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1 Monomial Orderings

Definition 1.1. A monomial ordering < (also called a term ordering) is a
an ordering of Nn0 such that

(1) < is a total ordering: for any α, β ∈ Nn0 , either α < β, or α = β or
α > β.

(2) < respects addition: α < β implies α+ γ < β + γ.

(3) < is a well ordering: any nonempty subset of Nn0 has a least element.

Given a term ordering, for f ∈ k[x1, . . . , xn] we will write LT(f) for
the leading term, LM(f) for the leading monomial, LC(f) for the leading
coefficient, and LE(f) for the leading exponent (the exponent of the leading
term). IVA calls LE(f) the multidegree and uses mdeg(f).

Here is a summary of a results concerning monomial orderings from
Robbiano (Theory of graded structures, 1986, and Term orderings on the
polynomial ring , 1985).

(1) Any term ordering on Nn0 extends in a unique way to a term ordering
on Zn.

(2) Any term ordering on Zn extends in a unique way to a term ordering
on Qn.
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(3) Any term ordering on Qn extends is such that (Qn)+ (the set of ele-
ments larger than (0, . . . , 0)) is convex, and (Qn)− (the set of elements
smaller than (0, . . . , 0)) is also convex.

(4) This implies that the ordering is continuous. That means ∀α ∈ Qn

if ther exists a neighborhood Uα such that Uα − {α} ⊆ (Qn)+ then
α ∈ (Qn)+ (and similarly for −).

(5) Thus, every ordering on Qn extends to a continuous order on Rn.

I will just explain the first step above (the second is similar, the rest are
harder). Suppose that < is an ordering on Nn0 . Let α, β ∈ Zn (so α and
β may have negative terms). There is some γ ∈ Nn0 such that α + γ and
β + γ both have positive components (Check this!). We will say that α < β
if α + γ < β + γ. Since there are many choices for γ, we have to check
consistency: α+ γ < β+ γ iff α+ γ′ < β+ γ′ for all γ′ large enough so that
α+ γ′ and β + γ′ are in Nn0 . (Check this!)

Theorem 1.2. Every term ordering on Nn0 is given by some sequence u1, u2, . . . , us ∈
Rn, in the following sense. α < β iff there is some t such that α · ui = β · ui
for i < t and α · ut < β · ut.

The · means the dot product. In other words, α < β if α · u1 < β · u1

and α > β if α ·u1 > β ·u1. If this test is inconclusive, that is α ·u1 = β ·u1,
then use u2 to compare. Continue on till you get a definitive answer.

If there are n vectors u1, . . . un and they are linearly independent, then
any unequal α and β will be distinguished by one of these tests (Check!).
It is possible for fewer than n vectors to determine a total ordering. This is
because α and β have integer entries. Find an example with n = 2.

2 Groebner Bases

Fix a monomial ordering.

Theorem 2.1 (Dickson). Every monomial ideal has a finite generating set.
More precisely, for A ⊆ Nn0 there is a finite A′ ⊆ A such that

〈xα : α ∈ A〉 = 〈xα : α ∈ A′〉

Furthermore, we may take A′ so that xα - xβ for all α, β ∈ A′.
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The last sentence of the theorem should be fairly clear. If xα divides xβ

then any monomial divisible by xβ is also divisible by xα so we may remove
β from A′ and still have a generating set. Removing all such unnecessary
exponents gives the result.

Every monomial ideal has a finite generating set.

Theorem 2.2 (Groebner Basis). Any ideal I in k[x1, . . . , xn] is finitely
generated. There is a subset G = {g1, . . . , gt} ⊆ I such that I = 〈g1, . . . , gt〉.

Proof. Let xα1 , . . . , xαt generate 〈LT(I)〉. By Diskson’s lemma the xαi are
leading terms of elements of I, say xαi = LT(gi). Now let f ∈ I. Dividing
f by G we get f = a1g1 + · · · + atgt + r and the remainder r has no terms
divisible by any of the xαi (terms are only placed in the remainder when
they are not divisible by any leading term of a gi). Now f −

∑
aigi = r ∈ I.

If r 6= 0 then LT(r) ∈ 〈LT I)〉 so LT(r) is divisible by some xαi . This gives
a contradicition. Thus r = 0.

There are several corollary results that we can derive with a careful look
at the proof.

Definition 2.3. Given a term order on k[x1, . . . , xn] and ideal I let ∆(I) =
Nn0 − LT(I). We will call ∆(I) the footprint of I.

Proposition 2.4. Given f ∈ I there is a unique g ∈ I and unique r =∑
α∈∆(I) rαx

α such that f = g+ r. Furthermore, for any Groebner basis, G
(and any ordering of G), r is the remainder when f is divided by G.

Proof. We can divide any f ∈ k[x1, . . . , xn] by a Groebner basis G =
{g1, . . . , gt} and get f =

∑
aigi + r with remainder r having terms with

exponents in ∆(I). Let g =
∑
aigi. We have shown existence of g, r; must

show uniqueness. Suppose f = g+r and f = g′+r′. Then g+r−(g′+r′) = 0
so g − g′ = r′ − r. I claim g = g′ and r = r′. If not g − g′ ∈ I, so
LE(g − g′) 6∈ ∆(I). On the other hand LE(r − r′) ∈ ∆(I) since all terms of
r and r′ have exponents in ∆(I). This gives a contradiction.

We have also shown that r is the remainder when f is divided by G, for
any Groebner basis G.

Note: this is all based on a fixed term order!.

Definition 2.5. A Groebner basis G for I is minimal when each g ∈ G is
monic and {LT(g) : g ∈ G} satisfies the second sentence of Theorem 2.1,
LT (g) - LT(g′) for all g, g′ ∈ G. A Groebner basis is reduced when in addition
no term of g ∈ G is divisible by LT(g′) for g′ ∈ G− {g}.

3



Proposition 2.6. A nonzero ideal I has a unique reduced Groebner basis.

Proof. For existence, let G = {g1, . . . , gt} be a minimal Groebner basis.
Divide g1 by g2, . . . gt. We get g1 =

∑t
i−2 aigi + r1. Furthermore r1 ∈ I

and r1 has the same leading term as g1. Replace g1 with r1 and we still
have a minimal Groeber basis, but no term of r1 is divisible by LT(gi) for
i = 2, . . . , t. Proceed similarly with gi for i = 2, . . . , t.

These important results generalize the Division Theorem (we get a unique
remainder, and element of I). We have also solved the ideal description prob-
lem in a satisfying way: there is a unique Groebner basis. We have an easy
test for ideal membership, divide by the Groebner basis and see if the results
is 0.

The next and key question is how to compute a Groebner basis, akin to
the question for k[x]: how do we compute the gcd of two polynomials in one
variable? The answer in one indeterminate is the Euclidean algorithm. It is
not so simple with several indeterminates.

3 S-polynomials

Definition 3.1. Let α, β ∈ Nn0 . For i = 1, . . . , n, let γi = max(αi, βi). We
will call γ the LCM(α, β). We will also call xγ the LCM(xα, xβ).

It should be clear that LCM(xα, xβ) is the smallest monomial that is a
multiple of both xα and xβ. Using LCM for α and β is a small abuse of
terminology that may be useful at some point.

Definition 3.2. Let f, g ∈ k[x1, . . . , xn]. The syzygy polynomial of f and
g (also called the S-polynomial is

S(f, g) =
xγ

LT(f)
f − xγ

LT(g)
g

where γ = LCM(LE(f),LE(g)).

In other words if the leading term of f is xα (we may as well take it to

be monic) and the leading term of g is xβ, then
xγ

LT(f)
f and

xγ

LT(g)
g both

have leading term xγ , which is the smallest monomial divisible by both
LT(f) and LT(g). The S-poly results from taking the smallest multiples of
f and g that will give cancellation of leading terms. Thus LM(S(f, g)) <
LCM(LM(f),LM(g)). Of course if f, g ∈ I then S(f, g) ∈ I.
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Let F = {f1, . . . , fs} and let I = 〈F 〉 be the ideal generated by F . We
would like to have (1) a test to see if F is a Groebner basis for I and (2) an
algorithm to compute a Groebner basis for I if F is not one.

The algorithm is essentially this: for various f1, f2 ∈ F compute S(f1, f2)
then divide the result by F and get a remainder r with no terms divisible
by leading terms of polynomials in F . Since S(f1, f2) ∈ I and we divided
by F ⊆ I we must have r ∈ I. In particular LT(r) is not divisible by LT(f)
for all f ∈ F . If r 6= 0, we add r to our set F and repeat the process: choose
two elements of F ∪ {r}, compute their S-poly, divide by F ∪ {r} to get a
remainder, if it is nonzero throw it into our set of polynomials and continue.

Note: h
F

means the remainder when h is divided by F where F is an
ordered set of polynomials, F = f1, . . . , ft. The symbol h→F r means that
h =

∑
aifi + r and LE(f) ≥ LE(aifi) for all i with ai 6= 0. We’ll discuss

this in class.

Theorem 3.3 (S-poly). Let G = {g1, . . . , gt} be a generating set for I. G

is a Groebner basis for I iff S(gi, gj)
G

= 0 for all i, j.
Futhermore the algorithm described above terminates with a Groebner

basis for I after a finite number of steps.

These results take some work to prove. We will use them now, and I will
prove later after covering some of the general theory of rings and modules.
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