Math 627B: Modern Algebra II

Homework I

Problem 1: The radical of a polynomial. IVA $\S1.5 \#14, 15$.

Problem 2: The variety of several polnomials in $\mathbb{C}[x]$. IVA §1.5 #16.

Problem 3: Sketching some varieties in \mathbb{R}^n : IVA §1.2 #2, 4e, 5.

Problem 4: Varieties and non-varieties.

(a) Prove that a finite set of points is a variety. \$1.2 #6.

(b) Prove that the punctured line is not a variety. $\frac{1}{2} \# 8$.

Problem 3: The Euclidean Algorithm

Input $f, h \in F[x]$. Output $r, u, v, y, z \in F[x]$ such that (1) $uf + vh = r = \gcd(f, h)$, and (2) $yf = -zh = \operatorname{lcm}(f, h)$.

Initialize

$$M = \begin{bmatrix} r & u & v \\ s & y & z \end{bmatrix} = \begin{bmatrix} f & 1 & 0 \\ h & 0 & 1 \end{bmatrix}$$

Algorithm While $s \neq 0$ do

$$q \leftarrow \text{quotient}(r, s)$$
$$M \leftarrow \begin{bmatrix} -q & 1\\ 1 & 0 \end{bmatrix} M$$

(a) Prove that at every iteration

$$\begin{bmatrix} u & v \\ y & z \end{bmatrix} \begin{bmatrix} f \\ h \end{bmatrix} = \begin{bmatrix} r \\ s \end{bmatrix}$$

(b) Show that at termination u, v give the gcd(f, h) and y, z give the lcm(f, h) as claimed in the output statement. [Hint: Show that $uz - yv = \pm 1$ at every iteration.]