PROBLEM SET 1

Problems with (HW) are due Friday 9/1 in class. Your homework should be easily legible, but need not be typed in Latex. Use full sentences to explain your solutions, but try to be concise as well.

Problems for Wednesday, 8/23 and Friday, 8/25

Problems 1.1. Basic Group Properties. Let G, * be a group. Give succinct but complete proofs of the following.

- (1) The identity element is unique.
- (2) The inverse of any element is unique.
- (3) The cancellation law holds: a*b = a*c implies b = c (and similarly for cancellation on the right).
- (4) If a * g = g for some $g \in G$, then $a = e_G$.
- (5) $(a * b)^{-1} = b^{-1} * a^{-1}$.
- (6) $(a^{-1})^{-1} = a$.
- (7) If every element is of order 2, then G is abelian.

Problems 1.2. A Perverse Group

- (1) Show that \mathbb{Z} is a group under the operation \Box defined by $a\Box b = a + b 2$. (What is the identity element? What is the inverse of an element a?)
- (2) (HW) Find an isomorphism from \mathbb{Z} , + to \mathbb{Z} , \Box .

Problems 1.3. Use the Euclidean algorithm to express the greatest common divisor as a linear combination of the given integers.

(1) 89, 24

Problems 1.4.

- (1) Let p be a prime number. Let $[a] \in \mathbb{Z}/p$ with $[a] \neq [0]$ (so a is not divisible by p). Use the GCD Theorem to show there is some $r \in \mathbb{Z}/p$ such that [a][r] = [1]. Consequently, each nonzero element of \mathbb{Z}/p has a multiplicative inverse.
- (2) Extend this result, partially, to \mathbb{Z}/n for composite n. If $[a] \in \mathbb{Z}/n$ is such that the integer a is coprime to n, then there is some $[r] \in \mathbb{Z}/n$ such that [a][r] = [1].
- (3) What do these results say about generators for the group \mathbb{Z}_n (the integers modulo n, forgetting multiplication).
- (4) Show that the elements that have multiplicative inverses in \mathbb{Z}/n form a group under multiplication. It is often denoted U_n .

Problems 1.5. The Dihedral Group D_5 . See Section 1.2.

- (1) Do 1.2.5 (a), (b) to find a formulas for t_i and simplify rt_i .
- (2) (HW) Do 1.2.5 (c), (d). Find a formula for $r^{j}t_{i}$ and for $t_{i}t_{j}$.

Figure 1: The pentagon after various transformations

Problems 1.6. (HW) Some subgroups of abelian groups. Let A be an abelian group and let m be an integer.

- (1) Let $mA = \{ma : a \in A\}$. Show that mA is a subgroup of A.
- (2) Let $A[m] = \{a \in A : ma = 0\}$. Show that A[m] is a subgroup of A.
- (3) Give an example in which $mA \cap A[m]$ is trivial (just 0) and given an example in which it is not trivial.

Exercises 1.7. (HW) Order and commutativity.

- (a) If $g \in G$ has order m and $h \in H$ has order n, find the order of $(g,h) \in G \times H$.
- (b) Suppose that $a, b \in G$ commute (that is ab = ba). If ord(a) and ord(b) are coprime find the order of ab.
- (c) Let A be an abelian group with finite exponent. Show that there is some $a \in A$ such that $\operatorname{ord}(a) = \exp(A)$.