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Introduction

Introduction

Since the birth of the subject roughly 50 years ago, coding theory has grown enormously
and has become enriched by its relationship with many areas of mathematics. There
are a number of excellent books on coding theory, but the challenge to write my own
notes and cover the topics in the manner that made most sense to me proved irresistible.
Here in this first installment we will cover the algebraic preliminaries: polynomial rings
and finite fields being the essential topics. A later set of notes will cover Reed-Solomon
codes and decoding by the Berlekamp-Massey algorithm. I hope to add some sections
expanding beyond Reed-Solomon codes later in the semester.

I hope you will enjoy these notes, and enjoy being part of this project of mine to put
them together. Please be patient with the typos and various problems that are certain
to be encountered. Although I have revised and reread a number of times, there will still
be mistakes. Please also inform me of any problems whether they be mundane errors,
stylistic confusion or (heaven forbid) mathematical errors.

I will use the following notation.

• The positive integers: N.

• The nonnegative integers: N0.

• The integers greater than or equal to a: Na.

• All integers: Z.

• The integers modulo n: Z/n.

• The rationals: Q.

• The real numbers: R.

• The complex numbers: C.

• The finite field of q elements: Fq.
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Chapter 1

Commutative Rings and Finite

Fields

1.1 Review of Properties of the Integers

In this section we will review the main theorems that lead to the unique factorization of
integers. We will establish analogous results for polynomials over a field in a later sec-
tion. Proofs are sometimes omitted or are briefly sketched in this section. I recommend
Chapter 3 of Rosen’s book [7] for a more detailed treatment of this material.

Theorem 1.1.1 (Division). Given integers a, b with b > 0 there exist unique integers
q, r such that

1) a = bq + r, and

2) 0 ≤ r < b.

Proof: Consider the set S = {a − bk : k ∈ Z}. By the well ordering property of
the natural numbers, there exists a smallest nonnegative integer in S. Call it r and
let r = a − bq. Then q and r satisfy item 1). Furthermore r must be less than b, for
otherwise r − b = a − b(q + 1) would be in S and less than r, contradicting the choice
of r. So item 2) is satisfied. For uniqueness, suppose that q′ and r′ also satisfy items 1)
and 2). Taking the difference of the two equations from 1), we get r − r′ = b(q′ − q).
From 2), |r − r′| < b, but |b(q′ − q)| ≥ b when it is nonzero. Thus we must have q = q′

and r = r′.

Definition 1.1.2. Let a and b be integers, not both equal to 0. The greatest common
divisor of a and b, denoted gcd(a, b), is the largest positive integer dividing both a and
b. If the gcd is 1 we say a and b are coprime.

Theorem 1.1.3. Given integers a, b, not both 0, the greatest common divisor of a and
b may be written as a linear combination of a and b.

Proof: (Sketch) Choose the smallest positive element of {ra + sb : r, s ∈ Z}, call it d.
It is clear that any common divisor of a and b divides d. Show that the remainder when
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either a or b is divided by d must be 0, otherwise the definition of d is violated. Thus d
must be gcd(a, b).

The preceding result simply says that the gcd of two integers can be written as a linear
combination of the two. The next result—2000 years old—describes how to compute the
gcd.

Theorem 1.1.4. The Euclidean algorithm may be used to find the greatest common
divisor of two integers, and to find the linear combination that gives the greatest common
divisor.

In Section 1.6, there is a matrix version of the Euclidean algorithm which computes
the linear combination that gives the gcd. It is very similar to a matrix version of the
Berlekamp-Massey algorithm for decoding Reed-Solomon codes that we will see in a later
Chapter.

Definition 1.1.5. A nonzero integer p is irreducible when any factorization p = ab is
trivial: either a or b is ±1. A nonzero integer p is prime whenever p divides ab implies
that p divides either a or b.

In a first course in number theory one normally defines a prime as we have defined
an irreducible. The reason for the switch here is to conform with the modern usage in
commutative algebra. Notice that a prime number, or an irreducible, may be negative.

If you look for the following theorem in a number theory book it will say: “Suppose
p is prime, then if p divides ab either p divides a or p divides b.”

Theorem 1.1.6. Let p ∈ Z be irreducible. Then p is prime. The converse is also true,
so p is irreducible if and only if it is prime.

Proof: Suppose p is irreducible and p|ab. If p 6 |a then gcd(p, a) = 1, so there are
integers r and s such that pr + as = 1. Multiplying by b we have prb + asb = b. Now p
divides the left hand side, so p|b.

For the reverse implication, suppose p is prime and p = ab. Without loss of generality,
we may assume p|a, say a = pk. Then p = pkb, hence p(1 − kb) = 0. Since p is nonzero
1 − kb = 0 But then b is ±1.

Now we have unique factorization!

Theorem 1.1.7. Given any nonzero n ∈ Z there is a unique way to write n as a product

n = u
r∏

i=1

pi

where r ∈ N0, the pi are positive primes with pi ≤ pi+1, and u = ±1.

Proof: Clearly u = −1 for negative integers and u = 1 for positive integers, and it is
sufficient to prove the result for positive integers. We first show existence of a prime
factorization by induction. For n = 1 the result is trivial, r must be zero. Assuming
that any integer less than n has a unique prime factorization, consider n. If n is prime
then n = 1n is a prime factorization. If n is composite then n = ab for a, b < n. The
product of the prime factorizations for a and b gives one for n.
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For uniqueness of the factorization, suppose that n has two factorizations n =
p1p2 · · · pr, and n = q1q2 · · · qs with the pi and qj in increasing order. By the previ-
ous theorem p1|qj for some j. But since qj is a positive irreducible, p1 = qj . Since the qj

are in increasing order, q1 ≤ p1. Similarly one shows that p1 ≤ q1. So, in fact p1 = q1.
Thus we have p2p3 · · · pr = q2q3 · · · qs. This integer is smaller than n so is factor-able in
a unique way. Thus r = s and pi = qi.

We sometimes consolidate multiple factors of a given prime to write

n = u
r∏

i=1

pai

i

with the ai positive integers and pi < pi+1.
Another important concept from number theory is modular arithmetic. I will skip

the definition of Z/n and the justification for the arithmetic in Z/n, which you can read
elsewhere [7, §4.1]. The main result we need is:

Theorem 1.1.8. Let p be a prime number. Then every nonzero element of Z/p has a
multiplicative inverse.

Proof: Let a be an integer whose congruence class is nonzero mod p. Then a is not
divisible by p, so in fact it must be coprime to p. By Theorem 1.1.3 there exist r and s
such that ar + ps = 1. This means that ar ≡ 1 mod p, as was to be shown.

Exercises 1.1.9.

1. Solve the linear equations.

(a) 3x + 7 ≡ 5 mod 17

(b) 3x + 7 ≡ 5 mod 15

(c) 3x + 7 ≡ 4 mod 15

2. Use the quadratic formula, or completing the square, to find solution(s) if they
exist to

(a) 2x2 + 7x + 5 ≡ 0 mod 17.

(b) 3x2 + 16x + 4 ≡ 0 mod 17

(c) 5x2 + 7x + 14 ≡ 0 mod 19

3. Use Maple to find solutions if they exist to

(a) 7x4 + 3x2 + x + 15 ≡ 0 mod 17.

(b) 7x4 + 2x2 + x + 15 ≡ 0 mod 19.

4. Give an example of a quartic polynomial with three distinct roots modulo 17.
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1.2 Commutative Rings and Ideals

The fundamental algebraic properties of the integers can be generalized to define a ring.
Many of the notions of divisibility generalize as well. We give the formal definitions here
and construct several examples.

Definition 1.2.1. A ring is a set R with two binary operations—addition, +, and
multiplication, ∗—such that

• both operations are commutative,

• both operations are associative,

• both operations have an identity (0 for + and 1 for ∗),

• there is an additive inverse for each element of R, and

• multiplication distributes over addition.

A field is a ring with the extra property that there is a multiplicative inverse for each
nonzero element.

Remark 1.2.2. Strictly speaking, the definition above is for a commutative ring with
identity. Since that is a mouthful, and we will only use commutative rings with identity,
I opt for a four letter term. Some authors allow fields to have noncommutative multi-
plication. Others call such a structure a skew field or division ring. We always assume
multiplication is commutative.

Definition 1.2.3. Let R be a ring. An element a ∈ R is called a unit if there is a
multiplicative inverse for a. It is called a zero-divisor if it is nonzero itself and there is
some nonzero b ∈ R such that a ∗ b = 0.

Elements a, b ∈ R are called associates if there is a unit u ∈ R such that a = ub.

Here are some quick exercises:

1. The zero element, 0, is unique.

2. For any a ∈ R, 0 ∗ a = 0

3. The unity element, 1, is unique.

4. The inverse of an element (additive or multiplicative) is unique.

5. Every nonzero element of a field is a unit.

6. No element can be both a zero-divisor and a unit.

Of particular interest are rings with no zero-divisors.

Definition 1.2.4. A ring R is called an integral domain if it has no zero-divisors.
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Definition 1.2.5. Let A and R be rings. A homomorphism from A to R is a function
f that preserves the operations of A and R. That is, f(0A) = 0R, f(1A) = 1R, and for
a, b ∈ A, f(a +A b) = f(a) +R f(b), and f(a ∗A b) = f(a) ∗R f(b).

An isomorphism is a homomorphism that is also a bijection of sets.

I used +A and +R to emphasize that the two operations take place in different rings.
Normally we won’t be so fussy since the context makes it clear. The more general ring
theoretic approach does not require a homomorphism to satisfy f(1A) = 1R, but from a
commutative algebra viewpoint it is natural to do so. The reader should verify that the
inverse function of an isomorphism is a homomorphism, and therefore an isomorphism.

Some Examples

The first ring that you should know about is the ring of integers, Z. It is actually first in
a very precise sense. There exists exactly one ring homomorphism from Z to any other
ring, R. It is defined by 1Z → 1R. There is also a “last ring.” It is the ring with just
one element 0 = 1. Check that it is a ring and that every ring has a unique map to the
zero ring.

We will not develop the general theory of rings, but it is worth illustrating three
standard methods to construct new rings from old:

1. form a ring of fractions by “adjoining inverses” of some elements,

2. form a “quotient ring” modulo some element (or elements)

3. form a “polynomial ring” in an indeterminate.

We will not use the first method again, but the other two will be very important. The
following two examples illustrate the first two methods for the integers.

Example 1.2.6. If we adjoin to Z the inverse of each nonzero integer we get the rational
numbers: Q = {a/b : a ∈ Z, b ∈ N, (a, b) = 1}. More formally, one defines an equivalence
relation on the set of all fractions a/b with b nonzero: a/b is congruent to c/d whenever
ad = bc. Then Q is the set of equivalence classes.

There are numerous rings sandwiched between Z and Q that are very important in
number theory. They are constructed by inverting only certain integers. Here are two
examples. In the first we invert 2, in the second we invert all primes except 2.

Let 2−1Z include the set of elements of Q that can be expressed as a/b with b a power
of 2. So 2−1Z = Z ∪ {a/2i : a odd , i ∈ N}. You should check that 2−1Z is closed under
addition and multiplication, and that it is a ring. This ring is called the localization of
Z away from 2.

Let P be the set of odd positive primes. Let P−1Z include the inverses of the odd
primes, so P−1Z = {a/b : a ∈ Z, b ∈ N, b odd, gcd(a, b) = 1}. You should check that
P−1Z is closed under addition and multiplication, and that it is a ring. This ring is
called the localization of Z at 2.

The localizations of Z are all of the form P−1Z where P is a subset of the set of
positive primes. The elements of P−1Z are uniquely represented in the form a/b with
a ∈ Z, b divisible only by primes in P , and gcd(a, b) = 1.
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Example 1.2.7. You should already be familiar with the next standard family of ex-
amples, the integers modulo n, also called the quotient of Z by n, which we will denote
Z/n.

Suppose that the greatest common divisor d of a and n satisfies 1 < d < n. Let
b = n/d. Then neither a nor b is congruent to 0 mod n, but ab ≡ 0 mod n. So a and b
are both zero divisors. On the other hand, if (a, n) = 1 then there exist integers r and s
such that ra + sn = 1. Since ra ≡ 1 mod n, we see that r is the multiplicative inverse
of a in Z/n. Thus we have shown that any nonzero element of Z/n is either a unit or a
zero divisor.

Exercises 1.2.8.

1. Prove the cancellation law for integral domains. If a, b, c are elements of an integral
domain with a 6= 0 and ab = ac then b = c.

2. Show that Z/p is a field if and only if p is prime.

3. Show that the set of units in a ring forms a group under multiplication.

Polynomial Rings

We next want to introduce polynomial rings over a given ring R. This is actually a
bit tricky. You can find an interesting discussion in [3, p.81]. We will give an informal
definition and refer to [3, Appendix G] for one way to formally define polynomials. See
also [4, pp. 248-]

Definition 1.2.9. Let R be a ring and let x be an indeterminate. For any n ∈ Z and
a0, a1, . . . , an ∈ R with an 6= 0, we will call an expression of the form a0 + a1x + a2x

2 +
· · · + anxn a polynomial in x over R. The leading term is anxn, the leading coefficient
is an and the degree is n. The coefficient of xk is ak, for k ≤ n and 0 for k > n. The
polynomial is monic if the leading coefficient is 1. The polynomial ring in x over R,
denoted R[x] is the set of all such polynomials (along with 0). We will sometimes write
a general element as f(x) =

∑

i aix
i with the understanding that the sum is from 0

to ∞ and that fi = 0 for all i > deg f(x). The elmenent 0 ∈ R[x] is then
∑

i 0x
i. It

is convenient to define deg 0 = −∞. Addition in R[x] is defined componentwise and
multiplication is defined by

f(x) ∗ g(x) =
∑

k

xk
k∑

i=0

aibk−i

where f(x) =
∑

i aix
i and g(x) =

∑

j bjx
j .

The following proposition summarizes the basic results. Proofs are left to the reader
or the references.

Proposition 1.2.10. Let R be a ring.

1. R[x] is a commutative ring with identity elements 0 for + and 1x0 for ∗.

2. The polynomials of degree 0 form a subring isomorphic to R.
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3. deg(f(x)+deg g(x)) ≤ max{deg f(x),deg g(x)} with equality if deg f(x) 6= deg g(x).

Some funny things can happen when the ring R has zero divisors. For example
in Z/4[x], the product of 2x and 2x is 0. We will avoid this nuisance by only using
polynomial rings over an integral domain.

Proposition 1.2.11. If R is an integral domain then so is R[x] and the degree of the
product of two polynomials is the sum of the degrees, deg(f(x) ∗ deg g(x)) = deg f(x) +
deg g(x).

We can now add to our store of examples. We have the polynomial ring Z[x]. Let-
ting y be another indeterminate we may form Z[x][y], which we usually write Z[x, y].
Inductively, polynomial rings in several variables are constructed. We can also form
polynomial rings over the rings constructed from Z earlier, Z/n [x], and P−1Z[x]. We
now give two more examples illustrating “adjoining inverses” and “forming quotients”
from the ring Q[x].

Example 1.2.12. If we adjoin to Q[x] the inverse of each nonzero polynomial, we get
the field of rational polynomials, denoted Q(x). Formally one defines an equivalence
relation on the set of all fractions a(x)/b(x) with b(x) nonzero: a(x)/b(x) is congruent
to c(x)/d(x) whenever a(x)d(x) = b(x)c(x). Then Q(x) is the set of equivalence classes.

Example 1.2.13. In number theory you may have seen the Gaussian integers, Z[i],
where i2 = 1. The Gaussian numbers are formed by taking the quotient of Q[x] by the
polynomial x2+1. The process for constructing Q[i] = Q[x]/(x2+1) is entirely analogous
to the formation of Z/n, as we shall see in Section 1.3. The Gaussian integers form a
subring of the Gaussian numbers.

Ideals

Definition 1.2.14. An ideal of a ring R is a subset I ⊂ R which is closed under addition
and closed under multiplication by an arbitrary element of R:

a + b ∈ I if a, b ∈ I (1.1)

ar ∈ I if a ∈ I and r ∈ R (1.2)

You can prove this one.

Proposition 1.2.15. If an ideal I of R contains a unit, then I = R.

Proposition 1.2.16. Let R be a ring. For an a1, a2, . . . , an ∈ R, the set I = {r1a1 +
r2a2 + · · · + rnan : ri ∈ R} is an ideal of R.

Proof: Clearly the sum of r1a1 + r2a2 + · · ·+ rnan and s1a1 + s2a2 + · · ·+ snan is in I
and the product of r with r1a1 + r2a2 + · · · + rnan is in I.

The ideal I is principal if there exists some a ∈ I such that I = {ar : r ∈ R}. We
say I is generated by a1, a2, . . . , as if I = {r1a1 + r2a2 + · · · + rsas : ri ∈ R}. We write
I =< a1, a2, . . . , as >.

Example 1.2.17. The principal ideals of Z are multiples of a particular integer.
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• (2) is the set of even numbers.

• (3) is the set of multiples of 3.

• (1) is all integers.

• (0) is the ideal containing only 0.

Proposition 1.2.18. Every ideal in Z is principal.

Proof: Let I be an ideal of Z. If I = {0}, there is nothing to prove. Otherwise, let a be
the smallest positive integer in I. Let b be any other nonzero element of I. Then by the
properties of ideals, any linear combination of a and b is in I. Therefore gcd(a, b) ∈ I.
But the gcd of a and b is positive and less than or equal to a. Since a is the smallest
positive element of I, we must have gcd(a, b) = a. In other words an arbitrary element
of I is divisible by a, so I =< a > is principal.

It should be clear that the principal ideals of Z are in one correspondence with the
nonnegative integers. One simply takes the least positive element of a nonzero ideal, or
0 for the zero ideal.

Definition 1.2.19. An ideal I in R is prime when ab ∈ I implies that either a ∈ I or
b ∈ I. An ideal I is maximal if the only ideal properly containing I is R.

In any integral domain, the zero ideal is prime. This follows directly from the defini-
tion of integral domain, ab = 0 implies a = 0 or b = 0.

Let I be a nonzero ideal in the integers, and let d be its positive generator. If d is
not prime, say d = ab, then I is not a prime ideal since ab ∈ I, but a, b 6∈ I. If d is prime
then ab ∈ I implies that d|ab, and by primality of d, either d|a or d|b. Thus either a or
b is in I, and I is prime. We conclude that for the integers an ideal is prime if and only
if its generator is either 0 or a prime integer. Clearly the nonzero prime ideals are also
maximal.

Exercises 1.2.20.

1. Identify all the ideals in 2−1Z. Identify all the ideals in P−1Z for an arbitrary set
of positive primes P . Which ideals are prime?

2. Suppose R,S are subrings of a ring T . Show that R ∩ S is also a subring of T .
Give an example to show that R ∪ S may not be a ring.

3. Let R be a subring of a ring S. Let I be an ideal in S. Show that I ∩R is an ideal
in R. Show that when I is prime so is I ∩ R.

4. An element a in a ring R is nilpotent when at = 0 for some positive integer t.

(a) Prove that the set of nilpotent elements in R forms an ideal in R. This ideal
is called the nilradical of R.

(b) Find the nilradical of Z/8, of Z/12, and of Z/30.

(c) Find the nilradical of Z/n using the unique factorization of n.
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5. An element e in a ring R is idempotent when a2 = a.

(a) If e is an idempotent in R prove that the principal ideal Re with the operations
inherited from R has the structure of a ring, with identity e.

(b) Prove that (1 − e) is also an idempotent in R.

(c) Prove that every element in R may be uniquely expressed as the sum of an
element in Re and an element in R(1 − e).

(d) Find the idempotents in Z/12 and comment on the decomposition above.

(e) Find the idempotents in Z/30 and comment on the decomposition above.

Divisibility, and Prime and Irreducible Elements in Integral Domains

The first step in analyzing many mathematical objects is to understand the elements that
can’t be broken down effectively. In this section we examine divisibility in this context.
Some of the material here may be studied in general rings, but we gain simplicity by
focusing on integral domains.

Definition 1.2.21. Let R be an integral domain and let r, s ∈ R. We say r divides s if
there is some a ∈ R such that ra = s.

The units in R are those elements which divide 1. One can show, in the usual manner,
that divides is transitive. If a and b are associates then each divides the other and any
number divisible by a is also divisible by b.

Definition 1.2.22. A non-unit p ∈ R is called irreducible when any factorization is
trivial in the sense that p = a ∗ b, implies either a or b is a unit. A non-unit p ∈ R is
prime when p divides ab, implies that either p divides a or p divides b.

There is a subtle difference between the two definitions. Note first of all that the
usual definition of a prime integer corresponds to the definition for irreducible above,
not the one for prime. Fortunately, as we showed in Section 1.1, the two notions coincide
for the integers.

Proposition 1.2.23. Suppose r and s are associates in a ring R. If r is either prime
or irreducible then so is s.

Proof: Let r = us with u a unit. Suppose r is irreducible and that s = ab. Then
r = uab. Since r is irreducible, one of ua or b must be a unit. If ua is a unit so is a.
Thus one of a and b must be a unit. Therefore s is irreducible.

Suppose that r is prime and that s divides ab. Since r and s are associates, r also
divides ab. But then r must divide one of a or b, say a. Since r and s are associates, s
must divide a also. Thus s is prime.

Theorem 1.2.24. In any integral domain R, any prime element is irreducible.

Proof: Let p be a prime element of R and suppose that p = ab. We wish to show that
either a or b is a unit. Since p is prime we know that p either divides a or b. Suppose
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that it divides a, so a = pr. Then p = prb, so p(1 − rb) = 0. Since R is an integral
domain, 1 − rb = 0. This shows that b has an inverse, namely r.

The converse is not always true! An example can be found in Z[
√
−5] where 1+

√
−5,

2, and 3 are all irreducible but not prime, [7, p. 105]. Since 2∗3 = (1+
√
−5)(1−

√

(−5)),
we have 2 ∗ 3 ∈< 1 +

√
−5 > but it can be shown that 2 6∈< 1 +

√
−5 >.

Example 1.2.25. The irreducible elements of Z2 are the ordinary odd prime integers
(and their associates). For example, 3 is irreducible, for if 3 = (a/2i) ∗ (b/2j) then
3 = ab/2i+j . But since a and b are odd (we may assume the original factors were in
lowest terms) we must have i+ j = 0 and ab = 3. Consequently, one of a or b is ±1. But
then one of a/2i or b/2j is a unit in Z2.

Since the only irreducibles of Z2 are the primes of Z not equal to 2 (and associates),
we say that Z2 is Z localized away from 2.

The only irreducible element of Z(2) is 2. It is clear that the odd primes integers are
not irreducible in Z(2) since they are in fact units! Since 2 is the only prime of Z that
remains prime in Z(2) we say that Z(2) is Z localized at 2.

1.3 Polynomials over a field

In Section 1.2, we discussed the basics of commutative rings. We defined what we mean
by a field and we introduced polynomial rings. In this section we will show that the
polynomial ring over a field F behaves very much like the integers. In particular, we
establish unique factorization and show that F [x]/p(x) is a field when p(x) is irreducible.

Lemma 1.3.1. Let a(x), of degree r, and b(x), of degree s, be two polynomials over a
field F . Suppose r ≥ s. Then

deg

(

a(x) − ar

bs

xr−sb(x)

)

< r

Proof: Exercise.

Theorem 1.3.2 (Division). Given polynomials a(x), b(x) ∈ F [x] with b(x) 6= 0 there
exist unique polynomials q(x), r(x) such that

1) a(x) = b(x)q(x) + r(x), and

2) deg r(x) < deg b(x).

Proof: For existence, consider the set S = {a(x) − b(x)k(x) : k(x) ∈ F [x]}. Let
r(x) = a(x) − b(x)q(x) be a monic polynomial of smallest degree in S. Then q(x) and
r(x) satisfy item 1). Using the lemma above, one can show that if deg r(x) ≥ b(x) a
polynomial of lower degree than r(x) would be in S, contradicting the choice of r(x).
Thus item 2) is satisfied.

For uniqueness, suppose that a(x) = b(x)q(x) + r(x) with deg r(x) < b(x). Suppose
also that a(x) = b(x)q′(x)+ r′(x) with deg r′(x) < b(x). Taking the difference of the two
equations, 0 = b(x)(q(x) − q′(x)) + r(x)− r′(x). Then r′(x) − r(x) = b(x)(q(x) − q′(x)).
The degree of the left had side is strictly less than deg b(x), but the right hand side has
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degree at least deg b(x) unless it is zero. Therefore both sides must be zero and we have
q(x) = q′(x) and r(x) = r′(x).

We say a polynomial d(x) divides f(x) when the remainder of f(x) upon division
by d(x) is 0. We write d(x)|f(x). Divisibility satisfies the following properties.

Proposition 1.3.3. Let a(x), b(x), c(x) ∈ F [x].

• If a(x)|b(x) and a(x)|c(x) then a(x)|(r(x)b(x)+s(x)c(x)) for any r(x), s(x) ∈ F [x].

• If a(x)|b(x) and b(x)|c(x) then a(x)|c(x).

Proof: Exercise.

Theorem 1.3.4. Let a(x), b(x) ∈ F [x] with not both equal to zero. The set I =
{r(x)a(x) + s(x)b(x) : r(x), s(x) ∈ F [x]} has a unique monic polynomial of minimal
degree. This polynomial is also the unique monic polynomial of maximal degree that
divides both a(x) and b(x).

Proof: Let n be the minimal degree of the nonzero polynomials in I. There is a monic
polynomial of degree n in I, since we can multiply any polynomial in I by the inverse
of its leading term to get a monic polynomial that is also in I. Suppose that there were
two distinct monic polynomials f(x) and g(x) ∈ I of degree n. Then f(x)− g(x) is in I,
and of degree less than n. This contradicts the definition of n. Thus there can only be
one monic polynomial of minimal degree in I. Let it be d(x) = h(x)a(x) + k(x)b(x).

By Proposition 1.3.3, any common divisor of a(x) and b(x) also divides any element
of I, in particular d(x). If we can show that d(x) divides both a(x) and b(x) then it must
have maximal degree among all divisors of a(x) and b(x) as claimed. It must also be
the unique common divisor of that degree since a monic polynomial can divide another
monic polynomial of the same degree only if the two are equal.

From the Division Theorem, there are unique q(x) and r(x) such that

1. a(x) = d(x)q(x) + r(x), and

2. deg r(x) < deg d(x).

Substituting for d(x) we get

r(x) = a(x) − d(x)q(x)

= a(x) − [h(x)a(x) + k(x)b(x)] q(x)

= [1 − q(x)h(x)) a(x) − (q(x)k(x)] b(x)

If r(x) were not 0, then we would have a contradiction to our choice of d(x) as the lowest
degree element of I. Thus d(x) divides a(x), and, by a similar argument, d(x) divides
b(x).

The uniqueness in the proposition allows us to make the following definition of the
greatest common divisor. It also says that the gcd of two polynomials can be written
as a linear combination of the two. The subsequent theorem says that the Euclidean
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algorithm can be extended to polynomials. In Section 1.6, there is a matrix version
of the Euclidean algorithm which computes the linear combination that gives the gcd.
It is very similar to a matrix version of the Berlekamp-Massey algorithm for decoding
Reed-Solomon codes.

Definition 1.3.5. Let a(x) and b(x) be two polynomials over a field F , not both equal
to 0. The greatest common divisor of a and b, denoted gcd(a(x), b(x)), is the largest
degree monic polynomial dividing both a(x) and b(x). If the gcd is 1 we say a(x) and
b(x) are coprime.

Theorem 1.3.6. The Euclidean algorithm may be used to find the greatest common
divisor of two polynomials, and to find the combination that gives the greatest common
divisor.

Definition 1.3.7. A positive polynomial p(x) ∈ F[x] is irreducible if for any factorization
p(x) = a(x)b(x) either a(x) or b(x) is an element of F . A polynomial p(x) is prime if
whenever p(x) divides a(x)b(x), p(x) divides either a(x) or b(x).

Theorem 1.2.24 showed that any prime element of an integral domain is irreducible.
As with the integers, the converse is true in the polynomial ring over a field.

Theorem 1.3.8. Let p(x) ∈ F [x] be irreducible. Then p(x) is prime.

Proof: Suppose p(x) is irreducible and p(x)|a(x)b(x). Suppose that p(x) 6 |a(x). Then
gcd(p(x), a(x)) = 1, so there are polynomials r(x) and s(x) such that p(x)r(x)+a(x)s(x) =
1. Multiplying by b(x) we have p(x)r(x)b(x) + a(x)s(x)b(x) = b(x). Now p(x) divides
the left hand side, so p(x)|b(x).

Now we have unique factorization!

Theorem 1.3.9. Given any nonzero f(x) ∈ F [x] there exists an element α ∈ F , a
nonnegative integer r, and for each i = 1, . . . , r, distinct monic irreducibles pi(x) and
integers ai > 0 such that

f(x) = α

r∏

i=1

pi(x)ai

The element α and the integer r are unique and the polynomials and their powers are
unique, up to reordering.

Proof: For polynomials of degree 0—that is, nonzero elements of F—unique factor-
ization is clear since the number of polynomials, r, must be zero (Proposition 1.2.11).
Suppose that all polynomials of degree less than n have a unique factorization as de-
scribed in the statement of the theorem. Suppose that f(x) has degree n. If f(x) is
irreducible with leading coefficient an then an(f(x)/an) is a factorization as required. If
f(x) = a(x)b(x) with both a(x) and b(x) having positive degree, then both a(x) and b(x)
have degree less than n and so each has a factorization as a product of monic irreducibles.
Then a(x)b(x) also has a factorization as a product of monic irreducibles.

For uniqueness of the factorization, Suppose that f(x) has two factorizations

αp1(x)a1p2(x)a2 · · · pr(x)ar = f(x) = βq1(x)b1q2(x)b2 · · · qs(x)bs
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By the previous theorem p1(x)|qk(x) for some k. By rearranging the qj we may assume
k = 1. Since q1 is monic and irreducible we must have p1(x) = q1(x). By the cancellation
law in an integral domain we have

αp1(x)a1−1p2(x)a2 · · · pr(x)ar = βq1(x)b1−1q2(x)b2 · · · qs(x)bs

This polynomial product has degree less than n so it can be factored in a unique way.
Thus r = s and after reordering pi = qi and ai = bi.

Corollary 1.3.10. If p1(x), p2(x), . . . , pr(x) are distinct monic irreducible polynomials
dividing f(x) then

∏r
i=1 pi(x) divides f(x).

Since the product of two polynomials over F has degree equal to the sum of the
degrees of the factors we get the following.

Corollary 1.3.11. Let f(x) have the factorization in the Theorem. Then deg f(x) =
∑r

i=1 ai deg pi(x).

Roots of Polynomials

Another consequence of unique factorization is that, as we prove below, a polynomial of
degree d has at most d roots.

Definition 1.3.12. Let f(x) ∈ F [x] and let f(x) =
∑n

i=1 aix
i with ai ∈ F . For β ∈ F

we define f(x) evaluated at a, written f(β), to be
∑n

i=1 aiβ
i. This is an element of F .

We say that β is a root of f(x) if f(β) = 0.

We leave it as an exercise to check that the evaluation of f(x)+g(x) at β is f(β)+g(β)
and that the evaluation of f(x)g(x) at β is f(β)g(β).

From the division theorem we see that finding a root of f(x) corresponds to finding
a factor of f .

Proposition 1.3.13. Let f(x) ∈ F [x] and let β ∈ F . Then β is a root of f(x) if and
only if (x − β) is a factor of f(x).

Proof: Using the division theorem the remainder when f(x) is divided by x − β has
degree 0 and is therefore an element of F . Thus f(x) = q(x)(x − β) + r with r ∈ F .
Evaluating at β, f(β) = q(β)(β − β) + r = r. Thus β is a root of f(x) if and only if
r = 0. That is, x − β divides f(x).

Proposition 1.3.14. If deg f(x) = d then f(x) has at most d distinct roots.

Proof: Each root gives a factor of f(x), so n distinct roots give n distinct linear factors
of f(x). By unique factorization the product of these roots, which has degree n, divides
f(x). Thus n ≤ d.

Example 1.3.15. Suppose that F is the field Z/p. Fermat’s little theorem says that
1, 2, 3 . . . , p − 1 are all roots of xp−1 − 1. Therefore the unique factorization of xp−1 − 1
is (x − 1)(x − 2) · · · (x − (p − 1)).
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Congruence Modulo a Polynomial

We now extend the concept of modular arithmetic to polynomial rings. The first thing
to do is to establish an equivalence relation on F [x] for each p(x) ∈ F [x]. Next one
shows that arithmetic is well defined. I will just state the results. The proofs are exact
analogues of those for integers.

Definition 1.3.16. Let p(x) ∈ F [x] with F a field. We say f(x), g(x) are congruent
modulo p(x), written f(x) ≡ g(x) mod p(x), if p(x) divides f(x) − g(x).

We leave the following two important propositions as an exercise. The proofs follow
with little change from the proofs for the analogous results for Z/n.

Proposition 1.3.17. Congruence modulo p(x) is an equivalence relation.

Proposition 1.3.18. If f(x) ≡ g(x) mod p(x) and a(x) ≡ b(x) mod p(x) then

• a(x) + f(x) ≡ b(x) + g(x) mod p(x).

• a(x)f(x) ≡ b(x)g(x) mod p(x).

Definition 1.3.19. The two propositions show that there are two well defined operations
on the set of equivalence classes of f [x] modulo p(x), and it is easy to verify that the
ring properties hold. We denote by F [x]/p(x) ring of polynomials modulo p(x).

Proposition 1.3.20. The set of polynomials of degree less than deg p(x) form a complete
system of residues modulo p(x).

Proof: Let p(x) have degree d. If two unequal polynomials have degree less than d then
their difference cannot be divisible by p(x), so they are incongruent mod p(x). Clearly,
every polynomial is equivalent to its remainder when divided by p(x), and the remainder
has degree less than d. Thus each element in F [x] is equivalent to exactly one polynomial
of degree less than d.

From the proposition, a complete system of representatives for F [x]/p(x) is {a0 +
a1x + · · · ad−1x

d−1 : ai ∈ F} where deg p(x). The addition of these polynomials is done
component-wise. Multiplication by an element of F is also component-wise. Conse-
quently, F [x]/p(x) is a vector space of dimension d over F . Our next theorem concerns
the multiplicative structure of F [x]/p(x) when p(x) is irreducible.

Theorem 1.3.21. Let p(x) be an irreducible polynomial over a field F . Then F [x]/p(x)
is a field.

Proof: Let a(x) be a polynomial whose congruence class is nonzero mod p(x). Then
a(x) is not divisible by p(x), so in fact it must be coprime to p(x). Then by Theorem 1.3.4
there exist r(x) and s(x) such that a(x)r(x)+p(x)s(x) = 1. This means that a(x)r(x) ≡ 1
mod p(x). Consequently a(x) is a unit mod p(x), and F [x]/p(x) is a field.

Definition 1.3.22. A subfield of a field K is a subset F which contains 0K and 1K and
is a field under the operations of K, +K and ∗K . We also say that K is an extension of
F .
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If α ∈ K we define F [α] to be the smallest subfield of K containing F and α. (It is
the intersection of all subfields of K containing F and α).

For α ∈ K consider all polynomials f(x) ∈ F [x] that have α as a root. If this set
is nonempty, we define the minimal polynomial of α over F to be the monic polynomial
M(x) ∈ F [x] of smallest degree such that M(α) = 0.

The minimal polynomial is indeed unique, for if two monic polynomials have the
same degree and both have α as a root then their difference also has α as a root and is
of lower degree. Some multiple of this difference would be monic (and have α as a root)
contradicting the minimal degree of the minimal polynomial.

Lemma 1.3.23. Let F be a subfield of a field K. Suppose α ∈ K has minimal polynomial
M(x) over F .

1) M(x) is irreducible.

2) If α is a root of f(x) ∈ F [x] then M(x) divides f(x).

Proof: Exercise. Use the division theorem for item 2).

I won’t prove this but I will prove a simpler version in the context of finite fields.

Theorem 1.3.24. Let F be a subfield of K. Suppose that α ∈ K has minimal polynomial
M(x). Then F [x]/M(x) is isomorphic to F [α] under the map taking the conjugate class
of x to α.

Exercises 1.3.25.

1. Find the greatest common divisor and express it as a combination of the given
polynomials.

(a) a(x) = x3 + 2x2 + 2x + 1 and b(x) = x2 + 2x + 1 over Z/3.

(b) f(x) = x2 + 2 and g(x) = x3 + x2 + x + 2 over Z/3.

(c) f(x) = 4x2 + 9x and g(x) = x3 + 6x2 + 6x + 2 over Z/11

2. Write your own implementation of the Euclidean algorithm in Maple or Magma.

3. Prove Lemma 1.3.23.

4. Let f(x) ∈ F [x] with f(x) = xn + · · ·+ a1x + a0. Let x̄ be the equivalence class of
x in F [x]/f(x). Show that x̄n + · · · + a1x̄ + a0 is the 0 element of F [x]/f(x).

5. What is R[x]/(x2 + 1)? Can you find any other extensions of the reals?

6. Describe the arithmetic for Q[x]/(x2 + 1). Construct other extensions of Q of
degree 2. Give an example of an extension of degree 3. Does x3 + 1 work?

7. Find an irreducible polynomial of degree 2, one of degree 3, and one of degree 4
over F2. For each, find a system of representatives for F2[x]/p(x).

8. Find a polynomial of degree 4 over F2 which has no roots but is not irreducible.
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1.4 Finite Fields: Structure

The last section ended with the result that for a field F and irreducible polynomial p(x)
over F , F [x]/p(x) is a field. We will be working with polynomials over this new field, so
it will be useful to have simpler notation. We will use a Greek letter, say α, to denote
the equivalence class of x. Notice that by an exercise in 1.3.25, α may be considered a
root of p(x). The field will then be identified as F [α] where p(α) = 0. In coding, we are
primarily interested in finite fields, for example Z/p. The main result of this section is
that for each prime power q = pn, there is a unique field (up to isomorphism) with pn

elements. We denote this field Fq. In particular, for a prime p, we use Fp instead of Z/p.
This section is devoted to proving the following theorem which we will do in stages.

Theorem 1.4.1. Let F be a field with a finite number of elements.

1) F has pn elements where p is a prime.

2) There is an element α ∈ F whose powers α1, α2, . . . , αpn−1 = 1 give all the nonzero
elements of F .

3) F is isomorphic to Fp[x]/P (x) for some irreducible polynomial P (x) over Fp.

For any prime p and any positive integer n,

4) There exists a field with pn elements.

5) Any two fields with pn elements are isomorphic.

As a first step we prove

Proposition 1.4.2. A finite field is a vector space over Fp for some prime p. Conse-
quently, the number of elements of F is a power of p.

Proof: Suppose that F is a finite field. Consider the additive subgroup generated by
1, i.e. 1, 1 + 1, 1 + 1 + 1. Let m be the smallest positive integer such that the sum of m
1’s is 0. If m where composite, m = ab, then we would have

0 = 1 + 1 + 1 + · · · + 1 + 1
︸ ︷︷ ︸

m terms

= (1 + 1 + · · · + 1
︸ ︷︷ ︸

a terms

)(1 + 1 + · · · + 1
︸ ︷︷ ︸

b terms

)

The two factors on the right would then be zero-divisors, contradicting the assumption
that F is a field. Thus m is in fact a prime, which we will now call p. We may think
of F as containing a copy of Fp. From the field axioms we see immediately that F is a
vector space over Fp. If its dimension over Fp is n then F must have pn elements. Thus
any field has a prime power number of elements.

Definition 1.4.3. The prime p in the theorem is called the characteristic of the field.

Suppose that q = pn is the number of elements in F . By the field axioms, the set of
nonzero elements of F is a group under multiplication. This group is denoted F∗. Recall
that the order of an element α in a group G is the smallest positive integer r such that
αr is the identity, or infinity, if no such r exists. As an exercise, review the following
properties:
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Lemma 1.4.4. Let α be an element of order r in a group G.

1) αi = αj iff i ≡ j mod r.

2) The order of αi is r/d where d = gcd(i, r).

3) Let β ∈ G have order s, coprime to r. Then ord(αβ) = rs.

Now we can establish item 2) of the Theorem.

Proposition 1.4.5. The multiplicative group of a finite field is cyclic.

Proof: Let F have pn elements and let the prime factorization of pn − 1 be
∏r

i=1 qai

i .
We will show that for each i = 1 . . . , r there is an element bi ∈ F∗ of order qai

i . By
Lemma 1.4.4, the order of b =

∏r
i=1 bi is

∏r
i=1 qai

i = pn − 1. Thus b generates the
multiplicative group of F .

Let qa||(pn − 1) and let t = (pn − 1)/qa and consider the set S = {αt : α ∈ F∗}. For
any β ∈ S the polynomial xt − β has at most t roots so there can be at most t elements
of F whose tth power is β. Therefore the cardinality of S is at least (pn − 1)/t = qa. On
the other hand, everything in S is a root of xqa − 1 since

(αt)q
a

= αpn−1 = 1

There can be only qa roots of xqa −1, so S has at most qa elements. This shows |S| = qa.
Similarly, at most qa−1 of the elements in S can be roots of xqa−1 − 1 so there must be
at least qa − qa−1 elements of S whose order in F is qa. This was what we wanted to
show.

Definition 1.4.6. An element of a finite field whose powers generate the nonzero ele-
ments of the field is called primitive.

The theorem says that every finite field has a primitive element. Furthermore, from
the lemma, if α is primitive in a field of pn elements then αk is also primitive whenever
k is coprime to pn −1. Thus there are φ(pn −1) primitive elements, where φ is the Euler
totient function (φ(n) is the number of positive integers less than n and coprime to n).

Corollary 1.4.7. If F is a field with pn elements then

xpn − x =
∏

α∈F

(x − α) and,

xpn−1 − 1 =
∏

α∈F∗

(x − α)

According to the following definition, the corollary shows that a field F of order pn

is a splitting field for xpn−1 − 1 and for xpn − x over Fp.

Definition 1.4.8. Let F be a field and let f(x) ∈ F [x]. A splitting field for f(x) is a
field K containing F such that

• f(x) factors into linear factors in K[x].
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• Every element of K can be written as a polynomial in the roots of f(x).

To prove item 3) of the Theorem we need to use the minimal polynomial of a primitive
element (see Definition 1.3.22).

Proposition 1.4.9. Let F be a finite field of pn elements. Let β be any primitive
element of F and let M(x) be its minimal polynomial over Fp. Then F is isomorphic to
Fp[x]/M(x). In particular deg M(x) = n.

Proof: Let M(x) = xr + ar−1x
r−1 + · · · + a1x + a0 with ai ∈ Fp. We will show

that 1, β, . . . , βr−1 is a basis for F over Fp. We first observe that 1, β, . . . , βr−1 must
be linearly independent over Fp. Suppose on the contrary that some nontrivial linear
combination is 0, br−1β

r−1 + · · · + b1β + b0 = 0. Let k be the largest positive integer
such that bk 6= 0. Then

βk +
bk−1

bk

· · · + b1

bk

β +
b0

b0
= 0

This shows that β is a root of a polynomial over Fp of degree less than deg M(x),
contradicting the minimality of M(x).

Next we show that any power of β can be written as a linear combination of 1, β, β2, . . . , βr−1.
This is true trivially for βi for i = 0, . . . , r − 1. Assume that for some k ≥ r, each
ai for i < k can be written as a linear.combination as stated. Since M(β) = 0,
βr = −ar−1β

r−1 − · · · − a1β − a0. Multiplying by βk−r we can write βk as a linear
combination of lower powers of β. By the induction hypothesis these are all linear com-
binations of 1, β, . . . , βr−1, so βk is also. Since every nonzero element of F is a power of
β, we have shown that 1, β, . . . , βn−1 span F as claimed.

Since F has pn elements r = n. Furthermore the arithmetic on F is completely
determined by its structure as a vector space and βn = −an−1β

n−1 − · · · − a1β − a0.
This is exactly the same structure that Fp[x]/M(x) has. In other words the map from
Fp[x]/M(x) to F taking the class of x to β is an isomorphism.

We can now prove existence and uniqueness for fields of prime power order. We will
need the “Freshman’s dream”:

Proposition 1.4.10. Let α, β be elements of a field of characteristic p. Then (α+β)p =
αp + βp.

Proof: Expand (α + β)p using the binomial theorem and we get terms like

(
p

k

)

αkβp−k

The binomial coefficient really means 1 added to itself
(
p
k

)
times. Since p divides the

binomial coefficient when 1 < k < p the coefficient is 0 unless k = 0 or k = p. That gives
the result.

Proposition 1.4.11. For any prime power there exists a unique field of that order.

Proof: Uniqueness: Let F and F ′ be two fields with pn elements. Let α be a primitive
element in F and let M(x) be its minimal polynomial over Fp. Since α is a root of
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xpn − x, Lemma 1.3.23 says that M(x) divides xpn − x. By Corollary 1.4.7, xpn − x
factors into distinct linear factors in both F and F ′ so there must be a root of M(x)
in F ′. By Proposition 1.4.9, both F and F ′ are isomorphic to Fp[x]/M(x) so they are
isomorphic to each other.

Existence: By successively factoring xpn − x and adjoining roots of a nonlinear irre-
ducible factor, we can, after a finite number of steps, arrive at a field in which xpn − x
factors completely. I claim that the roots of xpn − x form a field, which by Proposi-
tion 1.3.14 must have pn elements.

We need to show that the sum of two roots is a root, that the additive inverse of a
root is a root, that the product of two roots is a root and that the multiplicative inverse
of a root is a root. These are all trivial except for the case of the sum of two roots, which
can be proved using the “Freshman’s dream.”

The following example shows that there are many ways to construct a given field.

Example 1.4.12. Let p = 3. We can construct the field F32 by adjoining to F3 a root
α of the irreducible polynomial x2 + 2x + 2. You can check by hand that α is primitive
in this field. If we had used x2 + 1, which is also irreducible, we would get still get a
field with 9 elements. But the root of x2 + 1 will only have order 4 since α= − 1 implies
α4 = 1.

Definition 1.4.13. Let F be a finite field and let p(x) be a polynomial over F . If p(x)
is irreducible and the class of x is primitive in F [x]/p(x), then we say p(x) is a primitive
polynomial.

Example 1.4.14. We can construct F36 by adjoining to the field of the previous example
a root β of the primitive polynomial (verified using Magma) x3 + αx2 + αx + α3 over
F32 . Elements of F36 are uniquely represented as polynomials in α and β whose degree
in α is at most 1, and whose degree in β is at most 2.

We could also construct F36 by first constructing F33 by adjoining a root α′ of the
primitive polynomial x3+2x+1 and then adjoining a root β′ of the primitive polynomial
(verified using Magma) x2 + x + (α′)7 over F33 .

Finally we could construct F36

directly by adjoining a root of the primitive polynomial
x6 + 2x4 + x2 + 2x + 2.

In each of these fields you can find a root of any one of the polynomials, and thereby
define isomorphisms between the fields.

Exercises 1.4.15.

1. Construct F26 in three ways:
a) by constructing F4 using an irreducible polynomial of degree 2 over F2 and then
by constructing F64 using an irreducible polynomial of degree 3 over F4.
b) by constructing F8 using an irreducible polynomial of degree 3 over F2 and then
by constructing F64 using an irreducible polynomial of degree 2 over F8.
c) by using an irreducible polynomial of degree 6 over F2.
Give isomorphisms between the three representations.

2. Construct F81 in two ways. You may notice that x2 + 2x + 1 and x2 + x + 2 are
both irreducible over F3. Can you construct F81 by using one of these polynomials
and then the other?
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3. Factor x80 − 1 over F3 and explain the relationship between the factors and the
elements of F81. Factor x80 − 1 over F9 and explain the relationship between the
factors and the elements of F81.

4. Factor x15 − 1 over F2. Construct F16 in three ways as a degree 4 extension of F2

and show isomorphisms between the three representations.

5. Make a table showing the possible orders and the number of elements of each order
for F64, F128, and F256.

6. Prove that if r|n then Fqr is a subfield of Fqn .

7. Let n = 6. Find all irreducible polynomials over F2 of deg d where d|n. Find the
product of these polynomials.

8. For a given prime p, let I(d) be the set of irreducible polynomials of degree d over
Fp. Show that for n > 0,

∏

d|n

∏

f∈I(d)

f = xn − 1

9. Show that for any α ∈ Fq,

1 + α + α2 + α3 + · · · + αq−2 =







1 if α = 0

−1 if α = 1

0 otherwise

1.5 The Frobenius Map

Definition 1.5.1. The Frobenius map on Fpn is the map φ : α → αp.

Theorem 1.5.2. The Frobenius map satisfies the following

1) It is an automorphism of Fpn.

2) The set of elements which are fixed by the Frobenius map is exactly Fp.

3) If α ∈ Fpn has minimal polynomial M(x) over Fp then α,αp, αp2

, . . . , αpd−1

are the
roots of M(x) where d = deg M(x).

4) For d|n the set of elements fixed by φd is Fpd.

Corollary 1.5.3. For any α ∈ Fpn,
∑n

i=0 φi(α) and
∏n

i=0 φi(α) are elements of Fp

Definition 1.5.4. The trace map from Fpn to Fp is Tr(α) =
∑n

i=0 φi(α) The norm map
from Fpn to Fp is

N(α) =

n∏

i=0

φi(α)
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1.6 The Euclidean Algorithm

Let a, b be integers with b > 0. The following algorithm computes the greatest common
divisor of a and b.

Input: Nonzero integers a, b.

Output: The (positive) greatest common divisor of a and b.

Algorithm: Define inductively ri for i ≥ 0 and qi for i ≥ 1:

r0 = a

r1 = b

While ri 6= 0, let ri+1, qi be the remainder and quotient when ri−1 is divided by ri,

ri+1 = = qiri − ri−1

0 ≤ri+1 < ri

Output ri−1 when ri = 0.

Theorem 1.6.1. The algorithm above terminates after a finite number of steps. If n is
the smallest integer such that rn+1 = 0 then rn is the greatest common divisor of a and
b.

The number of steps n is at most 1 + log b/(log(1 +
√

5) − 1), where log is base 2.

Proof: See Rosen [7].

We now consider a matrix version of the Euclidean algorithm that produces the linear
combination of a and b that gives the gcd.

Input: Nonzero integers a, b.

Output: Integers d, r, s, such that d = gcd(a, b) and d = ra + bs.

Algorithm: Define inductively 2-vectors, R(i), and 2 × 2 matrices T (i) for i ≥ 0:

R(0) =

[
b
a

]

T (0) =

[
1 0
0 1

]

While ri 6= 0, define qi = bR(i−1)
2 /R

(i−1)
1 c

Q(i) =

[
−qi 1
1 0

]

R(i) = Q(i)R(i−1)

T (i) = Q(i)T (i−1)
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Theorem 1.6.2. The matrix R(i) keeps track of the usual remainders.

R(i) =

[
ri+1

ri

]

The matrix T (k) is the product of the Q(i),

T (k) =
k∏

i=1

Q(i)

If the algorithm terminates after n steps then

[
rn+1

rn

]

= T (n)

[
b
a

]

so the bottom row of T (n) gives a linear combination of a and b that produces the gcd,
rn.

Exercises 1.6.3.

1. Write a procedure implementing the matrix version of the Euclidean algorithm.
Do it first for integers, then for polynomials over Q, then generalize to polynomials
over finite fields.
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