Problem Set 4

Problems here may be on the test.
Problems 4.1. Recall the lattice for $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$. (Or $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ for a bigger challenge.)
(1) For each subgroup, H of $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$, find the lattice for the quotient group $\mathbb{Z}_{2} \times \mathbb{Z}_{4} / H$
(2) Is $\mathbb{Z}_{2} \times \mathbb{Z}_{4} / H$ cyclic? Find generator(s) for it.

Problems 4.2. Conjugation in S_{n}.
(1) Let $\sigma \in S_{n}$. Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in S_{n}$ be a k-cycle, so the a_{i} are distinct. Show that

$$
\sigma *\left(a_{1}, a_{2}, \ldots, a_{k}\right) * \sigma^{-1}=\left(\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots, \sigma\left(a_{k}\right)\right)
$$

[Consider two cases, $b=\sigma\left(a_{i}\right)$ for some i, and $b \notin\left\{\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots \sigma\left(a_{k}\right)\right\}$. Explain why this breakdown into two cases makes sense.]
(2) Let π and σ be elements of S_{n}. Show that the signature of $\sigma \pi \sigma^{-1}$ is the same as the signature of $\pi \in S_{n}$.
Problems 4.3. More examples of conjugation.
(1) Show that A_{n} is invariant under conjugation: for any $\pi \in S_{n}, \pi A_{n} \pi^{-1}=A_{n}$.
(2) Let C_{n} be the rotation subgroup of D_{n}. Find two elements of C_{4} that are conjugate as elements of D_{4} but are not conjugate as elements of C_{4}.
(3) Find two elements of D_{4} that are conjugate as elements of S_{4} but are not conjugate as elements of D_{4}. A computer algebra system will be useful.
(4) Consider D_{n} as a subset of S_{n} by enumerating the vertices of an n-gon clockwise $1,2, \ldots, n$. Show that the n-cycle $(1,2, \ldots, n)$ and any reflection generate D_{n}.
Problems 4.4. For a an element of a group G, define a function $\varphi_{a}: G \longrightarrow G$ by $\varphi_{a}(g)=a g a^{-1}$.
(1) Show that φ_{a} is an automorphism of G.
(2) Show that $\varphi: G \longrightarrow \operatorname{Aut}(G)$ defined by $\varphi: a \longmapsto \varphi_{a}$ is a homomorphism. The image, $\left\{\varphi_{a}: a \in G\right\}$, is therefore a subgroup of $\operatorname{Aut}(G)$. It is called $\operatorname{Inn}(G)$, the group of inner automorphisms of G.
(3) What is the kernel of φ ?

Problems 4.5. The quaternion group is defined by

$$
Q=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a=a^{-1} b\right\rangle
$$

(1) Show that Q has 8 elements. List them in a useful fashion and show how to multiply them as we did for the dihedral group.
(2) Show that Q has 1 element of order 2 and 6 of order 4 .
(3) Draw the lattice diagram for this group.

Problems 4.6. Recall that the exponent of a group G is the lcm of the orders of the elements (if this is finite).
(1) For a finite group G show that the the exponent of G divides the order of G (Lagrange).
(2) Give an example to show that there may not be an element in G whose order is the exponent of G.

