of K that contains F and
S. (See Exercise .)

There is a relationship between Construction III and the other constructions,
which we can illustrate with two examples inside the complex field. Before intro-
ducing the two examples recall Theorem 4.3.9, which we adapt here as follows.

Theorem Let F be a subfield of a field K. For any s ∈ K there is a unique
homomorphism from F [x] to K that takes x to s, namely

φ : F [x] −→ K∑
i

aix
i 7−→

∑
i

ais
i

Definition 5.2.1. Continuing with the notation as stated above, if the homo-
morphism is injective we say that s is transcendental over F . Otherwise, s is
algebraic over F . When s is algebraic, the monic generator of the kernel in the
theorem is called the minimal polynomial of s.

Proposition 5.2.2. If s is algebraic over F then the minimal polynomial of s is
an irreducible polynomial. Consequently, the image of φ as defined in the theorem
is a subfield of K. Thus F [s] = F (s). The dimension [F (s) : F ] is equal to the
degree of the minimal polynomial.
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Proof. Suppose by way of contradiction, that the monic generator of the kernel is
m(x) and it factors as m(x) = f(x)g(x) ∈ F [x]. Then f(s)g(s) = 0 in K. Since K
is a field either f(s) or g(s) is zero. Without loss of generality, suppose the former.
Then f(x) is in the kernel, and is therefore a multiple of m(x). Since f(x) is also
a factor of m(x) we must have that g(x) has degree 0, so it is a constant. This
shows that m(x) is irreducible.

Alternatively, we can prove the result by applying the First Isomorphism The-
orem for rings: F [x] modulo m(x) is isomorphic to its image in K. Since K is a
field, the image must be an integral domain. Since a reducible polynomial yields a
quotient ring with zero divisors by Corollary 4.1.10, the kernel must be generated
by an irreducible polynomial. Moreover, the quotient of F [x] by an irreducible
polynomial is a field, so the image of φ is actually a subfield of K.

Note that the image of φ consists of polynomials in s. Thus the smallest ring
containing F and s is also the smallest field containing F and s: F [s] = F (s). We

note also that this is
{∑n−1

i=0 ais
i
}

where n = deg(m(x)), since the polynomials

of degree less than n form a system of representatives for F [x]/m(x). Since each
element of F [s] is uniquely expressed as a polynomial in s of degree less than
deg(m(x)), the degree of the extension F (s)/F is equal to deg(m(x)).

Proposition 5.2.3. If K contains some transcendental element over F then K/F
has infinite dimension as a vector space over F . Conversely, if K is finite dimen-
sional over F then every element of K is algebraic over F .

Proof. Suppose that α ∈ K is transcendental over F . Then F [α] is isomorphic
to F [x] since it is the image of the injective homomorphism φ : F [x] −→ K that
takes x to α and fixes F . In F [x] the powers of x, that is xi for i ∈ N0, are linearly
independent, so F [x] is infinite dimensional over F . Since F [α] is isomorphic to
F [x], it is also infinite dimensional over F . Since K contains F [α] it is infinite
dimensional over F .

Example 5.2.4. Consider the homomorphism φ : Q[x] −→ C that takes x to i =√
−1. This is not injective. The kernel is x2 + 1 and the image is Q[i], the ring of

polynomials in i with rational coefficients. It is isomorphic to Q[x]/(x2 + 1). This
is a field because x2 + 1 is irreducible. Thus the field Q(i) is the same as the ring
Q[i].

Similarly Q(
√
2) ∼= Q[x]/(x2 − 2).

Example 5.2.5. For a more subtle example, consider Q( 3
√
2). Using the homo-

morphism Q[x] −→ C that takes x to 3
√
2, we have Q[ 3

√
2] ∼= Q[x]/(x3 − 2).

There are three cube roots of 2 in C, the others are 3
√

(2)ω and 3
√

(2)ω2 where
ω = (1−

√
3i)/2. Define φ : Q[x] −→ C by φ(x) = 3

√
(2)ω. This gives Q( 3

√
2ω) ∼=
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Q[x]/(x3 − 2). We may do the same for 3
√
2ω2, so there are three distinct embed-

dings of Q[x]/(x3 − 2) in C.
Example 5.2.6. Consider the homomorphism φ : Q[x] −→ C that takes x to e
where e is the Euler number e ≈ 2.71. It is not obvious, but e is transcendental,
not algebraic [?]. The homomorphism φ is therefore an isomorphism of Q[x] with
its image Q[e]. The smallest field containing Q[e] is

Q(e) =

{
f(e)

g(e)
: f(e), g(e) ∈ Q[e] and g(e) ̸= 0

}
The stipulation that g(e) ̸= 0 is simply requiring that the coeffiecients of g not all
be zero, since no nonzero polynomial in Q[x] evaluates at e to 0.

The number π ≈ 3.14 is also transcendental [?] so there is an isomorphism
between Q[x] and Q[π] and between Q(x) and Q(π).

The set of algebraic numbers (the complex numbers algebraic over Q) is ac-
tually countable, while the complex numbers (and therefore the transcendental
numbers) are uncountable.[?]

Adjoining a Root

Our focus henceforth is on Construction I. A critical, and rather subtle, phrase
that is used repeatedly in the study of fields is “adjoin a root.” We finish the
section, with an explanation of this phrase.

Let m(x) be a monic irreducible polynomial of degree n > 1 over a field F . Let
m(x) = xn+mn−1x

n−1+ · · ·+m1x+m0. Elements of the quotient ring F [x]/m(x)
are cosets of ⟨m(x)⟩, and each coset is uniquely represented as a(x) + ⟨m(x)⟩
for some polynomial a(x) of degree less than n. The powers of x + ⟨m(x)⟩ are
xi + ⟨m(x)⟩ for i < n, whereas xn + ⟨m(x)⟩ is represented by −(mn−1x

n−1 + · · ·+
m1x+m0) + ⟨m(x)⟩. This is because m(x) + ⟨m(x)⟩ = 0 + ⟨m(x)⟩. Thus, in the
quotient ring F [x]/m(x),

(x+ ⟨m(x)⟩)n +mn−1(x+ ⟨m(x)⟩)n−1 +mn−2(x+ ⟨m(x)⟩)n−2 + · · ·
· · ·+m2(x+ ⟨m(x)⟩)2 +m1(x+ ⟨m(x)⟩) +m0(1 + ⟨m(x)⟩

= (xn +mn−1x
n−1 +mn−2x

n−2 + · · ·+m2x
2 +m1x+m0) + ⟨m(x)⟩

= 0 + ⟨m(x)⟩

In other words, we may think of m(x) as having a root in F [x]/m(x), namely the
coset x+ ⟨m(x)⟩.

It is common therefore to give this coset a new symbol, let’s call it α, and to
speak of the quotient ring as follows: We adjoin a root α of m(x) to the field
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F and obtain the field F (α). Over this field x − α is now a factor of m(x), so
m(x) is no longer irreducible. In the polynomial ring F (α)[x], we can then factor
m(x) by dividing m(x) by x − α. A natural question is whether m(x)/(x − α) is
now irreducible, or does it factor completely (into linear factors), or something in
between?

The upcoming sections explore this question. It is clear though that if deg(m(x)) =
2 then adjoining a root of m(x) will factor m(x) completely, since the quotient
m(x)/(x− α) will be another linear factor.

More generally, over Q, every extension by a root of a quadratic is isomorphic
to Q(

√
D) for some square free integer D. The exercise below steps through the

proof.

Exercises 5.2.7. Quadratic Extensions of Q
Let m(x) = x2 + ax+ b be an irreducible quadratic over Q.

(a) Use the quadratic formula to find two distinct embeddings of Q[x]/m(x) into
C.

(b) Show that these two embeddings have the same image (although the image
of x+ ⟨m(x)⟩ itself is different in the two cases).

(c) Show that there is some square free integer D such that Q(
√
D) is the same

field as the one determined by Q[x]/m(x).

(d) Conclude that every degree 2 extension of Q is isomorphic to Q(
√
D) for

some square free integer D.

(e) Conclude also that every degree 2 extension of Q has one non-trivial auto-
morphism.

Finally, we have this relationship between an automorphim of a field extension
and the minimal polynomial of an element in the extension.

Proposition 5.2.8. Let K be an extension of F . Let α ∈ K have minimum
polynomial m(x) over F . For any σ ∈ Aut(F/K), σ(α) is also a root of m(x).

Proof. Let m(x) = xd +md−1x
d−1 + · · ·+m0 be the mimimum polynomial for α
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over F . Each mi ∈ F so

σ
(
m(α)

)
= σ

(
n∑

i=0

miα

)

=

n∑
i=0

σ(miα) since σ respects sums,

=

n∑
i=0

miσ(α) since σ respects products and fixes elements of F

= m (σ(α))

Since m(α) = 0 we have m(σ(α)) is also 0.
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5.3 Finite Fields

Compared to extension fields of the rationals like Q(
√
2) or Q(i), which are some-

what familiar, extensions fields of the field Fp may seem strange. Yet, the study
of finite fields is in many ways much simpler than the study of number fields. We
will see in this section that there is a complete classification of finite fields, and
that the multiplicative structure is quite simple. Furthermore, for a small finite
field, we can write down all the elements and compute by hand (or with computer
software) in a way that builds intuition for the structure of a finite field.

Finite fields have become important tools in electrical engineering, specifically
in the mathematics of communications systems. Many cryptographic systems and
error correction systems are based on finite field arithmetic. The design of hard-
ware to implement finite field arithmetic is also an important area of research and
commercial development.

In this section we characterize finite fields by proving the following theorem.
It has three main parts. The first identifies several properties that a finite field
must hold, and relates these properties to Construction 1 of fields, working in Fp[x]
modulo an irreducible polynomial m(x). The second part establishes the existance
and uniqueness of a field of order pn for any prime p and n ∈ N. The third part
shows that the automorphism group of a finite field (over Fp) is a cyclic group.

Let us start with the smallest example of a finite field that is not a prime field.

Example 5.3.1. There are four polynomials of degree 2 in F2[x]. They are x2, x2+
1, x2+x and x2+x+1. The first three all have roots in F2, so are reducible. Only
x2+x+1 is irreducible. Let’s use it to construct a field with 4 elements F2[x]/(x

2+
x+1). Let η be the congruence class x+⟨x2 + x+ 1⟩, then η is a root of x2+x+1.
We say that we have adjoined η to F2 to create the field F2(η). The elements of
F2(η) are polynomials in η of degree less than 2: F2(η) = {0, 1, η, η + 1}. Addition
is component-wise (relative to the basis {1, η}). Multiplication must take account
of η2 = η + 1. Here is a multiplication table for this field.

∗ 1 η η + 1

1 1 η η + 1

η η η + 1 1

η + 1 η + 1 1 η

We can also see that both η and η+1 generate the multiplicative group. Since
F2(η)

∗ has 3 elements, any element besides 1 generates.
Here is a “dictionary” between the powers of η and the polynomial form of the

elements of F2(η). We will see that this type of dictionary is a useful tool for larger
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fields.
exponential form polynomial form

1 1
η η
η2 η + 1

Theorem 5.3.2. Let K be a field with a finite number of elements.

(1) K has pn elements for some prime p and n ∈ N.

(2) Each element of K is a root of xp
n − x, so xpn − x factors completely, into

distinct linear factors, over K.

(3) There is an element η ∈ K whose powers η1, η2, . . . , ηp
n−1 = 1 give all the

nonzero elements of K. Consequently, K∗ is cyclic of order pn − 1.

(4) K is isomorphic to Fp[x]/m(x) for some irreducible polynomial m(x) of de-
gree n over Fp. Furthermore m(x) is a factor of xp

n − x.

For any prime p and any positive integer n:

(5) There exists a field with pn elements.

(6) Any two fields with pn elements are isomorphic.

(7) The field with pn elements has a subfield with pd elements if and only if d
divides n.

We use Fpn to denote the unique field with pn elements. The automorphism group
of Fpn satisfies:

(7) Aut(Fpn) is generated by the Frobenius map, φ(β) = βp for β ∈ Fpn.

(8) Aut(Fpn) ∼= Z/n.

As a first step we prove item (1) of the theorem.

Proposition 5.3.3. A finite field is a vector space over Fp for some prime p.
Consequently, the number of elements of K is a power of p.

Proof. Suppose that K is a finite field. The smallest field contained in K, its prime
field, must be Fp for some prime number p.

From the definition of a field, we can see that K satisfies the properties for
a vector space over Fp (This was Exercise 5.1.4.) For example: if a ∈ Fp and
β, γ ∈ K then a(β + γ) = aβ + aγ follows from the distributive law, but may be
also considered as the property concerning scalar multiplication (by α) of a sum
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of vectors, β+ γ. If the dimension of K over Fp is n then K has a basis u1, . . . , un
and the elements of K are a1u1 + . . . , anun for ai ∈ Fp. Thus K must have pn

elements.

Suppose that q = pn is the number of elements in K. By the definition of a
field, the set of nonzero elements of K is a group under multiplication. This group
is denoted K∗. Recall that the order of an element α in a finite group G is the
smallest positive integer r such that αr is the identity. The order of an element
divides the order of the group by Lagrange’s Theorem 2.7.7.

Proposition 5.3.4. Let K be a field with pn elements. The polynomial xp
n − x

factors completely, into distinct linear factors, over K.

xp
n−1 − 1 =

∏
α∈K∗

(x− α) and,

xp
n − x =

∏
α∈K

(x− α)

Proof. The multiplicative group K∗ has pn − 1 elements, so each element α ∈ K∗

has order dividing pn− 1. Thus, each α ∈ K∗ is a root of xp
n−1− 1. Furthermore,

each root corresponds to a factor x − α of xp
n−1 − 1. We have identified pn − 1

roots of xp
n−1 − 1, so it factors into linear factors: xp

n−1 − 1 =
∏

α∈K∗(x − α).
Taking account of the 0 element gives the factorization of xp

n − x.

This establishes item (2) of the theorem.
Before we proceed further, recall the following properties from Theorem 2.1.13

and problems immediately following it.
Order Theorem Let α be an element of order r in an group G.

(1) αi = αj iff i ≡ j mod r.

(2) The order of αi is r/d where d = gcd(i, r).

(3) Let G be abelian. Let β ∈ G have order s, coprime to r = ord(α). Then
ord(αβ) = rs.

(4) Let G be abelian. If α1, . . . , αn have orders r1, . . . , rn where the ri are pair-
wise coprime, then ord(

∏n
i=1 αi) =

∏n
i=1 ri.

Now we can establish item (3) of the Theorem. The key ideas we exploit are
(1) an element of K∗ of order t is a root of xt − 1, and (2) the polynomial xt − 1
has at most t roots.
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Proposition 5.3.5. The multiplicative group of a finite field K is cyclic. That is,
if |K| = pn, there is some element η ∈ K such that the nonzero elements of K are
1, η, η2, . . . , ηp

n−2.

Proof. LetK have pn elements and let the prime factorization of pn−1 be
∏r

i=1 q
bi
i .

We will show below that for each i = 1 . . . , r there is an element ηi ∈ K∗ of order
qbii . Let η =

∏r
i=1 ηi. Since the qbii are coprime to each other, the theorem above

shows that the order of η is
∏r

i=1 q
bi
i = pn−1. Thus η generates the multiplicative

group of K.
Now we prove the claim. Suppose that q is prime and qb appears in the prime

factorization of pn − 1, so qb divides pn − 1 but qb+1 does not. Let t = (pn − 1)/qb

and consider the set S = {αt : α ∈ K∗}. This set is the image of the left hand
map below.

K∗ −→K∗ −→ K∗

α 7−→ αt

β 7−→ βq
b

The set S is also contained in the kernel of the righthand map because

(αt)q
b
= αpn−1 = 1

This shows that every element of S is a root of xq
b −1. There can be only qb roots

of xq
b − 1, so S has at most qb elements. On the other hand, for any β ∈ S the

polynomial xt − β has at most t roots so there can be at most t elements of K
whose tth power is β. Therefore the cardinality of S is at least (pn − 1)/t = qb.
We have therefore proven that |S| = qb.

Every element of S is a root of xq
b − 1, but at most qb−1 of the elements in S

can be roots of xq
b−1 − 1. Consequently, there must be at least qb − qb−1 elements

of S whose order in K is qb. This shows what we wanted: there is some element
of K of order qb.

Definition 5.3.6. An element of a finite field whose powers generate the nonzero
elements of the field is called primitive.

Proposition 5.3.5 says that every finite field has a primitive element. Further-
more, from the Order Theorem, if η is primitive in a field of pn elements then ηk is
also primitive whenever k is coprime to pn− 1. Thus there are φ(pn− 1) primitive
elements, where φ is the Euler totient function (φ(n) is the number of positive
integers less than n and coprime to n).
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To prove item (4) of the Theorem we need to use the minimal polynomial of a
primitive element.

Proposition 5.3.7. Let K be a finite field of pn elements. Let η be any primitive
element of K, let φ : Fp[x] −→ K take x to η and let m(x) generate the kernel (so
m(x) is the minimal polynomial of η over Fp). Then K is isomorphic to Fp[x]/m(x)
and degm(x) = n. Furthermore, m(x) divides xp

n−x and m(x) factors completely
in K.

Proof. From the First Isomorphism Theorem for rings, φ gives rise to an isomor-
phism from Fp[x]/m(x) to its image in K. Proposition 5.2.2 shows that m(x) must
be irreducible, since K has no zero divisors. But, the image of φ contains η and
therefore all of its powers. Thus the image is all ofK and we haveK ∼= Fp[x]/m(x).
The dimension of K over Fp is n and the dimension of Fp[x]/m(x) is deg(m(x)),
so the degree of m(x) is n.

By Proposition 5.3.4, xp
n − x factors into linear factors in K and η is one of

the roots. This implies that xp
n − x is in the kernel of φ, so m(x) divides xp

n − x.
Since xp

n − x factors completely in K so to does m(x).

We have established items (1)-(4) of the theorem which identify the fundamen-
tal properties that a finite field must satisfy. We can now prove existence and
uniqueness for fields of prime power order. We will need one more property, the
“Freshman’s dream”:

Proposition 5.3.8. Let α, β be elements of a field of characteristic p. Then
(α+ β)p = αp + βp.

Proof. Expanding (α+ β)p using the binomial theorem we get terms like(
p

k

)
αkβp−k

The binomial coefficient really means 1 added to itself
(
p
k

)
times. Since p divides

the binomial coefficient when 1 < k < p the coefficient is 0 unless k = 0 or k = p.
That gives the result.

We can now prove items (5)-(6) of the theorem.

Proposition 5.3.9. For any prime power there exists a unique field of that order.

Proof. Uniqueness: Let K and K ′ be two fields with pn elements. Let η be a
primitive element in K and let m(x) be its minimal polynomial over Fp. The
previous proposition showed that η is a root of xp

n − x, and m(x) divides xp
n − x.
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By Proposition 5.3.7, xp
n −x factors into distinct linear factors in both K and K ′

so there must be a root of m(x) in K ′. Call this root η′. Then the homomorphism
from Fp[x] to K

′ that takes x to η′ must have image that is a subfield of dimension
n in K ′, and is therefore all of K ′. By Proposition 5.3.7, both K and K ′ are
isomorphic to Fp[x]/m(x) so they are isomorphic to each other.

Existence: By successively factoring xp
n −x and adjoining roots of a nonlinear

irreducible factor, we can, after a finite number of steps, arrive at a field in which
xp

n − x factors completely. I show below that the roots of xp
n − x form a field.

Since the derivative of xp
n − x is −1, xpn − x does not have multiple roots, so

by the roots-factors theorem it has exactly pn roots. Thus we have a field of pn

elements.
To show the roots of xp

n − x form a field, we need to show that the sum of
two roots is a root, that the additive inverse of a root is a root, that the product
of two roots is a root and that the multiplicative inverse of a root is a root. These
are straightforward and left as an exercise.

Exercises 5.3.10. The roots of xp
n − x form a field.

Let α, β be roots of xp
n − x in some finite field K.

(a) Show that −α is also a root of xp
n − x.

(b) Show that α+ β is a root of xp
n − x, using the “Freshman’s dream.”

(c) Show that α−1 is a root of xp
n − x.

(d) Show that αβ is a root of xp
n − x.

We are now justified in using Fpn to denote the unique field of order pn. We
can now identify the possibilities for one finite field to contain another finite field,
which is item (7) of the theorem.

Proposition 5.3.11. The field Fpd is contained in Fpn if and only if d divides n.

Proof. See Exercise 5.3.21.

Definition 5.3.12. Let m(x) ∈ Fp[x] be a polynomial over Fp. If m(x) is irre-
ducible and the coset x+ ⟨m(x)⟩ is primitive in Fp[x]/m(x), then we say m(x) is
a primitive polynomial.

The following example shows that there can be many ways to construct a given
field.

Example 5.3.13. Let p = 2. We can construct the field F23 by adjoining to F2 a
root η of the irreducible polynomial m(x) = x3 + x+ 1. Since the degree of m(x)
is 3, the elements of the field will be polynomials of degree less than 3 in η. Since
F∗
3 has 7 elements, any element, other than 1 generates the multplicative group.

Thus we know that η is primitive.
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Here is the “dictionary” between powers of η and corresponding polynomials
in η. We use η3 = η + 1 to compute successive rows in the table.

exponential form polynomial form

1 1

η η

η2 η2

η3 η + 1

η4 η2 + η

η5 η2 + η + 1

η6 η2 + 1

The next line in the table would be

η7 = η3 + η = η + 1 + η = 1

This is to be expected, since F∗
8 is a cyclic group of order 7.

We can use this table to verify that η2 is another root of x3 + x+ 1.

(η2)3 + η2 + 1 = η6 + η2 + 1

= 0

Similarly η4 is also a root.

(η4)3 + η4 + 1 = η12 + η4 + 1

= η5 + η4 + 1

= (η2 + η + 1) + (η2 + η) + 1

= 0

The Finite Field Theorem says that there is a unique field of order 8 so every
irreducible polynomial of degree 3 over F2 must have roots in the field that we
constructed. There are 2 monic irreducible polynomials of degree 3 over F2: x

3 +
x+1, which we used to construct this field, and x3 + x2 +1. As an exercise, show
that η3, η5 and η6 are the roots of x3 + x2 + 1.

Here is a multiplication table (omitting 0) for the representation of F8 using
x3 + x+ 1.

∗ 1 η η + 1 η2 η2 + 1 η2 + η η2 + η + 1

1 1 η η + 1 η2 η2 + 1 η2 + η η2 + η + 1

η η η2 η2 + η η + 1 1 η2 + η + 1 η2 + 1

η + 1 η + 1 η2 + η η2 + 1 η2 + η + 1 η2 1 η

η2 η2 η + 1 η2 + η + 1 η2 + η η η2 + 1 1

η2 + 1 η2 + 1 1 η2 η η2 + η + 1 η + 1 η2 + η

η2 + η η2 + η η2 + η + 1 1 η2 + 1 η + 1 η η2

η2 + η + 1 η2 + η + 1 η2 + 1 η 1 η2 + η η2 η + 1
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Now we consider the automorphism group of a finite field. Recall that any
automorphism has to take 1 to itself, and must therefore fix the subfield Fp.

Proposition 5.3.14. The automorphism group of Fpn is cyclic of order n, gener-
ated by the Frobenius map φ : α 7−→ αp.

Proof. The Frobenius map respects addition, by the Freshman’s dream, and it
clearly respects multiplication: φ(αβ) = (αβ)p = αpβp = φ(α)φ(β). Thus φ is a
homomorphism of fields. Since a homomorphism of fields must be injective, and
since an injective function on a finite set is also surjective, we conclude that φ is
an automorphism.

Repeatedly composing the Frobenius with itself gives other automorphims and
one can inductively establish the formula: φt(α) = αpt . Since F∗

pn has order pn−1

we have for α ̸= 0, φn(α) = αpn = αpn−1 ∗ a = 1 ∗ α = α. Thus φn is the identity
map.

I claim no lower power of φ is the identity map. Suppose that φr is the identity
automorphism and let η be primitive in Fpn . Then η = φr(η) = ηp

r
, so ηp

r−1 = 1.
Since η is primitive it has order pn − 1, so we see r ≥ n as claimed.

We need to show that there are no other automorphisms of Fpn . Let η be
primitive, and let m(x) = xn+mn−1x

n−1+ · · ·+m0 be its mimimum polynomial.
The lemma showed that φr(η) = ηp

r
is another root of m(x). Since η is primitive,

η, . . . , ηp
n−1

are all distinct and thus they form the complete set of roots of m(x).
Let σ be an arbitrary automorphim of Fpn . Then σ must take η to one of these

other roots of m(x). The action of σ on η determines σ completely, so if σ(η) = ηp
r

then σ = φr.
In conclusion Aut(Fpn) is cyclic of order n, and is generated by φ.

Constructing Finite Fields

To construct the field Fn
p we need an irreducible polynomial of degree n (which

we may assume to be monic). How can we identify a monic irreducible? The
analogous question for the integers (as compared to Fp[x] is: How can we identify
prime numbers? Neither problem is easy to address. Since we are not concerned
here developing the most efficient methods to find irreducibles, we will fall back on
something akin to the Sieve or Eratosthenes, which is a method for finding primes.

The process proceeds iteratively. Assume that we have identified all monic
irreducibles of degree less than n. We show how to find all monic irreducibles of
degree n. We list all polynomials of degree n. Then eliminate all products of the
irreducibles of degree less than n that give a polynomial of degree n (which will,
by construction, be reducible). The polynomials of degree n remaining after this
process are irreducible.
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For n = 3 one must consider a product of 3 linear factors and a product of
a linear and an irreducible quadratic. For degree 4 one must consider a product
of 4 linear factors, a product of two linear factors and an irreducible quadratic, a
product of one linear and an irreducible cubic, and a product of two irreducible
quadratics.

Exercises 5.3.15. Irreducible polynomials over F2.

We have seem that there is one irreducible of degree 2 over F2, x
2 + x+ 1.

(a) Find all irreducible polynomials over F2 of degree at most 4. You should
justify your list.

(b) Find all all irreducible polynomials over F2 of degree 5. Use the list from part
(a) to explain your result. Notice any patterns in the list of polynomials.

(c) Determine how many irreducible polynomials of degree 6 there are over F2

based on part (a). Justify your answer briefly.

Example 5.3.16. Consider now the degree 3 extension of F3, the field with 27
elements, F27. In this field there is just one subfield F3, so there are 24 elements
that have a minimal polynomial of degree 3. Each of these minimal polynomials
factors completely in F27 by Proposition 5.3.7. Thus we have 24/3 = 8 monic
irreducible polynomials of degree 3 over F3.

Let’s count the number of irreducible monic polynomials of degree 3 over F3

using the method related to the Sieve of Eratosthenes. The monic polynomials of
degree 3 over F3 are all of the form x3 + a2x

2 + a1x+ a0 for ai ∈ F3. Thus there
are 27 monic polynomials of degree 3. A reducible polynomial is either the product
of 3 linear factors or the product of a linear and a quadratic irreducible. There
are 3 monic linear polynomials, and 3 monic quadratic irreducibles, so 9 possible
products. For a product of linear monic polynomials we choose 3 factors with
replacement from the 3 linear polynomials, so there are

(
3+2
3

)
= 10 possibilites.

Thus the number of irreducibles shoule be 27− 9− 10 = 8. That checks with our
computation from the previous paragraph.

The multiplicative group F∗
27 is cyclic of order 26. In Z/26 the odd numbers,

other than 13, are all generators for the group so there are 12 generators. Conse-
quently in F∗

27 there are 12 primitive elements. Each is a root of one of the monic
irreducible polynomials of degree 3, so we expect 12/3 = 4 different primitive
monic polynomials of degree 3.
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Here are the monic irreducibles of degree 3 over F3 that are not primitive

x3 + 2x2 + 2x+ 2,

x3 + x2 + x+ 2

x3 + 2x+ 2

x3 + x2 + 2,

and here are the ones that are primitive.

x3 + 2x+ 1

x3 + 2x2 + x+ 1

x3 + x2 + 2x+ 1

x3 + 2x2 + 1

Exercises 5.3.17. The field F23.

(a) Construct the multiplication table for the field F8 using x3 + x2 + 1.

(b) Make a table showing the powers of the primitive element, call it η, and the
corresponding vector form, using the basis {1, η, η2}.

(c) Show that the polynomial x3 + x+ 1 also has roots in your construction of
F8.

Exercises 5.3.18. The field F16.

(a) One of the irreducible polynomials of degree 4 in Exercise 5.3.15 has roots
which are not primitive. Which one?

(b) Construct the field with 16 elements using one of the primitive irreducible
polynomials of degree 4: Make a table showing the powers of the primi-
tive element, call it η, and the corresponding vector form, using the basis
{1, η, η2, η3}. Give also the multiplicative order of each element and its min-
imal polynomial.

(c) Identify the subfield F4.

(d) Factor over F4 the irreducible polynomial that you chose to construct F16.

(e) How many elements of F16 are primitive?

Exercises 5.3.19. The field F32.

(a) Write a multiplication table for F3[x]/⟨x2 + x+ 2⟩. [You may omit 0. It may
be easier to take the elements in the order 1, x, x+1, x+2 followed by twice
each.]

(b) Find all irreducible polynomials of degree 2 over F3 and find their roots in
the table you constructed.
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Exercises 5.3.20. Factoring a polynomial over different fields.

(a) Factor x9 − x over F3.

(b) Factor x5 + x4 + 1 over F2 (it is reducible!), F4 and F8.

(c) Factor x16 − x over F2, F4, F8 and F16.

Exercises 5.3.21. Subfields of a Finite Field

Let n > m be positive integers and d = gcd(n,m). Show that the intersection
of Fpm and Fpn is Fpd as follows.

(a) Recall that the remainder xn − 1 divided by xm − 1 is xr − 1 where r is the
remainder when n is divided by m.

(b) Show that the gcd of xn − 1 and xm − 1 is xd − 1.

(c) Combine the previous results and the theorem that the roots of xp
n − x are

the elements of Fpn to conclude that Fpd is a subfield of Fpn iff d divides n.
(Strictly speaking Fpn has a subfield isomorphic to Fpd . See 11.10.)

Exercises 5.3.22. Subfields and (multiplicative) order of an element.

(a) Make a table showing the possible multiplicative orders and the number of
elements of each order for F64, F128, and F256. Relate this information to
subfields (refer to the previous problem).

Exercises 5.3.23. The Field F81.

(a) The polynomials x2+x+2 and x2+2x+2 are both irreducible over F3. Can
you construct F81 by using one of these polynomials and then the other?

(b) In a computer algebra system use m(x) = x4 + x+2 and r(x) = x4 +2x+2
to construct two versions of F81. Using a brute force search, find a root of
m(x) in the second field and a root of r(x) in the first field. These give
isomorphisms between the two fields. Check by hand that each composition
is an automorphism of the appropriate version of F81.

(c) Factor x80 − 1 over F3. For each irreducible factor a(x), find the roots of
a(x) in F3[x]/m(x).

Exercises 5.3.24. The field F64.

(a) The polynomials m(x) = x6 + x + 1 and r(x) = x6 + x5 + x4 + x + 1 are
both irreducible over F2. Using a computer algebra system construct two
versions of F64, using m(x) for one and r(x) for the other. Using a brute
force search, find a root of m(x) in the second field and a root of r(x) in the
first field. These give isomorphisms between the two fields. Check by hand
that each composition of the two isomorphisms is an automorphism of the
appropriate version of the field.

(b) Factor x63−1 over F2. For each irreducible factor a(x), find the roots of a(x)
in F2[x]/m(x). Use Sage, but also use your understanding of the theory.
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(c) The field F64 can also be constructed as an extension of F4. Construct F4,
then factor x63−1 in F4[x]. Choose one of the factors of degree 3 to construct
F64.

(d) Now create F8 using an irreducible polynomial of degree 3 over F2, then
factor x63 − 1, then create F64 using an irreducible polynomial of degree 2
in F8[x].

Exercises 5.3.25. The algebraic closure of Fp.

This problem extends Exercise 5.3.21, which showed that we may consider
Fpd as contained in Fpn if and only if d|n.

(a) Let Fp =
⋃

t≥1 Fpt . Prove that F is a field.

(b) Prove that Fp is algebraically closed.

(c) Prove that every element of Fp is algebraic over Fp so there is no algebraically
closed field properly contained in Fp.

(d) Conclude that Fp is the algebraic closure of Fpn for any n.

Exercises 5.3.26. Irreducible polynomials over Fp.

Suppose you have formulas for the number of irreducible monic polynomials
of degree m over Fp for each m < n. Using some combinatorial arguments
you can then compute the number of monic reducible polynomials of degree
n. Subtracting this from the number of monic polynomials of degree n yields
the number of monic irreducible polynomials of degree n.

(a) Show that the number of monic irreducible quadratics over Fp is (p2− p)/2.
(b) Show that the number of monic irreducible cubics over Fp is (p3 − p)/3.
(c) You might want to guess at a general formula. A different counting method

yields the result more easily than the one above. Try this if you want, noting:

• For a ∈ Fpn , a is in no proper subfield iff the minimal polynomial for a
has degree n.

• Each monic irreducible of degree n has n distinct roots in Fpn .
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