Problem Set 1

Problems with (HW) are due Friday $9 / 1$ in class. Your homework should be easily legible, but need not be typed in Latex. Use full sentences to explain your solutions, but try to be concise as well.

Problems for Wednesday, 8/23 and Friday, 8/25
Problems 1.1. Basic Group Properties. Let $G, *$ be a group. Give succinct but complete proofs of the following.
(1) The identity element is unique.
(2) The inverse of any element is unique.
(3) The cancellation law holds: $a * b=a * c$ implies $b=c$ (and similarly for cancellation on the right).
(4) If $a * g=g$ for some $g \in G$, then $a=e_{G}$.
(5) $(a * b)^{-1}=b^{-1} * a^{-1}$.
(6) $\left(a^{-1}\right)^{-1}=a$.
(7) If every element is of order 2 , then G is abelian.

Problems 1.2. A Perverse Group

(1) Show that \mathbb{Z} is a group under the operation \square defined by $a \square b=a+b-2$. (What is the identity element? What is the inverse of an element a ?)
(2) (HW) Find an isomorphism from $\mathbb{Z},+$ to \mathbb{Z}, \square.

Problems 1.3. Use the Euclidean algorithm to express the greatest common divisor as a linear combination of the given integers.
(1) 89, 24

Problems 1.4.
(1) Let p be a prime number. Let $[a] \in \mathbb{Z} / p$ with $[a] \neq[0]$ (so a is not divisible by p). Use the GCD Theorem to show there is some $r \in \mathbb{Z} / p$ such that $[a][r]=$ [1].Consequently, each nonzero element of \mathbb{Z} / p has a multiplicative inverse.
(2) Extend this result, partially, to \mathbb{Z} / n for composite n. If $[a] \in \mathbb{Z} / n$ is such that the integer a is coprime to n, then there is some $[r] \in \mathbb{Z} / n$ such that $[a][r]=[1]$.
(3) What do these results say about generators for the group \mathbb{Z}_{n} (the integers modulo n, forgetting multiplication).
(4) Show that the elements that have multiplicative inverses in \mathbb{Z} / n form a group under multiplication. It is often denoted U_{n}.
Problems 1.5. The Dihedral Group D_{5}. See Section 1.2.
(1) Do 1.2.5 (a), (b) to find a formulas for t_{i} and simplify $r t_{i}$.
(2) (HW) Do 1.2.5 (c), (d). Find a formula for $r^{j} t_{i}$ and for $t_{i} t_{j}$.

Figure 1: The pentagon after various transformations

Problems 1.6. (HW) Some subgroups of abelian groups. Let A be an abelian group and let m be an integer.
(1) Let $m A=\{m a: a \in A\}$. Show that $m A$ is a subgroup of A.
(2) Let $A[m]=\{a \in A: m a=0\}$. Show that $A[m]$ is a subgroup of A.
(3) Give an example in which $m A \cap A[m]$ is trivial (just 0) and given an example in which it is not trivial.
Exercises 1.7. (HW) Order and commutativity.
(a) If $g \in G$ has order m and $h \in H$ has order n, find the order of $(g, h) \in G \times H$.
(b) Suppose that $a, b \in G$ commute (that is $a b=b a$). If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are coprime find the order of $a b$.
(c) Let A be an abelian group with finite exponent. Show that there is some $a \in A$ such that $\operatorname{ord}(a)=\exp (A)$.

