Groups, Rings, and Fields: Math 620, Fall 2022
Schedule



Day Topics Reading
Tu. 8/23 The Integers [OS] Sec. 1.1
Th. 8/25 Groups and their subgroups. [OS] Sec. 2.1,2
Tu. 8/30 Homorphisms, isomorphisms, automorphisms. [OS ] Sec 2.3,4
Th. 9/1 Direct Products, intersections of subgroups. [OS ] Sec 2.3,4
Tu. 9/6 Some exercises.
The symmetric group.
[OS] Sec 2.5.
Th. 9/8 Automorphism groups. Products of transpositions. [OS] Sec. 2.5
Tu. 9/13 Parity of a permutation, the alternating group.
Cayley's theorem.
[OS] Sec. 2.5
Th. 9/15 Generators and Relations
Cosets and Conjugates.
[OS] Sec. 2.6, 2.7
Tu. 9/20 Normality and the first isomorphism theorem. [OS] Sec. 2.8
Th. 9/22 Correspondence Theorem.
Some problems with normal subgroups.
[OS] Sec. 2.8
Tu. 9/27 The third isomorphism theorem and correspondence theorem.
Matrix groups and other examples of groups.
[OS] Sec 2.9, 2.10.
Th. 9/29 Matrix group problems. Metabelian groups.
The second isomorphism theorem.
[OS] Sec. 2.9, 3.1
Tu. 10/4 The second isomorphism theorem and semi-direct products. [OS] Sec. 3.1.
Th 10/6 Problems: semi-direct products. [OS] Sec. 3.1.
Th 10/11 Classfication of Finite Abelian Groups. [OS] Sec. 3.2.
Th 10/13 Simple groups. A_n is simple. [OS] Sec. 3.3.
Tu 10/18 Rings and homomorphisms.
Units, zero divisors, nilpotents. F[x]. Direct products, polynomial rings.
[OS] Sec. 4.1,3
Th. 10/20 Homomorphisms, isomorphisms. Universal property of R[x].
Evaluation of a polynomial.
[OS] Sec. 4.1-3
Tu. 10/25 Ideals and quotient rings. Isomorphism theorems. [OS] Sec. 4.4
Th. 10/27 Operations and properties of ideals and quotient rings. [OS] Sec. 4.5
Th. 11/1 Tidying up: ideals, quotient rings, isomorphism theorems.
Polynomial rings in 2+ variables.
[OS] Sec. 4.5
Th. 11/3 TEST: group theory. [OS] Ch. 3,4.
Tu. 11/8 Formation of Fractions. [OS] Sec. 4.6
Th. 11/10 More fractions. [Ash] Sec. 4.1
Th. 11/15 Fields and field extensions. [OS] Sec. 5.1,2.
Th. 11/17 Finite fields. [OS] Sec. 5.3.
Tu. 11/22 More on fields and finite fields. [OS] Sec. 5.1-3.
Tu. 11/29 Splitting fields, field automorphisms. [OS] Sec. 5.4.
Th. 12/1 Number fields [OS] Sec. 5.5.
Tu. 12/6 Algebraic closure, function fields. [OS] Sec. 5.6.
Th. 12/8 Tidying up. [OS] Sec. 4.
Th. 12/15 TEST: Rings, Fields. [OS] Ch, 4,5.







References