Problem Set 10

Problems with (HW) are due Thursday 11/17 at 11:00 in class. Your homework should be easily legible, but need not be typed in Latex. Use full sentences to explain your solutions, but try to be concise as well. Think of your audience as other students in the class.

Exercises 10.1. Consider the following

- $R=\left\{a / 2^{i}: a \in \mathbb{Z}, i \in \mathbb{N}_{0}\right\}$.
- $S=\{a / b: a \in \mathbb{Z}$ and b is an odd integer $\}$.
- $T=\left\{a / 100^{i}: a \in \mathbb{Z}, i \in \mathbb{N}_{0}\right\}$. (HW)
(a) Show that each of these is a subring of \mathbb{Q} containing \mathbb{Z}.
(b) Identify all the units in each of these rings.
(c) Show that in each of these rings every ideal is principal, generated by some nonnegative integer.
(d) In \mathbb{Z}, any two distinct positive integers generate different ideals. Show that is not true in R, S, T. For each of these rings, identify a set of integers that uniquely define all ideals.
(e) Which of these ideals are prime?

Exercises 10.2. Let R be an integral domain and let D be a multiplicatively closed set in R. Define a relation \sim on $R \times D$ by

$$
\left(a_{1}, d_{1}\right) \sim\left(a_{2}, d_{2}\right) \quad \text { when } \quad a_{1} d_{2}=a_{2} d_{1}
$$

(a) Show that this relation is an equivalence relation.
(b) Let $[a, b]$ denote the equivalence class of (a, b). Call the set of equivalence classes $D^{-1} R$. Show that the function below is injective.

$$
\begin{array}{r}
R \longrightarrow D^{-1} R \\
r \longmapsto[r, 1]
\end{array}
$$

Exercises 10.3. Let R be an integral domain and D a multiplicatively closed subset. [If it helps, you get started, let $R=\mathbb{Z}$ and $D=\mathbb{Z} \backslash\{0\}$.] Using the relation in the previous problem, define addition and multiplication on $D^{-1} R$ by

- $\left[a_{1}, d_{1}\right]+\left[a_{2}, d_{2}\right]:=\left[a_{1} d_{2}+a_{2} d_{1}, d_{1} d_{2}\right]$, and
- $\left[a_{1}, d_{1}\right] \star\left[a_{2}, d_{2}\right]:=\left[a_{1} a_{2}, d_{1} d_{2}\right]$,
(a) Show that multiplication is well-defined. That is if $\left(a_{1}, d_{1}\right) \sim\left(b_{1}, f_{1}\right)$ and $\left(a_{2}, d_{2}\right) \sim$ $\left(b_{2}, f_{2}\right)$ then

$$
\left(a_{1} a_{2}, d_{1} d_{2}\right) \sim\left(b_{1} b_{2}, f_{1} f_{2}\right)
$$

(b) (HW) Show that addition is well-defined. (This is the similar to the previous problem, but the computation is a bit more involved.)
(c) Prove that multiplication is commutative and associative.
(d) (HW) Prove that addition is commutative and associative. (Again, a bit more involved than for multiplication.)
(e) Identify the additive and multiplicative identities, and the additive inverse of an element.
(f) (HW) Prove distributivity holds.

Exercises 10.4. (HW) Fix a ring R and a prime ideal $P \subseteq R$, and let $D=R \backslash P$.
(a) Prove that D is a multiplicative set.
(b) Prove that the ring $R_{P}=D^{-1} R$ has a unique maximal ideal (the ring R_{P} is called the localization of R at P and plays an important role in algebraic geometry).

Exercises 10.5. (Challenge problem as an option to replace the previous problem.) Let R be an integral domain. A multiplicatively closed set $S \subseteq R$ is saturated when

$$
x y \in S \Longleftrightarrow x \in S \text { and } y \in S
$$

(a) There is a theorem saying S is saturated iff $R \backslash S$ is a union of prime ideals. Prove one direction of this result: If \mathcal{P} is a set of prime ideals and let $S=R \backslash\left(\cup_{P \in \mathcal{P}} P\right)$. Show that S is multiplicatively closed and saturated.
(b) Show that the set $S=\left\{300^{i}: i \in \mathbb{N}\right\}$ is multiplicatively closed. Find its saturation (the smallest saturated multiplicatively closed set containing S).

