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Chapter 1

Getting Started

1.1 The Integers

What are the integers? This is not a simple question, if you want to be rigorous
about defining the integers. Formally doing so would distract from developing our
core topics, so we will take as our foundation the following. The ring of integers
Z is

• the set of natural numbers N = {1, 2, 3, . . . } along with the number 0 and
the additive inverses of the natural numbers {−1,−2,−3. . . . };

• the operation of addition (and the properties of addition we know from ele-
mentary school);

• the operation of multiplication (and the properties of multiplication we know
from elementary school);

• the ordering defined by positive numbers being greater than 0 and a > b if
and only if a− b > 0;

• properties of order related to addition and multiplication such as a > b
implies a+ c > b+ c;

• the well-ordering principle—any non-empty subset of the natural numbers
has a least element.

We may think of subtraction as either a − b = a + (−b) or equivalently (after
some argument) a− b is the the number s (which we should show is unique) such
that s+ b = a. Division will be dealt with below. While the integers are familiar
from elementary school, the well-ordering principle is not (unless you attended
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a very special elementary school!). It is actually key to the formal definition of
the integers (see the Peano axioms and [Men15]) and to mathematical induction
stripped to its essentials:

The Principle of Mathematical Induction
Let K be a subset of N satisfying these two properties

• 1 ∈ K;

• whenever a ∈ K it is also true that a+ 1 ∈ K.

Then K = N.

The well-ordering principle is easily extended to say that any non-empty subset
of the integers that is bounded below has a least element. Similarly, the principle
of induction can use any integer (instead of 1) as an initial element in the set K.

Beyond the basic properties above there are five main results for the integers
that are fundamental. For the purposes of easy reference I will call them the
Quotient-Remainder (QR) Theorem, the Greatest Common Divisor (GCD) Theo-
rem, the Euclidean Algorithm, the Prime-Irreducible Theorem (Euclid’s lemma),
and the Unique Factorization Theorem (the Fundamental Theorem of Arithmetic).
The Quotient-Remainder Theorem and Unique Factorization will be familiar; the
other results, perhaps less so. The proofs here will be concise, and just a few
exercises are included because this material is treated very well in other resources
[Hun12].

In addition to these key results about the integers we introduce modular arith-
metic in this section. Modular arithmetic creates a new algebraic structure known
as the integers modulo n (for some n > 1), which we write Z/n.

The Quotient-Remainder Theorem and Divisibility

We have implicitly used the Quotient-Remainder Theorem since elementary school,
when we computed (the unique!) quotient and remainder of two integers. The
proof relies on something sophisticated: the well-ordering principle.

Theorem 1.1.1 (Quotient-Remainder). Let a and b be integers with b 6= 0. There
exist unique integers q, r such that

(1) a = bq + r, and

(2) 0 ≤ r < |b|.

If the remainder of a divided by b is 0, we say b divides a and a is a multiple
of b.

5
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Proof. We prove this for b > 0 and leave modifications necessary for the case b < 0
as an exercise. Consider the set S = {a− bc : c ∈ Z}∩N≥0. As a nonempty subset
of the nonnegative integers, it has a least element. Let r be the minimal element
of S, and let q be the integer such that r = a − bq. If r ≥ b we would have a
contradiction because then r− b ≥ 0 and r− b = a− b(q+ 1) would put r− b ∈ S.
Thus we must have 0 ≤ r < b. This establishes existence of q, r as claimed.

To prove uniqueness, suppose another r′, q′ satisfy (1) and (2) and suppose
without loss of generality that r ≥ r′. (We want to show that r′ = r and q′ = q.)
Then a = bq + r = bq′ + r′ so r − r′ = b(q′ − q). Now b > r − r′ ≥ 0 but b(q′ − q)
is a multiple of b. The only multiple of b in the interval [0, b) is 0, so the only
possibility is r − r′ = 0 = b(q − q)′, and therefore r = r′ and q = q′.

It is fairly common in programming languages (in particular in Python and
Sage) to write the integer quotient as a//b and the remainder as a%b. We will use
this in the exercises and the discussion of the Euclidean algorithm in this chapter.

Exercises 1.1.2. More on the Quotient-Remainder Theorem.

(a) Prove the QR Theorem for negative integers: Only minor changes are needed.

(b) For b > 0, show that a//(−b) = −(a//b) and a%(−b) = a%b. [Don’t let the
notation make this hard!]

(c) Prove this alternative version of the QR Theorem. Let a and b be integers
with b 6= 0. There exist unique integers q, r such that

(1) a = bq + r, and

(2) |b|/2 < r ≤ |b|/2
[There are two approaches: use the existing QR Theorem to prove the alter-
native, or prove it from scratch by redefining S and modifying the proof of
the QR Theorem.]

Let a and b be integers, at least one of which is not 0. The common divisors
of a and b are the integers that divide both a and b. The greatest common
divisor (gcd) is the largest positive integer dividing both a and b. The common
multiples of a and b are the integers that are multiples of both a and b. The
least common multiple (lcm) is the smallest positive integer that is a multiple
of both a and b.

A linear combination of a and b is an integer that can be expressed as au+bv
for some integers u and v.

Exercises 1.1.3. Properties of divisibility.

(a) Show that if b divides a and d divides b that d also divides a.

(b) Show that if d divides a and d divides b that d also divides any linear com-
bination of a and b. (In particular, this proves Lemma 1.1.5 below.)
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The following result is an important property of the integers, and not an obvious
one. It is an important tool in the study of groups. We will see echos of this result
and the proof when we study ideals in rings (Section 4.4).

Theorem 1.1.4 (GCD). Let a and b be integers, at least one of them nonzero.
The gcd of a and b is the smallest positive linear combination of a and b. In
particular, gcd(a, b) = au+ bv for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of
gcd(a, b).

Proof. Let S = {ar + bs : r, s ∈ Z} be the set of all linear combinations of a and b.
Let d be the smallest positive element of S and let u, v be such that d = au+ bv.
I claim d divides a and b.

By the QR Theorem applied to a and d, a = dq + r for some integer q and
nonnegative integer r < d. Then

r = a− dq = a− (au+ bv)q = a(1− uq)− bvq

This shows that r is also in S. But, d is the smallest positive element of S, and
0 ≤ r < d. Consequently, r = 0, so d divides a.

Similarly, one shows d divides b, so d is a common divisor of a and b. To show
it is the greatest common divisor, let c be any other common divisor of a and b.
Then c divides au+ bv = d (by divisibility properties). Since d is positive c ≤ d.

Since d divides a and b the elements of S are all multiples of d by Exercise 1.1.3.
On the other hand, any multiple of d is a linear combination of a and b since d is a
linear combination of a and b. This establishes the last sentence of the theorem.

We say two integers are coprime (or relatively prime) when their gcd is 1.
Given a and b, how do we find their gcd? The answer (for arbitrary large

integers) is not to factor each and look for common factors. Rather, use the
Euclidean algorithm.

Let’s assume a ≥ b ≥ 0. Recall that a//b is the integer quotient and a%b the
remainder as determined by the QR Theorem. Set r−1 = a and r0 = b, and define
inductively (while rk 6= 0)

qk = rk−1//rk

rk+1 = rk−1%rk, so that

rk−1 = rkqk + rk+1.
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Rearranging these equalites by solving for rk+1, we get a sequence

r1 = r−1 − r0q0 = a− bq0
r2 = r0 − r1q1
r3 = r1 − r2q2

...

rk+1 = rk−1 − qkrk
...

rn+1 = rn−1 − qnrn = 0.

The rk are a strictly decreasing sequence of nonnegative integers, so the process
must terminate: for some n, rn+1 = 0 so rn divides rn−1. Now we make use of the
following lemma, proved using basic divisibility properties (see Exercise 1.1.3).

Lemma 1.1.5. For integers a, b, c, s such that a = bs + c, we have gcd(a, b) =
gcd(b, c).

Let’s apply this to the sequence rk, letting n be minimal such that rn+1 = 0.
We have (since rn+1 = 0)

gcd(a, b) = gcd(b, r1) = · · · = gcd(rn, rn+1) = gcd(rn, 0) = rn

This argument shows that the Euclidean algorithm produces the gcd of a and b.
In the following Sage code we only keep two of the remainders at any time, not
the whole sequence: after the kth pass through the while loop, r in the algorithm
is rk−1 and s is rk.

def euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

r = a

s = b

while s != 0:

rem = r %s

r = s

s = rem

return r
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There is a heftier Euclidean algorithm—often called the Extended Euclidean
algorithm—which produces two integers u, v such that au + bv = gcd(a, b). I like
the following matrix version of the algorithm. Let

Qk =

[
−qk 1

1 0

]
and Rk =

[
rk
rk−1

]
where the sequence rk and qk are the same as used above in the Euclidean algo-
rithm. Verify that Rk+1 = QkRk. Consequently,

Rn+1 =

[
0
rn

]
= QnQn−1 · · ·Q0R0 (1.1)

where R0 =

[
b
a

]
. Let M =

[
m1,1 m1,2

m2,1 m2,2

]
= QnQn−1 · · ·Q0. Then, after the

algorithm terminates, we have m2,1b+m2,2a = rn = gcd(a, b).
Here is Sage code for the extended Euclidean algorithm. (Note that Sage

indexes rows and columns of matrices starting from 0 not 1.) Initially M is the

2×2 identity matrix and R is the matrix

[
a
b

]
. The algorithm iteratively computes

q (which, at the kth iteration is qk−1), the quotient of m1,0 by m0,0. It forms the

matrix Q =

[
−q 1
1 0

]
and multiplies both R and M by Q. The result after iteration

k (for k = 1, . . . ), is that R is Rk and M is the product Qk−1Qk−2 · · ·Q1Q0 in
(1.1).

def ext_euclid_alg(a,b):

if b == 0:

print ("division by zero")

return false

else:

M = matrix.identity(2)

R = matrix(2,1, [b,a])

while R[0,0] != 0:

q = R[1,0]//R[0,0]

Q = matrix(2,2,[ -q , 1, 1, 0])

M = Q * M

R = Q * R

return M

We have proven that the Euclidean algorithm terminates with the greatest
common divisor of the input integers. A bit closer analysis of the algorithm reveals
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a connection with the Fibonacci numbers and allows one to bound the number of
steps for the Euclidean algorithm. See [Ros11] for details.

Theorem 1.1.6 (Euclidean Algorithm). Let a, b be integers with b 6= 0. The
Euclidean Algorithm outputs gcd(a, b) in at most 1 + log2 b/ logα steps, where
α = (1 +

√
5)/2 is the golden ratio. The Extended Euclidean Algorithm outputs

integers u, v with |u| < b and |v| < a such that au+ bv = gcd(a, b).

The greatest common divisor of a finite set of integers (that contains a nonzero
integer) is simply the largest integer that divides each element of the set. A simple
induction argument shows that the set of common divisors of {a1, . . . , an} is equal
to the set of common divisors of {gcd(a1, . . . , an−1), an}. To compute the greatest
common divisor of this set efficiently, one computes iteratively gcd(a1, . . . , ak) =
gcd(gcd(a1, . . . , ak−1), ak). (There are moreoptimized algorithms, but understand-
ing this approach is sufficient here.)

Exercises 1.1.7. Using the Euclidean algorithm

Express the greatest common divisor as a linear combination of the given
integers.

(a) 89, 24

(b) 24, 40, 30

Exercises 1.1.8. Extensions of the GCD theorem

(a) Given any set of integers {a1, . . . , an} their greatest common divisor may be
expressed as a linear combination d = u1a1 + . . . unan for ui ∈ Z. Prove this
using induction.

(b) Given a, b ∈ Z, characterize the set of {(u, v) ∈ Z× Z : ua+ vb = gcd(a, b)}.
That is, if (ū, v̄) is one such pair, what are all the others? [It is easiest to do
this first for a, b coprime. Then extend the result.]

(c) For the integers a = 6, b = 10, and c = 15 identify the set of all triples u, v, w
such that au+ bv + cw = gcd(a, b, c).

(d) (Much more challenging, and just to tantalize you.) Characterize the set of
integers u1, . . . , un such that a1u1 + a2u2 + · · ·+ anun = gcd(a1, . . . , an).

Primes, Irreducibles, and Unique Factorization

The next main result is the Fundamental Theorem of Arithmetic, which says
(roughly) that every nonzero integer has a unique factorization as a product of
primes. We will now define what it means for an integer to be prime, but it will
not be the school definition. We also define the term irreducible, which is what
we customarily use for primality. The definitions given here are the accepted ones
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in more general contexts. Fortunately, the following theorem (Euclid’s Lemma),
which I will refer to as the Prime-Irreducible Theorem shows that for integers the
notions are equivalent.

Definition 1.1.9. Let r be an integer with |r| > 1. We say r is irreducible when
r = ab implies that either a = ±1 or b = ±1 (and the other is ±r). We say r is
prime when r|ab implies r|a or r|b.

Theorem 1.1.10 (Prime-Irreducible). An integer is irreducible if and only if it is
prime.

Proof. We prove this for positive integers; minor adjustments can be made for a
negative number.

Let p > 1 be an irreducible; let us show it is prime. Suppose that p|ab for
some integers a and b. We need to show p|a or p|b. If p divides a we are done, so
suppose it does not divide a. Since p is irreducible, its only positive divisors are 1
and p, so the GCD of a and p is 1. By the GCD Theorem, there are integers u, v
such that

1 = au+ pv

Multiplying by b
b = abu+ pbv

Since p|ab we have that p divides the right hand side. Thus p divides b, as was to
be shown.

Suppose now that p > 1 is prime, we will show it is irreducible. Let p = ab be
a factorization of p. We must show one of a or b is ±1. Since p is prime and it
divides (in fact equals) the product ab it must divide one of the factors. Without
loss of generality, say p|a, so a = px for some integer x. Then p = ab = pxb, so
p(1− xb) = 0. Since p 6= 0, we have 1− xb = 0, so x = b = ±1.

The previous theorem is the key ingredient to establishing unique factorization.

Theorem 1.1.11 (Unique Factorization). Let a be a positive integer a > 1. There
is a nonnegative integer t, there are positive prime numbers p1 < p2 < · · · < pt,
and there are positive integers e1, . . . , et, such that

a = pe11 · · · p
et
t

This factorization of a is uniquely determined.

Proof. We prove existence first, then uniqueness, both by induction.
Clearly, any prime integer, such as 2 can be factored as claimed using t = 1 and

e1 = 1. Let us assume that all integers less than n can be factored as a product
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of primes, and prove that n can also be factored as a product of primes. If n is
prime, we are done (again using t = 1, et = 1). Otherwise n = ab with a < n
and b < n. By the induction hypothesis, each of a and b can be factored as a
product of primes, let’s say there are t distinct primes involved altogether in the
factorizations of a and b. Allowing some of the exponents to be 0 we have

a = pd11 · · · p
dt
t and

b = pe11 · · · p
et
t so

n = ab =
(
pd11 · · · p

dt
t

)(
pe11 · · · p

et
t

)
n = ab = pd1+e11 · · · pdt+ett

To prove uniqueness, we again note that there is only one way to factor a prime
number, since it is only divisible by itself and 1. This gives us our base step, n = 2.
Assume uniqueness of the prime factorization for all integers less than n. Suppose
n has two distinct factorizations.

n = pd11 · · · p
ds
s = qe11 · · · q

et
t

with di, ei positive. Since p1 is prime and is a factor of n it must divide one of
the factors of n in the q factorization; say p1 divides qj . But q1 is the smallest
prime among the qi, so q1 ≤ p1. An analogous argument shows p1 ≤ q1, and
consequently, p1 = qi. Dividing both sides by p1 we get n/p1 is an integer smaller
than n. It therefore has a unique factorization. Consequently, s = t and for all i,
pi = qi and di = ei.

Exercises 1.1.12. Consequences of unique factorization

Prove these statements using the Unique Factorization theorem.

(a) Every nonzero integer can be uniquely expressed in the form u2eb in which
u = ±1 , e ∈ N0 and b is odd.

(b) Every nonzero rational number a can be uniquely expressed in the form

a = upe11 · · · p
et
t

for some u = ±1, t ∈ N0, prime numbers p1 < p2 < · · · < pt, and nonzero
integers e1, . . . , et.

(c) Any rational number can be expressed in a unique way in the form a/b with
a ∈ Z and b ∈ N with gcd(a, b) = 1. We call this expressing the rational
number in lowest terms.

Exercises 1.1.13. Extending greatest common divisor to rational numbers.

This will be easier to do using unique factorization than just the GCD the-
orem. Let {a1/b1, . . . , an/bn} be a set of rational numbers in lowest terms.
Let B = lcm {b1, . . . , bn} and A = gcd {a1, . . . , an}.
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(a) Show that Bai/(Abi) is an integer for all i = 1, . . . , n .

(b) Show that gcd {Ba1/(Ab1), . . . , Ban/(Abn)} = 1. [Suppose p is a prime
dividing B, show there is some i such that p is not a factor of Bai/(Abi).]

(c) Observe that the rational number A/B is similar to the GCD. If we factor it
out of the rational numbers ai/bi we are left with a set of integers that have
no common factor.

Modular Arithmetic

Our discussion of the integers culminates with a quick summary of arithmetic
modulo an integer n. This is a model for the construction of quotient groups and
quotient rings that will be taken up later.

Definition 1.1.14. Let n be a nonzero integer. For integers a and b we say a is
congruent modulo n to b when n divides a− b.

Theorem 1.1.15. Congruence modulo n is an eqivalence relation. Furthermore,
the set {0, 1, . . . , n − 1} is a system of representatives for congruence modulo n
in the sense that each integer a is congruent modulo n to exactly one element of
{0, 1, . . . , n− 1}.

Proof. The relation of being congruent modulo n is clearly reflexive, since for any
a ∈ Z, n|(a − a). It is symmetric because if n|(a − b) then also n|(b − a). It is
transitive because if a is congruent to b and b is congruent to c modulo n then
n|(a−b) and n|(b−c). This implies that n divides the sum (a−b)+(b−c) = a−c,
by Exercise 1.1.3, so a is congruent to c modulo n.

From the Quotient-Remainder Theorem, an integer a is congruent to its re-
mainder when divided by n, since there is an integer q such that a = nq+ r. This
remainder is one of the elements of {0, 1, . . . , n− 1}. No two of these numbers
differ by a multiple of n so they are distinct modulo n.

The integers n and −n give the same equivalence relation, so we always use
positive integers for the modulus. It is common to write [a]n for the congruence
class of a modulo n, whenever we need to be careful to distinguish between the
integer a and the congruence class, or when we have more than one modulus to
worry about. If there is a unique modulus the subscript n may be omitted. If it is
clear from context that we are working modulo n, we may simply write a.

Finally we have:

Theorem 1.1.16 (Arithmetic modulo n). Suppose that a ≡ b mod n and r ≡
s mod n. Then a + r ≡ b + s mod n and ar ≡ bs mod n. Thus, arithmetic on
congruence classes modulo n is well-defined as follows.
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• [a] + [r] = [a+ r]

• [a] ∗ [r] = [ar]

Proof. Suppose that a ≡ b mod n and r ≡ s mod n. We have a = b+ jn for some
integer j and r = s + kn for some integer k. Then a + r = b + s + (j + k)n so
a+ r ≡ b+ s mod n. We also have ar = bs+ (ak + bj + jkn)n so ar ≡ bs mod n.

This shows that no matter what element of an congruence class is used to
represent the class, arithmetic operations modulo n will give the same result.

We will write Z/n for the set of congruence classes modulo n, with the opera-
tions + and ∗. (It is also common to use Zn, but Z/n is consistent with notation
we will use later.) When there is no chance of ambiguity, we write the congruence
classes as 0, 1, . . . , n − 1 (without the brackets and using the least nonnegative
representatives for each class). But, sometimes it is handy to be a bit flexible. For
example it is good to remember that n− b is equal to −b in Z/n. So (in Z/n)

b(n− 1) = (−1)b = n− b (computing in Z/n).

Exercises 1.1.17. Alternative representatives for elements of Z/n
(a) Use the Quotient-Remainder Theorem from Exercises 1.1.2 to show alterna-

tive sets of representatives for the integers modulo n are:

− n− 1

2
,−n− 3

2
, . . . ,

n− 3

2
,
n− 1

2
for n odd, and,

− n− 2

2
,−n− 4

2
, . . . ,

n− 4

2
,
n− 2

2
,
n

2
for n even.

Exercises 1.1.18. Invertible elements in Z/n
(a) Let p be a prime number. Let [a] ∈ Z/p with [a] 6= [0] (so a is not divisible

by p). Use the GCD Theorem 1.1.4 to show there is some r ∈ Z/p such that
[a][r] = [1].Consequently, each nonzero element of Z/p has a multiplicative
inverse.

(b) Extend this result, partially, to Z/n for composite n. If [a] ∈ Z/n is such
that the integer a is coprime to n, then there is some [r] ∈ Z/n such that
[a][r] = [1].
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1.2 Groups, Rings, and Fields

Let us now introduce our three objects of study: groups, rings, and fields. This
section will discuss some familiar number systems in the context of groups, rings,
and fields. We include also some perspective on the history of the number systems
as well as their appearance in our system of education.

Definition 1.2.1. A binary operation on a set S is a function from S × S to
S. A unary operation on S is a function from S to S. An “operation” on S is
usually assumed to be binary if not stated otherwise1.

A binary operation ∗ on S is associative when (a ∗ b) ∗ c = a ∗ (b ∗ c). It is
commutative when a∗ b = b∗a. It has an identity element when there is some
element e ∈ S such that a ∗ e = e ∗ a = a for all a ∈ S.

A group has one binary operation, generally denoted ∗, while rings and fields
have two binary operations, generally denoted + and ∗.

Definition 1.2.2. A group is a set G with a binary operation ∗ and a unary
operation, denoted a 7−→ a−1, satisfying the following properties.

(1) Associativity of ∗.

(2) Identity for ∗: There is an element, generally denoted e, such that e ∗ a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

Definition 1.2.3. A ring is a set R, with two operations + and ∗ that satisfy the
following properties.

(1) Associativity for both + and ∗.

(2) Commutativity for both + and ∗.

(3) Identity elements for both + and ∗. There is some element in R, that we
call 0, such that a+ 0 = a and there is an element, that we call 1, such that
a ∗ 1 = a.

1One can define ternary (S × S × S −→ S) and, more generally, n-ary operations, but we will
have no use for these.

15



(4) Inverses for +. For each a ∈ R there is some other element, which we write
−a, such that a+ (−a) = 0.

(5) Distributivity of ∗ over +. That is, a ∗ (b+ c) = a ∗ b+ a ∗ c.

A field is a ring with one additional property,

(6) Inverses for ∗. For each nonzero a ∈ R there is some other element, that we
write a−1, such that a ∗ a−1 = 1.

Comparing these definitions, one sees that a ring R under the operation +
is an abelian (commutative) group with identity element 0 and additive inverse
operation a 7−→ −a. Under the operation of multiplication, ∗, a ring may lack the
property of inversion. A field F is an abelian group under + and the set of nonzero
elements, F ∗ = F \ {0}, is an abelian group under ∗. The interaction between the
two operations of + and ∗ for both rings and fields is given by the distributive
property.

Now to the question: what examples do we have of groups, rings, and fields?

Familiar Rings and Fields

The first number system that a child learns in school is the natural numbers
N = {1, 2, 3, 4, . . . }, and eventually this is expanded to the integers by including 0
and the additive inverse of each positive integer. The integers, denoted Z, are an
abelian group under addition. Once the operation of multiplication as repeated
addition is introduced, we have the first example of a ring. The integers in fact
form the prototypical ring, as we shall see in Theorem 4.2.11.

Students in elementary school—the lucky ones—may also learn “clock arith-
metic” in which addition is done on a clock, so 8:00 plus 7 hours is 3:00. This is
essentially modular arithmetic with modulus 12 (although we usually use repre-
sentatives 1:00, 2:00, . . . , 12:00 rather than using 0:00, 1:00, . . . , 11:00). We saw in
Section 1.1 that multiplication is also well defined modulo n, and one can check
that the properties of a ring are satisfied. We will denote this number system Z/n
(although Zn is also commonly used).

The next step in mathematics education is to expand this integer number sys-
tem. The integers do not form a field since the only numbers with a multiplicative
inverse in Z are ±1. There is a complicated process that enlarges the set of integers
by adding fractions to create the rationals, Q. I say the process is complicated
because lots of people have trouble understanding fractions well, and a key part
of the problem is that a given number has an infinite number of different names:
1/2 = 2/4 = 3/6 = · · · . The process of forming fractions can be generalized to
other rings, but it has delicate and subtle steps involving equivalence relations.
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When you see the construction in Section 4.7 you may appreciate that these sub-
tleties are closely tied to the difficulties people have with fractions.

There are two other fields that are introduced in secondary school education,
although they are challenging to understand fully: the real numbers R, and the
complex numbers C. Formally defining the real numbers is a sophisticated process,
but treating R as the set of all decimal numbers (including infinite non-repeating
ones) and imagining numbers as points on the number line is a way to work with
them effectively enough to do most college level mathematics.

We won’t have much need for the real numbers, but the relationship be-
tween the reals and the complex numbers is something that is key to study-
ing fields in general. The complex numbers are lightly treated in secondary
school by “imagining” a number i whose square is −1. The complex numbers
are those of the form a + bi in which a, b ∈ R. Addition is “componentwise,”
(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, and the additive inverse of a+ bi is −a− bi.
Multiplication is based on i2 = −1: (a+ bi) ∗ (c+ di) = (ac− bd) + (ad+ bc)i. One
can check that (a− bi)/(a2 + b2) is the multiplicative inverse of a+ bi. With these
operations, C is a field.

In the discussion of the complex numbers above, there was actually no need
to use real numbers for a, b, c, d. We could have restricted them to be rational
numbers and the statements about addition, multiplication and inverses would
still hold true. Thus we can introduce a field derived from Q that includes i and
uses the rules above for addition, multiplication, and the inverses for each. We call
this field the Gaussian rationals and denote it Q(i).

There is one other field that is accessible to those who have learned “clock
arithmetic,” (essentially arithmetic modulo 12 as noted above). If our clock had
a prime number p of positions, the arithmetic would be in Z/p. It was shown
in Exercise 1.1.18 that every nonzero element in Z/p has a multiplicative inverse,
thus Z/p is a field. When we focus on this modular ring as a field we will write
it as Fp, instead of Z/p. Thus we have our slate of elementary fields, Q, Q(i) and
Fp, supplemented if we want by R and C.

Each of these fields is of course a ring. Our collection of rings that are not fields
includes Z and Z/n for n not a prime. We may supplement it by the Gaussian
integers

Z[i] = {a+ bi : a, b ∈ Z}

It is routine to check that this is a ring. Notice that there are 4 elements that have
multiplicative inverses, ±1,±i.

All of our rings are groups under addition and we can study them as groups
by “forgetting” the multiplicative structure (“forget” is actually a term used by
mathematicians in this context!) We also obtain a few other examples of groups
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Figure 1.1: The Pentagon

by looking at the nonzero elements of a field under multiplication. These are
the nonzero rationals, denoted Q∗, the nonzero elements of Q(i), and the nonzero
elements of Fp, denoted F∗p (and similarly for R and C).

But what about a group that doesn’t involve ignoring one of the operations on
a ring? In particular, so far, we have no examples of groups in which the operation
is not commutative.

The Dihedral Groups, Dn

Group theory actually arose from the study of transformations that preserve the
structure of a mathematical objects. The symmetry of physical objects is perhaps
the easiest entry point.

Consider a regular pentagon, as in Figure 1.1. Imagine a table with a pentagon
carved into it and a clear pentagon that fits neatly into the enclosure. Enumerate
the “base points” on the table and the vertices of the pentagon as shown.

Rotation counter-clockwise about the center by 72◦ takes the pentagon to itself.
Only the enumeration of the vertices would indicate that a change occured. Calling
this rotation r, we can see there are 5 rotational symmetries, which are rotation
by 72◦, 144◦, 216◦, 288◦ and 360◦. The latter has the same result as not moving
the pentagon at all. This set of rotations is a group where the operation is just
doing one rotation followed by another. Thinking of rotation as a function, we are
composing functions. We may write these rotations as r, r2, r3, r4 and r5; the latter
having the same effect as not moving pentagon at all, so r5 = r0 is the identity
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element. It should be clear that ri ∗ rj = ri+j . This group has 5 elements and
“looks a lot like” Z/5 under addition. (It is isomorphic to Z/5, see Section 2.3.)

There is another type of symmetry indicated by the dashed line. For each
vertex of the pentagon 0, . . . , 4 there is a line through that vertex and the midpoint
of the opposite side that is an axis of symmetry for reflection. Let ti be the
reflection across the line at vertex i. We now have 10 symmetries of the pentagon:
the identity, 4 non-trivial rotations, and 5 reflections. I claim these are the only
symmetries. There are 5 possible places to put vertex 1; but then vertex 2 must be
one notch away, either clockwise or counterclockwise. The positions of the other
vertices are then determined by the rigidity of the pentagon. So there are only
10 possibilities. Notice also that after a rotation, the ordering of the pentagon
vertices increases clockwise, but after a reflection the numbers of the pentagon
vertices increase counterclockwise (and the numbers on the pentagon would be
reversed as in a mirror).

Now let’s consider the group operation: what happens when we follow one
symmetry by another? To get started we must address some ambiguities in how
we define rotation and reflection when the pentagon is not in the original position
as in Figure 1.1. We adopt the following conventions:

• The rotation r is rotation of vertex i of the pentagon to the position of
vertex i−1, so it is counter-clockwise when the enumeration on the pentagon
increases clockwise and clockwise when the enumeration on the pentagon
increases counter-clockwise (as it is after a reflection).

• A reflection ti is reflection across the line through the ith vertex of the
pentagon, not the label i on the table.

• The product r∗ti means reflect then rotate. As is customary using functional
notation, we apply the function on the right first.

Figure 1.2 shows the two computations, t0 ∗ r = t2 and r ∗ t0 = t3. These are
unequal, so these computations show that we have our first example of a nonabelian
group. It is called the dihedral group of order 5, and written D5.

Definition 1.2.4. For n ≥ 3, the dihedral group of order n, written Dn, is
the group of symmetries of a regular n-gon. In addition to the identity, there
are n − 1 rotations and n reflections. The group operation is composition of the
transformations.

One can verify, in a similar manner to that above, that Dn is nonabelian for
all n. Our initial example could have been D3 or D4 rather than D5. We did
not choose D3 because it is equal to the symmetric group, S3 (see below), and we
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(d) After rt0 = t3

Figure 1.2: The pentagon after various transformations
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Figure 1.3: The Four Reflectional Symmetries of the Square

wanted the first example to distiguish between the symmetric and dihedral groups.
We did not choose D4 because there is a subtle complication with the notation
when n is even. The reflections on D4 (and for other even n) are not nicely indexed
by the vertices. Some reflections go through a pair of vertices, the other reflections
go through midpoints of opposite sides, as illustrated in Figure 1.3

We can consider each of the symmetries of the pentagon as a function on Z/5
that assigns to the base point a on the table the index of the pentagon vertex
at position a after applying the symmetry. So r(a) = a + 1, and ri(a) = a + i
(computing modulo 5). The following exercise develops this example in more
detail.

Exercises 1.2.5. Formulas for the products in D5

We will use arithmetic in Z/5 with the system of representatives 0, 1, 2, 3, 4.

(a) Observe that the reflection ti applied to the original position of the pentagon
(in Figure 1.1) switches i+1 with i−1 and i+2 with i−2 where computations
are modulo 5. Show that when ti is applied to the original position of
the pentagon the vertex at base point a is 2i − a. We can write this as
ti(a) = 2i− a.

(b) Explain why the product of two reflections is a rotation, and find a formula
for ti ∗ tj(a).

(c) Show that r ∗ ti = ti+3 by arguing that rti is a reflection and that, applied
to the pentagon in the original position, it takes i+ 3 to itself.

(d) Find a formula for rj ∗ ti; that is, give a function of Z/5 [Hint: linear] for
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rj ∗ ti(a). Do the same for ti ∗ rj .

The Symmetric Groups, Sn

Recall that a function from one set to another is a bijection when it is both injective
(one-to-one) and surjective (onto). If f : A −→ B is a bijection, then there is a well-
defined inverse function, f−1, since each element of B has exactly one preimage. If
f : A −→ A is a bijection from A to itself then we say f permutes the elements of
A; it rearranges them in a sense. We are particularly interested in the case when
A is a finite set, even more specifically the set {1, 2, 3, . . . , n}. In this case it is
convenient to write a permutation as a table with the columns i, f(i). Here are
two examples (it is common to use Greek letters to denote permutations).

σ =

(
1 2 3
1 3 2

)
π =

(
1 2 3
2 3 1

)
Here σ(1) = 1, σ(2) = 3 and σ(3) = 2.

This tabular format makes it evident that there are n! permutations of a set
with n elements: There are n choices for the image of 1, call it a1 ∈ {1, . . . , n},
then there are n−1 possible images for 2, since it must be in {1, . . . , n}\{a1} and
so on. The table would then be(

1 2 3 . . . n
a1 a2 a3 . . . an

)
The tabular form indicates the sense in which a permutation is a rearrangement,
with a1 now being in the first position, a2 in the second, and so on.

Since the composition of two bijections from A to itself is itself a bijection from
A to itself, composition is an operation on the set of permutations. The inverse of
a permutation is also a permutation. Thus we can make the following definition.

Definition 1.2.6. Let n be a positive integer. The set of all permutations of
{1, 2, 3, . . . , n} along with composition and the unary operation that takes a per-
mutation to its inverse function is called the symmetric group on {1, . . . , n} and
is denoted Sn. We will write composition of permutations using ◦ when empha-
sizing that permutations are functions, but generally we use ∗, which is the usual
notation for a product in groups.

For n = 1 the symmetric group has just 1 element, and for n = 2 it has two.
The group S3 has 6 elements. Three of these elements fix exactly one element, as
σ does, and are called transpositions. The other two are π and π−1 = π ◦π. These
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are called 3-cycles. The symmetric groups Sn for n ≥ 3 are nonabelian. One can
compute π ◦ σ and σ ◦ π and see that they are unequal (applying the right hand
function first is our convention).

π ◦ σ =

(
1 2 3
2 1 3

)
σ ◦ π =

(
1 2 3
3 2 1

)
The symmetric groups will be discussed in detail in Section 2.5.
An astute reader has perhaps noticed that the discussion of D5 yielded a per-

mutation of {0, 1, 2, 3, 4} for each element of D5. Allowing ourselves to let S5 be
the permutation group of {0, 1, . . . , 4} for the moment, we have essentially given
a function of D5 into S5. Using a bit of Exercise 1.2.5 (and computing in Z/5) we
have;

rj 7−→
(

0 1 2 3 4
j 1 + j 2 + j 3 + j 4 + j

)
ti 7−→

(
0 1 2 3 4
2i 2i− 1 2i− 2 2i− 3 2i− 4

)
.

One can check that composition of the linear functions from Exercise 1.2.5 agree
with the composition of the permutations; we are just composing functions.

In the terminology of the next chapter, we have given a homomorphism (Sec-
tion 2.3) from D5 to S5 and the image is a subgroup of S5 (Section 2.1).

Symmetry of Other Objects

The aesthetic appeal of symmetrical objects seems to be universal in human cul-
ture. The following images, some purely geometric, and some from artwork of
various civilizations, show how rich the notion of symmetry can be. How does one
describe the symmetry group of each of these objects? How does one understand
the structure of these groups? These are questions that I hope will motivate the
next two chapters.

A discussion of frieze patterns
Several examples of frieze patterns
Wikipedia article on symmetric tilings of the plane.
Wikipedia article on symmetric tilings of other the sphere and hyperbolic plane
Alhambra mosaics
A source for lots of art work with symmetry from ancient and modern times.
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Figure 1.4: The cube has rotational symmetry along three axes: each going through
the center of opposite faces.

www.craftsmanspace.com

Figure 1.5: Some Frieze Drawings: Imagine these extending infinitely in both
directions

www.craftsmanspace.com

Figure 1.6: More Frieze Drawings: Imagine these extending infinitely in both
directions

24



www.craftsmanspace.com

Figure 1.7: Some Mosaic Drawings: Imagine these extending infinitely to cover
the plane

1.3 The Univariate Polynomial Ring over a Field

Let F be a field, in particular, we may consider F to be Q, Fp, or any of the
other fields discussed in the Section 1.1. By F [x] we mean the polynomial ring in
the indeterminate x. The key theme of this section is that everything is that all
the theorems we discussed for integers in Section 1.1 also hold—with appropriate
modifications—for the polynomial ring over F . These are the Quotient-Remainder
(QR) Theorem, the Greatest Common Divisor (GCD) Theorem, the Euclidean Al-
gorithm, the Prime-Irreducible Theorem, and the Unique Factorization Theorem.
This close relationship between Z and F [x] is such an important theme in algebra
and number theory that I want to lay out the fundamentals in detail in this section,
which parallels substantially Section 1.1.

We can think of the polynomial ring consisting of two binary operations.

• It is a vector space over F with an infinite basis 1, x, x2, . . . , and componen-
twise addition;

• It has a multiplicative structure defined by xi ∗ xj = xi+j and the proper-
ties of commutativity, associativity and distributivity of multiplication over
addition.

The result is thus a ring.
Sometimes it is useful to write a polynomial b(x) ∈ F [x] as a sum b(x) =∑∞
i=0 bix

i with the understanding that only a finite number of the bi are nonzero.
When all of the bi = 0 we get the zero polynomial. Suppose b(x) 6= 0 and let
δ be the largest integer such that bδ 6= 0. We call δ the degree of b(x); bδx

δ is
the leading term of b(x); xδ is the leading monomial of b(x); and bδ is the
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leading coefficient of b(x). If bδ = 1 we say b(x) is monic. When δ = 0 we say
b(x) is a constant polynomial. The zero polynomial is also considered a constant
polynomial and the degree is sometimes defined to be −∞.

The product of a polynomial a(x) of degree γ and b(x) of degree δ has degree
γ + δ. Rules for divisibility of polynomials are similar to those for the integers.
In particular if a(x) divides b(x) and b(x) divides c(x) then a(x) divides c(x).
Furthermore if d(x) divides both a(x) and b(x) then it divides their sum (and also
any multiple of either a(x) or b(x)).

The Quotient-Remainder Theorem and Divisibility

The following lemma simplifies the proof of the Quotient-Remainder Theorem. It
is worth remarking that we are using the properties of a field when we divide by
bγ .

Lemma 1.3.1 (Division). Let a(x) and b(x) be in F [x] with degrees γ and δ
respectively and γ > δ. Then the degree of a(x)− aγ

bδ
xγ−δb(x) is less than γ.

Proof. This is a straightforward computation.

a(x)− aγ
bδ
xγ−δb(x)

= aγx
γ + aγ−1x

γ−1 + · · ·+ a1x+ a0

− aγ
bδ
xγ−δ

(
bδx

δ + bδ−1x
δ−1 + · · ·+ b1x+ b0

)
= aγx

γ + aγ−1x
γ−1 + · · ·+ a1x+ a0

−
(
aγx

γ +
aγbδ−1
bδ

xγ−1 + · · ·+ aγb1
bδ

xγ−δ+1 +
aγb0
bδ

xγ−δ
)

=
(
aγ−1 −

aγbδ−1
bδ

)
xγ−1 +

(
aγ−2 −

aγbδ−2
bδ

)
xγ−2 + · · ·

The leading terms of a(x) and
aγ
bδ
xγ−δb(x) cancel and the result has degree less

than γ.

Theorem 1.3.2 (Quotient-Remainder). Let a(x) and b(x) be elements of F [x]
with b(x) 6= 0. There exist unique q(x), r(x) such that

(1) a(x) = b(x)q(x) + r(x), and

(2) deg r(x) < deg b(x).
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Proof. Consider the set S = {a(x)− b(x)c(x) : c(x) ∈ F [x]}. The set of degrees
of the elements of S is a nonempty subset of the nonnegative integers, so it has
a least element, δ. There is some polynomial of degree δ in S, call it r(x), and
suppose r(x) = a(x)− b(x)q(x). I claim deg(r(x)) < deg(b(x)). Suppose not. Let
γ = deg(r(x)) and δ = deg(b(x)). Apply Lemma 1.3.1 to r(x) and b(x) to get

r(x)− rδ
bγ
xγ−δb(x) = a(x)− b(x)q(x)− rδ

bγ
xγ−δb(x)

= a(x)− b(x)(q(x) +
rδ
bγ
xγ−δ).

This is also in S and by Lemma 1.3.1 has lower degree than r(x). This contradicts
our choice of δ as the lowest degree of elements in S. Consequently, we must have
deg(r(x)) < deg(b(x)). This establishes existence of q(x) and r(x) as claimed.

To prove uniqueness, suppose another r′(x), q′(x) satisfy (1) and (2). (We want
to show they are equal to r(x) and q(x)!) Then

a(x) = b(x)q(x) + r(x) = b(x)q′(x) + r′(x) so

r(x)− r′(x) = b(x)
(
q′(x)− q(x)

)
.

The degree on the left hand side is strictly less than the degree of b(x). Since the
right hand side is a multiple of b(x), it must in fact be 0. Thus r(x) = r′(x) and
q(x) = q′(x).

The greatest common divisor of two integers was easy to define since the in-
tegers are well ordered. It is not obvious that, among the common divisors of
a(x), b(x) ∈ F [x], there is just one monic divisor of maximal degree. The following
theorem shows the gcd can be uniquely defined and extends the GCD Theorem to
polynomials. A polynomial combination of a(x) and b(x) is a polynomial that
can be expressed as a(x)u(x) + b(x)v(x) for some u(x), v(x) ∈ F [x].

Theorem 1.3.3 (GCD). Let a(x), b(x) ∈ F [x] with at least one of them nonzero.
There is a unique polynomial d(x) satisfying

(1) d(x) is a common divisor of a(x) and b(x),

(2) d(x) is monic,

(3) d(x) is divisible by all other common divisors of a(x) and b(x) (so it is the
greatest common divisor).

Furthermore, there exist u(x), v(x) ∈ F [x] such that d(x) = a(x)u(x) + b(x)v(x).
The set of all polynomial combinations of a(x) and b(x) equals the set of multiples
of d(x).
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Proof. Let S = {a(x)s(x) + b(x)t(x) : s(x), t(x) ∈ F [x]} be the set of all polyno-
mial combinations of a(x) and b(x). Let d(x) be a nonzero polynomial of minimal
degree in S and let u(x), v(x) be such that d(x) = a(x)u(x) + b(x)v(x). We may
assume that d(x) is monic, since any constant multiple of a polynomial in S is also
in S. I claim d(x) divides a(x) and b(x).

By the QR Theorem applied to a(x) and d(x), a(x) = d(x)q(x)+ r(x) for some
q(x) and r(x) in F [x] with deg(r(x)) < deg(d(x)). Then

r(x) = a(x)− d(x)q(x)

= a(x)−
(
a(x)u(x) + b(x)v(x)

)
q(x)

= a(x)
(
1− u(x)q(x)

)
− b(x)v(x)q(x)

This shows that r(x) is also in S. If it were nonzero, it could be multiplied by a
constant to get a monic element of S with lower degree than d(x), which contradicts
the choice of d(x). We can thus conclude that r(x) = 0, and consequently d(x)
divides a(x).

Similarly, one shows d(x) divides b(x). Thus d(x) is a common divisor of
a(x) and b(x). To show it is the greatest common divisor, let c(x) be any other
common divisor of a(x) and b(x). Then c(x) divides a(x)u(x) + b(x)v(x) = d(x)
(by divisibility properties) as claimed.

Finally, we note that the set S (which we defined to be the set of polynomial
combinations of a(x)) is also the set of multiples of d(x). Since d(x) divides each
of a(x) and b(x) it will divide any polynomial combination of a(x) and b(x) by
divisibility properties. On the other hand, since d(x) is a polynomial combination
of a(x) and b(x), any multiple of d(x) is also a polynomial combination of a(x)
and b(x) and therefore in S.

The proof of the theorem can be adapted for any set of polynomials P ⊆ F [x].
One can show that the smallest degree monic polynomial that can be expressed as
a combination of the elements of P actually divides all the elements of P .

The discussion of the Euclidean algorithm for integers carries over almost ver-
batim to F [x]. We use a(x)//b(x) for the polynomial quotient and a(x)%b(x) for
the remainder of division of a(x) by b(x).

Assume deg(a(x)) ≥ deg(b(x)). Set r−1(x) = a(x) and r0(x) = b(x), and define
inductively (while rk(x) 6= 0)

qk(x) = rk−1(x)//rk(x)

rk+1(x) = rk−1(x)%rk(x), so that

rk−1(x) = rk(x)qk(x) + rk+1(x).
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Rearranging these equalites by solving for rk+1(x), we get a sequence

r1(x) = r−1(x)− r0(x)q0(x) = a(x)− b(x)q0(x)

r2(x) = r0(x)− r1(x)q1(x)

r3(x) = r1(x)− r2(x)q2(x)

...

rk+1(x) = rk−1(x)− qk(x)rk(x)

...

rn+1(x) = rn−1(x)− qn(x)rn(x) = 0.

We note that deg(rk(x)) is a strictly decreasing sequence of nonnegative integers.
The process must terminate: for some n, rn+1(x) = 0. Now we make use of the
following lemma, proved using basic divisibility properties.

Lemma 1.3.4. For polynomials a(x), b(x), c(x), s(x) in F [x] that satisfy a(x) =
b(x)s(x) + c(x), we have gcd(a(x), b(x)) = gcd(b(x), c(x)).

Let’s apply this to the sequence rk(x), letting n be minimal such that rn+1(x) =
0. We have (since rn+1(x) = 0)

gcd(a(x), b(x)) = gcd(b(x), r1(x)) = · · · = gcd(rn(x), rn+1(x)) = gcd(rn(x), 0) = rn(x)

This argument shows that the Euclidean algorithm produces the gcd of a(x) and
b(x).

Exercises 1.3.5. Using the Euclidean algorithm

Express the greatest common divisor of these two polynomials as a polyno-
mial combination of them.

(a) f = x4 + x2 and g = x3 + 1.

(b) f = x6 + 1 and g = x4 + x3 + x2 + 1 as elements of F2[x].

Primes, Irreducibles and Unique Factorization

Let r(x) ∈ F [x] have degree at least one. As with integers, we say r(x) is irre-
ducible when it can’t be factored in a nontrivial way: whenever r(x) = a(x)b(x)
either a(x) or b(x) is a constant (that is, in F ). We say r(x) is prime when
r(x)|a(x)b(x) implies r(x)|a(x) or r(x)|b(x).

As with integers, we have the equivalence of primality and irreducibility, which
is a key step towards proving unique factorization.
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Theorem 1.3.6 (Prime-Irreducible). Any nonconstant element of F [x] is irre-
ducible if and only if it is prime.

Proof. Let r(x) ∈ F [x] be irreducible; let us show it is prime. Suppose that
p(x)|a(x)b(x) for some a(x) and b(x) in F [x]. We need to show p(x)|a(x) or
p(x)|b(x). If p(x) divides a(x) we are done, so suppose it does not divide a(x).
Since p(x) is irreducible, the GCD of a(x) and p(x) is 1. By the GCD Theorem,
there are polynomials u(x), v(x) such that

1 = a(x)u(x) + p(x)v(x)

Multiplying by b(x)

b(x) = a(x)b(x)u(x) + p(x)b(x)v(x)

Since p(x)|a(x)b(x) we have that p(x) divides the right hand side, and consequently
p(x) divides b(x). Thus we have shown that p(x) is prime.

Suppose now that p(x) is prime; we will show it is irreducible. Let p(x) =
a(x)b(x) be a factorization of p(x). We must show one of a(x) or b(x) is a constant.
Since p(x) is prime and it divides (in fact equals) the product a(x)b(x) it must
divide one of the factors. Without loss of generality, say p(x)|a(x). We then have
deg(a(x)) ≥ deg(p(x)). On the other hand, since p(x) = a(x)b(x) we have by
additivity of degrees for a product of polynomials,

deg(p(x)) = deg(a(x)) + deg(b(x)) ≥ deg(a(x))

We conclude that deg(p(x)) = deg(a(x)) and deg(b(x)) = 0. Thus b(x) is a
constant.

Finally, we can establish uniqueness of factorization. The proof differs slightly
from the proof for integers.

Theorem 1.3.7 (Unique Factorization). Let a(x) ∈ F [x] be nonzero. There is
a nonnegative integer t, a constant u ∈ F , distinct monic irreducible polynomials
p1(x), . . . , pt(x), and positive integers e1, . . . , et such that

a(x) = u
(
p1(x)

)e1 · · · (pt(x)
)et

Each of t, pi(x), ei and u is uniquely determined, up to reordering of the pi(x)ei.

Proof. We prove existence first, then uniqueness, both by induction on the degree
of a(x). Clearly, a polynomial of degree one cannot be factored as a product of

30



polynomials of positive degree, since the degree of a product is the sum of the
degrees of the factors. Thus a polynomial of degree one is irreducible and has a
unique factorization a1x + a0 = a1(x + a0/a1). This gives the base step for both
existence and uniqueness.

Let us assume that all polynomials of degree less than n can be factored as a
product of a constant and monic irreducibles, and prove that any polynomial a(x)
of degree n can also be factored in this way. If a(x) is irreducible, we are done (again
using t = 1, et = 1 and factoring out the leading coefficient). Otherwise a(x) =
b(x)c(x) with both b(x) and c(x) having degree less than n. By the induction
hypothesis, each of b(x) and c(x) can be factored as a product of irreducibles, let’s
say there are t distinct irreducible polynomials involved altogether in factorizations
of b(x) and c(x). Allowing some of the exponents to be 0 we have

b = p1(x)d1 · · · pt(x)dt and

c = p1(x)e1 · · · pt(x)et so

a(x) = b(x)c(x) =
(
p1(x)d1 · · · pt(x)dt

)(
p1(x)e1 · · · pt(x)et

)
a(x) = b(x)c(x) = p1(x)d1+e1 · · · pt(x)dt+et

To prove uniqueness, suppose a(x) has two distinct factorizations.

a(x) = up1(x)d1 · · · ps(x)ds = vq1(x)e1 · · · qt(x)et

with di, ei positive. Then u and v are both the leading term of a(x), so they are
equal. Since p1(x) is irreducible, it is prime, and since it is a factor of a(x) it
must divide one of the factors of a(x) in the q factorization; say p1(x) divides
qj(x). Since qj(x) is irreducible and monic its only monic factor is itself. Thus
p1(x) = qj(x). Dividing both sides by p1(x) we get a(x)/p1(x) is a polynomial of
degree less than n. It therefore has a unique factorization. Consequently, s = t
and for all i, pi = qi and di = ei.

Polynomial modulus

We now extend the technique of modular arithmetic to the polynomial ring over
a field.

Let m(x) ∈ F [x] have degree d. Polynomials a(x) and b(x) are congruent
modulo m(x) when m(x) divides a(x)− b(x).

Theorem 1.3.8. Congruence modulo m(x) is an equivalence relation. The set of
polynomials of degree less than δ = deg(m(x)) is a system of representatives for
congruence modulo m(x). That is, each polynomial is congruent modulo m(x) to
its remainder when divided by m(x), which has degree less than δ.
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Any constant multiple of m(x) will define the same equivalence relation as m(x)
so we usually take m(x) to be monic. We will write [a(x)]m(x) for the congruence
class of a(x) modulo m(x) whenever we need to be careful to distinguish between
a(x), otherwise we will omit the subscript if the modulus is obvious.

Theorem 1.3.9 (Arithmetic modulo m(x)). Suppose that a(x) ≡ b(x) mod m(x)
and r(x) ≡ s(x) mod m(x). Then a(x) + r(x) ≡ b(x) + s(x) mod m(x) and
a(x)r(x) = b(x)s(x) mod m(x). Thus, arithmetic on congruence classes modulo
m(x) is well-defined.

• [a(x)] + [r(x)] = [a(x) + r(x)]

• [a(x)] ∗ [r(x)] = [a(x)r(x)]

Proof. Suppose that a(x) ≡ b(x) mod m(x) and r(x) ≡ s(x) mod m(x). We have
a(x) = b(x) + u(x)m(x) and r(x) = s(x) + v(x)m(x) for some polynomials u(x)
and v(x). Then

a(x) + r(x) = b(x) + s(x) +
(
u(x) + v(x)

)
m(x), so

a(x) + r(x) ≡ b(x) + s(x) mod m(x)

We also have

a(x)r(x) = b(x)s(x) +
(
a(x)v(x) + b(x)u(x) + u(x)v(x)m(x)

)
m(x)

so a(x)r(x) ≡ b(x)s(x) mod m(x).
This shows that no matter what element of a congruence class is used to rep-

resent a class, arithmetic operations modulo m(x) will give the same result.

We will write F [x]/m(x) for the set of equivalence classes modulo m(x), with
the operations + and ∗ as designated above.

Exercises 1.3.10. Invertible elements in F [x]/mx)

(a) Letm(x) be an irreducible monic polynomial in F [x]. Let [a(x)] ∈ F [x]/m(x)
with a(x) not divisible by m(x). Use the GCD Theorem 1.3.3 to show there
is some r(x) ∈ F [x] such that [a(x)][r(x)] = [1].

(b) Extend this result, partially, to other F [x]/m(x). If a(x) ∈ F [x] is such
that a(x) is coprime to m(x), then there is some r(x) ∈ F [x] such that
[a(x)][r(x)] = [1].
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1.4 A Roadmap for this Book

Main themes
We have introduced three categories of algebraic objects: groups, rings, and

fields. We have a few examples of each type. In the rest of the book we will study
some fundamental questions for each of these categories:

• What are some characteristic first examples?

• How can we construct new (potentially more complex) objects from simpler
ones?

• What types of functions are there between objects of the category (from
groups to groups, or rings to rings) that respect the architecture of that
category (the operations, identities, and inverses)? These functions are called
homomorphisms.

• When are two objects essentially the same? (When there is a bijective ho-
momorphism between them.)

• Can we break an arbitrary object in the category into constituent parts that
are easier to understand? (This is the reverse question to the one about
constructing new more complicated objects from simpler objects.)

For Groups

• Classify finite, and finitely generated groups.

• Outline the challenges and what is known about classifying all finite groups.

• Expand on the discussion of symmetry with group actions

• Apply group actions to understanding the structure of a finite group using
the Sylow theorems.

For Rings

• Explore constructions, in particular polynomial rings and rings of fractions.

• Explore generalizations of the theorems in Sections 1.1 and 1.3 to other rings,
particularly polynomial rings over a field in several indeterminates. What
can we say about unique factorization? About division? About the GCD
theorem (more specifically, the linear combination used to prove the GCD
theorem for integers).
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For Fields

• Describe the construction and the structure of all finite fields. Expanding on
the observations previously that Z/p is a field for p prime and that F [x]/m(x)
is a field when m(x) is irreducible.

• Describe number fields, these are fields that, like Q(i) are derived from the
rationals using irreducible polynomials over Q.

• Show the relationship between group theory and field theory developed by
Galois.
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Chapter 2

Groups

2.1 Groups and Subgroups

The material in this section is a quick summary of the most fundamental properties
of groups. I have omitted some proofs because they are are fairly routine, are good
exercises for the reader, and are available from many sources. See in particular the
book of Hungerford [Hun12]. It is worthwhile reviewing the proofs as you read!

First let us recall the definition of a group.

Definition 2.1.1. A group is a set G with a binary operation ∗ and a unary
operation denoted a 7−→ a−1 satisfying the following properties.

(1) Associativity of ∗: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) Identity for ∗: There is an element in G, usually denoted e, such that e∗a =
a = a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G the unary operation a 7−→ a−1 gives the
multiplicative inverse for a. That is, a ∗ a−1 = e = a−1 ∗ a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

The operation is usually called a product. So a ∗ b is the product of a and b.
One must be careful, because, in a nonabelian group, the products a ∗ b and b ∗ a
are not necessarily equal. In abelian groups the operation is often called addition
and is written with a + sign, while the identity is written as 0.

The most basic properties are contained in the following proposition. The
proofs of all of these are called “card tricks” by a friend of mine. Any algebraist
should have these up a sleeve since similar cleverness is used in other contexts.
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Proposition 2.1.2 (Basic Properties). Let G, ∗ be a group. Then

(1) The identity element is unique.

(2) The inverse of any element is unique.

(3) The cancellation law holds: a ∗ b = a ∗ c implies b = c (and similarly for
cancellation on the right).

(4) If a ∗ g = g for some g ∈ G, then a = eG.

(5) (a ∗ b)−1 = b−1 ∗ a−1.

(6) (a−1)−1 = a.

Let G be a group. When there is risk of confusion, with more than one group
under consideration, we will use ∗G for the operation on the group G and eG for
the identity element. Otherwise we will not subscript with G. In fact, unless there
is some reason to be very clear we rarely write the group operation: g1g2 means
g1 ∗G g2. For a positive integer n, gn is shorthand for gg · · · g︸ ︷︷ ︸

n factors

and g−n is shorthand

for g−1g−1 · · · g−1︸ ︷︷ ︸
n factors

. It is straightforward to check that the usual rules for exponents

apply.

Exercises 2.1.3. Basic Properties of Groups

(a) Prove each of the properties in Proposition 2.1.2

(b) Show that it makes sense to define g0 = e.

(c) Prove by induction that for a positive integer n, (g−1)n = (gn)−1.

For a group in which the operation is + and the identity is 0 (in particular,
the group must be abelian), the sum g + g + · · ·+ g︸ ︷︷ ︸

n terms

is written ng. Think of this

as repeated addition, not as multiplication: the group just has one operation, and
n is an integer, not necessarily an element of the group. For a negative integer
−n (with n > 0), we define (−n)(g) = (−g) + (−g) + · · ·+ (−g)︸ ︷︷ ︸ and show this is

equal to −(ng) by the same argument as used in the previous exercise.
The first examples come from a familiar place, the integers, as discussed in

Section 1.2.

Example 2.1.4. The integers Z form a group with operation +, identity element 0
and inversion operation a 7−→ −a. The elements 1 and −1 generate the group Z
in the sense that by applying inversion and repeated addition we can get all the
other elements of Z. This is not true for other elements.
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The set of multiples of n in Z also is a group under + with identity 0. Adding
two multiples of n gives another multiple of n, and the additive inverse of a multiple
of n is also a multiple of n. We will denote this group by nZ. Later in this section
we introduce the abstract definition of a subgroup. Here nZ is a subgroup of Z.
The elements n and −n generate nZ just as 1 and −1 generate Z.

The integers modulo n, introduced in Section 1.1, also form a group under +.
We can write the elements as 0, 1, 2, . . . , n− 1, but these are really shorthand for
congruence classes. When consider the integers modulo n as a group (ignoring
multiplication) we will write it as Zn. An interesting question is: what elements
generate Zn?

Definition 2.1.5. A single element g of a group G generates G when any element
of G is equal to gn for some n ∈ Z (or, if the operation of the group is addition,
any element is equal to ng for some n). Such a group is said to be cyclic.

Let S be a subset of a groupG. We say thatG is generated by S if any element
of G is equal to a product (with an arbitrary number of terms) of elements of S
and elements of

{
s−1 : s ∈ S

}
.

A group is t−generated if there is a subset S of G with t elements that
generates G.

Exercises 2.1.6. A 2-generated group.

The Cartesian product Z×Z is a group under coordinatewise addition with
identity element (0, 0) and inverse operator (a, b) 7−→ (−a,−b).

(a) Show that it is not possible to generate all elements by repeated addition of
a single element. [Show that if (a, b) generates the group then both a and b
have to be ±1. Then show that (1, 1) can’t generate all elements of Z× Z.]

(b) Show that this group is 2−generated.

The Cartesian product Z/m × Z/n under coordinatewise addition (and using
coordinatewise identity elements and inversion) is also a group. In certain cases it
is possible to have a single element generate all elements by repeated addition.

Exercises 2.1.7. More on generators for groups.

(a) Consider Zn for n = 2, 3, 4, 5, 6, 7. Which elements a ∈ Zn generate all of
Zn?

(b) Experiment with some small integers m and n to find cases in which Zm×Zn
is generated by a single element and other cases in which it is not.

The following proposition introduces another very tangible example of a group,
which is derived from the ring Z/n. This is an elaboration of Exercise 1.1.18
concerning multiplication in Z/n. We say that an element [a] in Z/n is a unit if
[a] has a multiplicative inverse modulo n, that is, there is some [u] ∈ Zn such that
[a][u] = [1].
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Proposition 2.1.8. The congruence class [a] in Z/n is a unit if and only if a is
coprime to n. The units in Z/n form a group under multiplication. This group is
denoted Un.

Proof. Let n > 1 be an integer and let a ∈ Z. We first show that a is coprime to
n if and only if [a] has a multiplicative inverse modulo n. If a and n are coprime
then, by the GCD Theorem 1.1.4, there exist integers u and v such au + vn = 1.
Reducing modulo n we have

[a][u] = [a][u] + [v][0] = [a][u] + [b][n] = [1]

Conversely if [a] has an inverse modulo n, say [a][u] = [1] then au − 1 must be a
multiple of n. But if au− 1 = vn then the smallest positive linear combination of
a and n is 1. By the GCD Theorem a and n are coprime.

Let Un be the set of elements in Z/n that have multiplicative inverses. The
identity element of Un is [1]. Clearly if [a] is in Un and [u] is such that [a][u] = [1]
then [u] is the inverse of [a] and vice-versa. If [a], [b] ∈ Un and their inverses are,
respectively, u and v, then by associativity and commutativity, ([a][b])([u][v]) =
([a][u])([b][v]) = [1][1] = [1] so ab is also invertible. Thus multiplication is an
operation on Un (it maps Un × Un to Un); there is an identity element, [1], and a
unary operation corresponding to inversion.

The groups Un are interesting because their structure is not immediately ob-
vious. The additive group Zn,+ is easy to understand; it is cyclic, generated by
[1]. Some groups Un are cyclic, but some are not. We won’t fully determine the
structure of Un until we establish the Chinese Remainder Theorem for rings (or
specifically Z/n) in Theorem 4.6.15.

Definition 2.1.9. The cardinality of a group G, written |G|, is just the cardi-
nality of the underlying set. It is also called the order of the group.

Many of our examples will be finite groups and we will be studying some of
the properties that go into understanding the structure of finite groups.

Example 2.1.10. Recall the definition of the dihedral group Dn, which is the sym-
metry group of a regular n-gon (1.2.4). We showed that Dn has 2n elements and
that it is 2-generated—by r, the rotation by 2π/n, and any reflection, ti. (Well,
we did this for D5, but the same argument holds for Dn).

Section 1.2 also introduced Sn, the group of all possible permutations on
{1, 2, . . . , n}. This group has cardinality n!. Composing them is just composing
functions. The inverse permutation involves flipping the two rows of the permu-
tation and then, for convenience, rearranging the columns so that the first row is
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increasing order.

For π =

(
1 2 3 4 5
4 3 1 5 2

)
, the inverse is π−1 =

(
1 2 3 4 5
3 5 2 1 4

)
.

The Order of an Element

Definition 2.1.11. For g ∈ G the order of the element g is the smallest
positive integer n such that gn = e, if such an n exists. If no such n exists then g
has infinite order. We use |g| or ord(g) for the order of g.

The exponent of G is the least common multiple of the orders of the elements
of G, if such an integer exists, that is exp(G) = lcm {ord(g) : g ∈ G}. If no such
element exists one can say the exponent is infinite.

Exercises 2.1.12. Basic properties of order.

(a) Only the identity element of a group has order 1.

(b) Every nonzero element of Z has infinite order.

(c) In Zn some elements have order n, but other non-identity elements may have
a different order.

(d) For any finite group there is a well defined exponent, but an infinite group
may or may not have one.

Theorem 2.1.13 (Order Theorem). Let g be an element of the group G.

(1) If g has infinite order, then elements gt for t ∈ Z are all distinct.

(2) If g has order n then

(a) gt = gs if and only if t ≡ s mod n. In particular, gt = e if and only if
n divides t.

(b) ord(gt) = n
gcd (t,n) .

Proof. Suppose gt = gs for integers s, t. Then gt−s = eG. If g has infinite order
then s− t = 0 so s = t. This proves item (1).

Suppose g has order n. Then g0 = emg1, g2, . . . , gn−1 must all be distinct, by
an argument similar to the previous paragraph. If gt = gs for 0 ≤ s ≤ t < n then
gt−s = e with 0 ≤ t− s < n. Since the order of g is n, t− s = 0, so t = s. For an
arbitrary integer t use the quotient remainder theorem to write t = nq + r. Then
gt = gnq+r = (gn)qgr = eqgr = gr. This establishes claim (2a): gt = gs if and only
if t and s have the same remainder when divided by n.

Now let d = gcd(t, n) and write t = da and n = db. Then a, b have no common
factor (otherwise d would not be the gcd) and we observe that b = n/gcd (t, n).
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We now have (gt)b = gdab = (gn)a = e. Furthermore, if (gt)s = e then, by (2a),
n = db divides ts = das. Cancelling d and taking note of b and a being coprime
we get b divides s. This establishes (2b).

Example 2.1.14. The reflections in Dn all have order 2. The rotation by 2π/n has
order n, but some of the other rotations have order less than n. For example in
D6 with r the rotation by 2π/6, r2 has order 3 and r3 has order 2.

Exercises 2.1.15. More card tricks.

(a) Suppose that every element of G has order 2. Show that G is abelian.

(b) If G has even order then G has an element of order 2. (Consider the pairing
of g with g−1).

Exercises 2.1.16. Order and commutativity.

(a) If g ∈ G has order m and h ∈ H has order n, find the order of (g, h) ∈ G×H.

(b) Suppose that a, b ∈ G commute (that is ab = ba). If ord(a) and ord(b) are
coprime find the order of ab.

(c) Let A be an abelian group with finite exponent. Show that there is some
a ∈ A such that ord(a) = exp(A). [This is a bit more challenging and uses
part (b).]

2.2 Subgroups

A key area of investigation in many mathematical subjects is the subsets of a given
object that have useful structure. In this section, we treat subsets of a group that
are themselves groups.

Definition 2.2.1. A nonempty subset H of a group G is a subgroup, when H is
a group using the operation ∗G on G. We will write H ≤ G when H is a subgroup
of G (as opposed to H ⊆ G when H is just a subset), and H < G when H is a
proper subgroup (that is H 6= G).

The following proposition is a sanity check on our definition of subgroup: the
identity element and inversion are the same for the subgroup as for the group.

Proposition 2.2.2. If K is a subgroup of G then eK = eG and the inversion
operation is the same on K as it is on G.

Proof. If K is a subgroup of G then it must have an identity element. For any
k ∈ K, we have (using ∗K = ∗G) that eK ∗K k = eK ∗G k = k. Proposition 2.1.2 (4)
shows that it must be the case that eK = eG. (If something acts like the identity
it is the identity!)
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Let k ∈ K and let k−1 be its inverse in G. This k−1 is also the inverse of k in
the subgroup K because k ∗ k−1 = eG = eK .

(Thank goodness for both of these facts.)
In practice the following proposition is used to check if a subset of a group is

a subgroup. We will say that H ⊆ G is closed under inversion when for any
h ∈ H the inverse h−1 is also in H. We say is H closed under multiplication
when for any h, k ∈ H, the product h ∗G k is also an element of H.

Proposition 2.2.3 (Subgroup Properties). If H is a nonempty subset of G that is
closed under inversion and closed under multiplication in G then H is a subgroup
of G (i.e. it also contains eG).

If H is a nonempty subset of G such that h ∗G k−1 ∈ H for all h, k ∈ H then
H is a subgroup of G.

Proof. Since H is nonempty, it contains some element k. Since H is closed under
inversion, k−1 ∈ H. Since H is closed under multiplication, k ∗G k−1 = eG ∈ H.
Thus H satisfies the definition of a group since it has associativity (immediate since
∗H is the restriction of ∗G), an identity element, and inverses (by assumption).

Suppose H is a nonempty subset of G such that h ∗G k−1 ∈ H for all h, k ∈ H.
For any k ∈ H, setting h = k gives k ∗G k−1 = eG ∈ H. Letting h = eG gives
eG ∗ k−1 = k−1 ∈ H, so H is closed under inversion. Now for any h, k ∈ H we
know k−1 ∈ H, so h ∗G (k−1)−1 = h ∗G k ∈ H. This shows H is closed under
multiplication.

When proving that a particular subset of a group is a subgroup one can either
show the set is closed under inversion and under multiplication, or use the second
property of the theorem. I like the clarity of proving closure under each operation.

Exercises 2.2.4. Subgroup constructions

(a) Let G be a group and let g an arbitrary element of G. Show that
{
gi : i ∈ Z

}
is a subgroup of G. This group is called the cyclic subgroup generated
by g and is written 〈g〉.

(b) Let G be a group. Show that the set Z(G) = {a ∈ G : ag = ga for all g ∈ G}
is an abelian subgroup of G. It is called the center of G.

(c) Let H and K be subgroups of G. Show that their intersection is also a
subgroup of G.

Note that there is consistency between the order of an element and the order
of the subgroup it generates. If g ∈ G has order n then the set of powers of g
is
{
g0 = eG, g, g

2, . . . , gn−1
}

(any other power of g is one of these). This set is a
subgroup of G of order n. If g ∈ G has infinite order then it generates a cyclic
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subgroup that is infinite. (It is not really cycling in the infinite case, but that’s
the term used!)

Example 2.2.5. As was discussed in Section 1.2, the integers, Z, the rational num-
bers, Q, the real numbers, R, and the complex numbers, C, are all abelian groups
under addition. We sometimes write Z,+ (for example) to emphasize that we
are ignoring multiplication, and are just considering the additive properties of Z.
Clearly we have a sequence of subgroups.

Z < Q < R < C

Exercises 2.2.6. Some subgroups of abelian groups

Let A,+ be an abelian group and let m be an integer.

(a) Let mA = {ma : a ∈ A}. Show that mA is a subgroup of A.

(b) Let A[m] = {a ∈ A : ma = 0}. Show that A[m] is a subgroup of A.

(c) Give an example in which mA∩A[m] is trivial (just 0) and given an example
in which it is not trivial. (Try Zn for a few choices of n.)

(d) Compute mZ ∩ nZ and Z[m] ∩ Z[n].

Example 2.2.7. We showed in Section 1.2 that D5 may be identified with a sub-
group of S5. The discussion can be generalized to show Dn identified as a subgroup
Sn for any n ≥ 3.

The permutation group S4 may also be seen as contained in S5; it is just the set
of all permutations in S5 that take 5 to 5 (we say these “fix” 5). There are other
subgroups that have the exact same structure as S4. For example the set of all
permutations in S5 that fix 3. These subgroups are all isomorphic (see Section 2.5).

Proposition 2.2.8. Let H be a set of subgroups of a group G. Let H be the
intersection of all the elements of H,

K =
⋂
H∈H

H

Then K is itself a subgroup of G.

Proof. We have to show that K is nonempty and is closed under multiplication
and inversion. Since each H ∈ H is a subgroup of G, each contains the identity,
so eG ∈ K. If k ∈ K then k is an element of each H in H. Since each H ∈ H is a
group, k−1 ∈ H for each H ∈ H. Thus k−1 is in the intersection K =

⋂
H∈HH.

Similarly if k and k′ are elements of K then k and k′ are in each H ∈ H and the
product kk′ is in each H ∈ H. Thus kk′ ∈ K.
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Definition 2.2.9. Let B be a subset of a group G we define the group generated
by B to be the intersection of all subgroups of G containing B. We denote it 〈B〉.

If H and K are subgroups of G their join, written H ∨K, is 〈H ∪K〉.

By the proposition, 〈B〉 is a subgroup of G. Furthermore, since by definition
it is the intersection of all subgroups of G containing B, it is contained in every
subgroup of G containing B. Thus it makes sense to call it the smallest subgroup
of G containing B. The join of two subgroups plays a similar role to the union
of sets. The subgroup H ∨K is the smallest subgroup of G that contains both H
and K.

The definition is not very useful for computing 〈B〉. How would one find all
subgroups of G containing B and then find the intersection of them?! It is more
practical to adopt a constructive (or “bottom up”) approach to find all the elements
of 〈B〉. That is, if b1, b2 ∈ B then bk1b

m
2 ∈ 〈B〉 for any integers k,m. This is not

simple either(!), but for small examples it can be useful to compute the subgroup
〈B〉, as we will see below.

The Lattice of Subgroups

Consider a fixed group G and let S be the set of all subgroups of G. For small
groups, it is often illuminating to draw a diagram showing all these subgroups
and the containment relationships among them. There is no simple and efficient
process for this in general, but there are some useful heuristics for small examples.
One is to find the extremal cases of subgroups.

Definition 2.2.10. Let G be a group. A proper subgroup M of G is maximal
when there is no subgroup H of G satisfying M < H < G. Similarly, a nontrivial
subgroup M of G is minimal when there is no subgroup H of G satisfying {eG} <
H < M .

For any group G a single element a ∈ G generates a subgroup 〈a〉, which we
call a cyclic subgroup. Any minimal subgroup must be cyclic (but the converse is
not true!). This suggests a general approach: work up from the trivial subgroup
{eG} to construct the lattice of subgroups.

(1) Find all subgroups generated by 1 element. Take account of containment
relationships among them.

(2) Find all subgroups generated by 2 elements by adding a new element to the
1-generated subgroups.

(3) See if there are subgroups that require 3 generators by adding an element to
the 2-element subgroups.
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Note that there are usually several ways to generate a particular subgroup.
Here are some examples.

〈(0, 0)〉

〈(1, 0)〉 〈(0, 1)〉〈(1, 1)〉

Z2 × Z2

Figure 2.1: The lattice diagram for Z2 × Z2.

〈(0, 0)〉

〈(1, 0)〉 〈(0, 1)〉

Z2 × Z3

Figure 2.2: The lattice diagram for Z2 × Z3.

Example 2.2.11. The lattice of subgroups of Z is infinite, but we can get some
sense for its structure. We have shown that for an integer n, the multiples of n,
nZ, form a subgroup of Z. The integers n and −n generate the same group, so
we may restrict our attention to nonnegative integers. I claim these are the only
subgroups of Z and that the subgroups for distinct n ∈ N are unequal. Suppose
A is a subgroup of Z. If A has no positive elements then, since it is closed under
(additive) inverses it must also have no negative elements, and A = {0} = 0Z.
Suppose A does have positive elements, and let n be the smallest positive element

〈0〉

〈2〉

Z4

Figure 2.3: The lattice diagram for Z4.
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〈(
1 2 3
1 2 3

)〉

〈(
1 2 3
2 1 3

)〉〈(
1 2 3
3 2 1

)〉 〈(
1 2 3
1 3 2

)〉
〈(

1 2 3
2 3 1

)〉S3

Figure 2.4: The lattice diagram for S3.

of A (we are using the Well-Ordering Principle). Let a be another element of A.
By the Quotient-Remainder Theorem a = qn + r for some 0 ≤ r < n. Since a
and qn are both in A, a− qn = r ∈ A. By assumption, n is the smallest positive
element of A, so r must be 0. Thus every element of A is a multiple of n, and we
have shown A = nZ.

The lattice of subgroups of Z simply reflects divisibility properties: nZ ≤ dZ if
and only if d | n. The maximal subgroups of Z are generated by prime numbers.
A prime p has no divisors except ±p and ±1 so the only subgroup of Z properly
containing pZ is Z itself. There are no minimal subgroups of Z because for any
n > 0 there are (infinitely many) subgroups such as 2nZ, 3nZ, 4nZ, that are
proper subgroups of nZ and are not equal to {0}.
Exercises 2.2.12. Lattice Diagrams for Groups

(a) Draw the subgroup lattice diagram for Z45.

(b) Draw the subgroup lattice diagram for Z60.

(c) Draw the subgroup lattice diagram for Z2 × Z4.

(d) Draw the subgroup lattice diagram for Z3 × Z4.

(e) Find all subgroups of Z4×Z4. Describe the logic of your process for finding
them. Present them in an organized fashion. Draw the lattice if you can.

2.3 Group Homomorphisms

In any algebraic subject a key starting point is to identify functions that are
appropriate to study. These functions are typically called homomorphisms (from
classical Greek: hom meaning “same” and morph “shape”) because they preserve
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the algebraic structures on which they act.

Definition 2.3.1. Let G and H be groups. A function ϕ : G −→ H is a homo-
morphism when

(1) ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2) for all g1, g2 ∈ G, and

(2) ϕ(eG) = eH , and

(3) ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

I like to speak informally about a homomorphism as a function that respects
structure: A homomorphism of groups “respects” the property of the identity
element, multiplication, and inversion.

It is fairly easy to show that the first item in the definition of homomorphism
implies the other two. This result and another important result are contained in
the following proposition.

Proposition 2.3.2 (Homomorphisms). Let G,H,K be groups.
If ϕ : G −→ H is a function such that ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2) then ϕ is

a group homomorphism.
If ϕ : G −→ H and θ : H −→ K are group homomorphisms then the composi-

tion θ ◦ ϕ is also a group homomorphism.

Exercises 2.3.3. Prove the proposition.

(a) Assuming that ϕ respects multiplication, show that it also takes the identity
of G to the identity of H (use eG ∗ eG = eG) and that it respects inversion
(use gg−1 = eG).

(b) Prove that the composition of homomorphisms is a homomorphism.

The simplest type of a homomorphism is the inclusion of a subgroup H of G
into G. That is, when H < G, then there is a function H −→ G that takes elements
of H to themselves (now thought of as elements of G). A homomorphism of groups
may be surjective, injective or neither. A injective homomorphism ϕ : G −→ H is
often called an embedding.

Proposition 2.3.4. Let g be an element of a group G. There is homomorphism

ϕ : Z −→ G

t 7−→ gt

When g ∈ G has infinite order, this homomorphism is injective.
When g ∈ G has order n, the function below is an injective homomorphism.

ϕ : Zn −→ G

t 7−→ gt
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Proof. Let g be an element of a group G. Consider the function Z −→ G taking
t to gt. The function is a homomorphism because for s, t ∈ Z, s + t maps to
gs+t = gs ∗ gt and this is the product of the images of s and t.

Now assume that g has infinite order. Suppose that gs = gt. Then gs−t = eG.
Since g has infinite order s− t = 0, so s = t. This proves injectivity.

The proof for g of finite order is similar.

Notice that the homomorphisms of the proposition are completely defined by
the requirement that 1 maps to g. For if 1 maps to g then 1 + 1 maps to g ∗ g, and
inductively, a positive number t must map to gt. Since homomorphisms respect
inversion, −t maps to g−t.

Proposition 2.3.5. Let ϕ : G −→ H be a homomorphism. For any subgroup G′

of G, the image of G′, which we write ϕ(G′), is a subgroup of H.

Proof. We need only show that the image is closed under inversion and multipli-
cation. Consider an element of ϕ(G′). We may write it as ϕ(g) for some g ∈ G′.
By the properties of a homomorphism

ϕ(g−1)ϕ(g) = ϕ(g−1g) = ϕ(eG) = eH

This shows that the inverse of ϕ(g) is ϕ(g−1). SinceG′ is a subgroup ofG, g−1 ∈ G′,
and we can conclude that

(
ϕ(g)

)−1 ∈ ϕ(G′).
Consider two elements of ϕ(G′), which we may write as ϕ(g1) and ϕ(g2) for

g1, g2 ∈ G′. Their product is ϕ(g1)ϕ(g2) = ϕ(g1g2), and this is in ϕ(G′) since g1g2 ∈
G′. We have shown that ϕ(G) is closed under inversion and under multiplication
so it is a subgroup of G.

The Kernel of a Homomorphism

Definition 2.3.6. Let ϕ : G −→ H be a homomorphism. The kernel of ϕ is the
set of elements that map to the identity in H, that is

ker(ϕ) = ϕ−1(eH) = {g ∈ G : ϕ(g) = eH} .

Proposition 2.3.7. Let ϕ : G −→ H be a homomorphism. The kernel of ϕ is a
subgroup of G. Furthermore, for any a ∈ ker(ϕ) and any g ∈ G, gag−1 ∈ ker(ϕ).

Proof. By the definition of homomorphism eG ∈ ker(ϕ). Suppose a ∈ ker(ϕ). We
have

eH = ϕ(eG) = ϕ(aa−1) = ϕ(a)ϕ(a−1) = eHϕ(a−1) = ϕ(a−1)
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So a−1 is also in ker(ϕ). If b is another element in ker(ϕ) then ϕ(ab) = ϕ(a)ϕ(b) =
eHeH = eH . Thus ker(ϕ) is closed under inversion and multiplication, so it is a
subgroup of G. The final claim is a similar computation.

ϕ(gag−1) = ϕ(g)ϕ(a)ϕ(g−1) = ϕ(g)eHϕ(g−1)

= ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(eG) = eH

The kernel of a homomorphism and the property described in the last sentence
of the proposition are important concepts, as we will see in Section 2.8 Here is
another important aspect of the kernel, it gives a simple test for injectivity. Recall
that to test if a function f : A −→ S is injective we show that for a, b ∈ A,
f(a) = f(b) implies a = b.

Proposition 2.3.8. A homomorphism ϕ : G −→ H is injective if and only if the
kernel is trivial, ker(ϕ) = {eG}.

Proof. For any homomorphism ϕ(eG) = eH , so injectivity forces ker(ϕ) = {eG}.
Suppose that the only element of ker(ϕ) is eG, let us show that ϕ is injective.

Let a, b ∈ G be such that ϕ(a) = ϕ(b). Using the properties of a homomorphism
and ϕ(a) = ϕ(b) we have

phi(ab−1) = ϕ(a)ϕ(b−1) = ϕ(a)(ϕ(b))−1 = ϕ(a)(ϕ(a))−1 = eH

This forces ab−1 = eG, and multiplying on the right by b we get a = b. This shows
that ϕ is injective.

Exercises 2.3.9. The preimage of a subgroup

Prove this extension of Proposition 2.3.7 and compare with Proposition 2.3.5.

(a) Let ϕ : G −→ H be a homomorphism. For any subgroup H ′ of H, the
preimage of H ′, which we write ϕ−1(H ′), is a subgroup of G.

Isomorphisms

Definition 2.3.10. A homomorphism ϕ that is also a bijection (one-to-one and
onto) is called an isomorphism. When there exists an isomorphism ϕ : G −→ H
we say G and H are isomorphic and write G ∼= H.

The following proposition shows that the relation of being isomorphic satisfies
symmetry and transitivity so it determines an equivalence relation on any set of
groups.
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Proposition 2.3.11 (Isomorphisms). If ϕ is an isomorphism of groups, then the
inverse function ϕ−1 is also an isomorphism of groups.

If ϕ : G −→ H and θ : H −→ K are group isomomorphisms then the composi-
tion θ ◦ ϕ is also a group isomorphism.

On any set of groups G, the relation of being isomorphic is an equivalence
relation.

Proof. Let ϕ : G −→ H be an isomorphism of groups. By definition, ϕ is both
injective and surjective, so there is a well defined inverse function, ϕ−1. We must
show that ϕ−1 is a homomorphism.

Let h1 and h2 be two elements of h. Since ϕ is surjective there are two elements
g1 and g2 such that ϕ(g1) = h1 and ϕ(g2) = h2. Since ϕ is injective these two
elements are uniquely defined. We now show that ϕ−1 respects products, which is
sufficient to show it is a homomorphism.

ϕ−1(h1h2) = ϕ−1 (ϕ(g1)ϕ(g2))

= ϕ−1 (ϕ(g1g2)) since ϕ is a homomorphism

= g1g2 since ϕ and ϕ−1 are inverse functions

= ϕ−1(h1)ϕ
−1(h2)

The composition of two bijections is a bijection, and by Proposition 2.3.5 we
know that the composition of homomorphisms is a homomorphism. Thus the
composition of two isomorphisms is an isomorphism.

On any set of groups we can define a relation as follows: G is related to G
if there is an isomorphism from G to H. The relation is clearly reflexive since
any group is isomorphic to itself under the identity map. The first part of this
proposition shows the relation is symmetric: if G is isomorphic to H then H is
also isomorphic to G. The second part establishes transitivity.

If there is an isomorphism ϕ from group G to H then G and H have the same
algebraic structure. Since ϕ is a bijection it gives a pairing of elements of G with
elements of H. The image of g ∈ G will have the same order as g does. The image
of a subgroup G′ of G is a subgroup of H (by Proposition 2.3.5) that is isomorphic
to G′. Distinct subgroups of G will be mapped to distinct subgroups of H and the
lattice of subgroups of G will have the same structure as the lattice of subgroups
of H.

Exercises 2.3.12. Homomorphisms on Zn
(a) Show that for each a ∈ Zn there is a unique homomorphism

ϕa : Zn −→ Zn such that ϕa(1) = a.
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(b) Under what conditions on a is ϕa an isomorphism? [Try some examples with
n < 10.]

(c) Identify all subgroups of Zn.

Exercises 2.3.13. Homomorphisms on cyclic groups

(a) Show that if d | n then there is a unique homomorphism ϕ from Zn to Zd
that takes 1 (in Zn) to 1 (in Zd). [Show that respecting the operation of
addition forces a unique choice for ϕ(a). Show also that this does give a
homomorphism.]

(b) Show that ϕ is also surjective.

(c) Show that if d does not divide n then there is no homomorphism Zn to Zd
that takes 1 (in Zn) to 1 (in Zd). [Try to define it and run into a roadblock.]

Exercises 2.3.14. Homomorphisms and dihedral groups

(a) Show that there is an injective homomorphism from Zn into Dn taking 1 to
rotation by 2π/n.

(b) How many injective homomorphisms are there from Zn into Dn?

(c) Identify all subgroups ofDn for n = 3, 4, 5, 6. Draw a lattice diagram showing
containment of subgroups.

Exercises 2.3.15. A Perverse Group

(a) Show that Z is a group under the operation � defined by a�b = a + b − 2.
(What is the identity element? What is the inverse of an element a?)

(b) Find an isomorphism from Z,+ to Z,�.

Exercises 2.3.16. Order and homomorphisms

Prove the following results about the relationship between the order of an
element and the order of its image under a homomorphism.

(a) If ϕ : G −→ H is a homomorphism, then ord(ϕ(g)) divides ord(g).

(b) If ϕ : G −→ H is an isomorphism, then ord(ϕ(g)) = ord(g).

The previous exercises give important restrictions on homomorphisms. If you
want to create a homomorphism from G to H, each element g in G must go to an
element of H that has order dividing ord(g).

Exercises 2.3.17. Other homomorphisms

(a) Show that there is a nontrivial homomorphism from D3 to Z2 but that any
homomorphism from D3 to Z3 is trivial.

2.4 Some Constructions of Groups

In this section we show two ways to construct new groups from ones that we
already have. Both have been touched on briefly; we give more detail here. The
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first construction is the direct product of groups. The idea is simple (and was
illustrated in the first examples of groups that we gave). Given two groups, form
the Cartesian product as sets, and apply componentwise operations to get a new
group. The construction yields, in a natural way, two types of homomorphisms
that are important despite their simplicity. The direct product can also be applied
to several groups, not just two. The second construction is quite a bit more
mysterious, for a given group G the isomorphisms of G to itself have a group
structure that is useful in understanding the properties of G.

The Direct Product

Definition 2.4.1. Let G and H be groups. The Cartesian product G×H, along
with the unary operation (of inversion) and the binary operation (of multiplication)
below form the direct product of G and H.

(g, h)−1 = (g−1, h−1)

(g1, h1) ∗G×H (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

The identity element is of course (eG, eH).

The following proposition shows that the direct product is in fact a group and
gives other important properties. None of the following are surprising and they
are routine to prove.

Theorem 2.4.2 (Direct Product). Let G and H be groups.

(1) The above definition does, indeed, make G×H a group.

(2) The associative law for the product of several groups holds: G1×(G2×G3) ∼=
(G1 ×G2)×G3.

(3) G×H is abelian if and only if G and H are abelian.

(4) If G′ is a subgroup of G and H ′ is a subgroup of H then G′×H ′ is a subgroup
of G×H. In particular G× {eH} and {eG} ×H are subgroups of G×H.

(5) There is an injective homomorphism iG : G −→ G × H taking g to (g, eH)
(and similarly iH : H −→ G×H).

(6) The projection maps pG : G×H −→ G and pH : G×H −→ H are surjective
homomorphisms.

(7) The construction and the observations above can be generalized to the direct
product of any set of groups {Gi : i ∈ I} indexed by a finite set I. (It extends
to infinite index sets I with some modification due to subtle issues.)
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Notice that the kernel of the homomorphism pG is {(eG, h) : h ∈ H} and this
is exactly the image of the homomorphism iH . Similarly ker(pH) = im(iG).

Exercises 2.4.3. Subgroups of a direct product

(a) Not all subgroups of G × H are direct products of subgroups of G and H.
Illustrate with some examples: Z2 × Z2, Z4 × Z4.

The following result is more subtle and it turns out to be a powerful idea.

Proposition 2.4.4 (Universal Property of the Product). Let G,H, and T be
groups, and let ϕ : T −→ G and ψ : T −→ H be homomorphisms. The function
α : T −→ G×H defined by t 7−→ (ϕ(t), ψ(t)) is a homomorphism. It is the unique
homomorphism such that pG ◦ α = ϕ and pH ◦ α = ψ.

Proof. Note first that, by construction, pG ◦ α = ϕ and pH ◦ α = ψ. Furthermore,
there is no other choice for the definition of α that satisfies these two requirements.

We have to show that α respects inversion and multiplication. Let t ∈ T .
We have to show that α(t−1) is the inverse of α(t). The subscript on ∗ that we
sometimes use to show the group being used is omitted in the following derivation,
but it is worthwhile to identify it while reading.

α(t) ∗ α(t−1) =
(
ϕ(t), ψ(t)

)
∗
(
ϕ(t−1), ψ(t−1)

)
=
(
ϕ(t) ∗ ϕ(t−1), ψ(t) ∗ ψ(t−1)

)
=
(
ϕ(t ∗ t−1), ψ(t ∗ t−1)

)
= (eH , eK)

This proves that α(t−1) is the inverse of α(t). Similarly for t1, t2 ∈ T ,

α(t1) ∗ α(t2) =
(
ϕ(t1), ψ(t1)

)
∗
(
ϕ(t2), ψ(t2)

)
=
(
ϕ(t1) ∗ ϕ(t2), ψ(t1) ∗ ψ(t2)

)
=
(
ϕ(t1 ∗ t2), ψ(t1 ∗ t2)

)
= α(t1 ∗ t2)

This shows α respects products.

As a corollary of Proposition 2.4.4 we get

Corollary 2.4.5. Let m and n be positive integers. There is a unique homo-
morphism Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
. When m and n are

coprime this homomorphism is an isomorphism.
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Proof. Exercise 2.3.13 shows that there is a unique homomorphism taking [1]mn to
[1]m and a unique homomorphism taking [1]mn to [1]n. The previous proposition
says this pair of homomorphisms extends in a unique way to a homomorphism
α : Zmn −→ Zm × Zn that takes [1]mn to

(
[1]m, [1]n

)
.

When m and n are coprime the kernel of α is trivial because if α([b]mn) is(
[0]m, [0]n

)
then b must be divisible by both m and n. Since m and n are coprime

b is divisible by mn, so [b]mn = [0]mn.

The previous corollary is closely related to the Chinese Remainder Theo-
rem 4.6.15 (which says a bit more than our corollary does). The following exercise
broadens the perspective

Exercises 2.4.6. Homomorphisms and the direct product of cyclic groups

We have shown that there is a homomorphism Zn −→ Zd taking 1 in Zn to
1 in Zd if and only if d | n. Suppose c and d both divide n. Proposition 2.4.4
says that the two homomorphisms Zn −→ Zd (taking [1]n to [1]d]) and
Zn −→ Zc (taking [1]n to [1]c]) give rise to a homomorphism Zn −→ Zc×Zd.

(a) What is the kernel of the homomorphism Zn −→ Zc × Zd?
(b) Under what conditions is it injective?

(c) Under what conditions is it surjective?

(d) Illustrate with n = 8 and c = d = 4. What is the image?

(e) Illustrate with n = 18 and c = 6 and d = 9. What is the image?

Automorphism Groups

We have already noted, in Section 1.2, that the bijections of a set form a group
using composition of functions as the group operation. The identity element is
the function that takes each element to itself, each bijection has an inverse that
is a bijection, and the composition of two bijections is a bijection. We will study
bijections of a finite set in the next section. For now, we are interested in bijections
of a group to itself that also happen to be homomorphisms.

Proposition 2.4.7 (Automorphisms). Let G be a group. The set of all isomor-
phisms from G to itself is a group under composition. This new group is called
Aut(G), the group of automorphisms of G.

Proof. The identity map idG is clearly an automorphism of G, so there is at least
one automorphism of G. The composition of idG with any automorphism ϕ : G −→
G is ϕ, since the identity map takes each element to itself. Proposition 2.3.11 shows
that the inverse of an isomorphism is an isomorphism and the composition of two
isomorphisms is an isomorphism. Thus Aut(G) is a subgroup of the group of
bijections of G.
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Exercises 2.4.8. Automorphism groups of some cyclic groups

(a) Show that Aut(Z) has two elements and Aut(Z) ∼= Z2.

(b) Compute Aut(Zn) for n = 2, 3, 4, 5, 6, 7. [In each case the answer is a cyclic
group.]

(c) Show that Aut(Z8) is not cyclic.

Exercises 2.4.9. Automorphism group of the simplest non-cyclic groups

(a) Show that there is a unique homomorphism of Z2×Z2 that swaps (1, 0) with
(0, 1). What does it do to the other elements of Z2 × Z2?

(b) Show that there are two different homomorphisms of Z2 × Z2 that satisfy
the following property: the only element that gets mapped to itself is (0, 0).

(c) Can you extend to Z3 × Z3? [Think of matrices.]

(d) Can you extend to Z2 × Z2 × Z2? [Think of matrices.]

2.5 Permutation Groups

In this section we delve more deeply into the structure of the symmetric group
Sn, the group of permutations of {1, . . . , n}. The number of elements in Sn is n!.
Informally, we may justify this claim by noting that there are n possible images
for the number 1. Once the image for 1 is chosen, there are n − 1 choices for the
number 2. Continuing in this manner we count n! bijections from {1, . . . , n} to
itself. One can give a more formal inductive proof.

We will sometimes write an element π of Sn in tabular form with i in the top
row and π(i) in the bottom row.

Exercises 2.5.1. Some computations in Sn

(a) Here are two elements of S5:

π =

(
1 2 3 4 5
3 5 1 2 4

)
and σ =

(
1 2 3 4 5
1 3 4 2 5

)
.

(b) Compute the inverse of each.

(c) Compute the products πσ and σπ, using the usual convention for composi-
tions: (πσ)(i) = π(σ(i)). You should see that the results are not equal.

Example 2.5.2. Let n = 3, and enumerate the vertices of a triangle clockwise as
1, 2, 3. Each element of D3 gives rise to a permutation of {1, 2, 3}.

Let r be rotation clockwise by 2π/3. Then

r =

(
1 2 3
2 3 1

)
and r2 =

(
1 2 3
3 1 2

)
.
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There are three reflections, each fixes one element of {1, 2, 3} and transposes the
other two

u1 =

(
1 2 3
1 3 2

)
u2 =

(
1 2 3
3 2 1

)
u3 =

(
1 2 3
2 1 3

)
.

This exhausts all permutations of {1, 2, 3} so by enumerating the vertices of the
triangle we have established a bijection between D3 and S3. This is actually an
isomorphism since the operation for D3 is composition, as it is for Sn.

Exercises 2.5.3. Embeddings into Sn

(a) How many ways are there to embed Z4 in S4?

(b) How many ways are there to embed D4 in S4?

Cycle Decomposition

Definition 2.5.4. Let a1, a2, . . . , at be distinct elements of {1, . . . , n}. We use the
notation (a1, a2, . . . , at) to define an element of Sn called a t-cycle. This permu-
tation takes ai to ai+1, for i = 1, 2, 3 . . . , t− 1 and it takes at to a1. Every element
of {1, . . . , n} \ {a1, . . . , at} is fixed (i.e. taken to itself) by the cycle (a1, a2, . . . , at).
We will call the set {a1, . . . , at} the support of the cycle (a1, a2, . . . , at).

A two-cycle is often called a transposition.
Two cycles are called disjoint when their supports are disjoint sets.
When we use cycle notation we will use id for the identity permutation.

Exercises 2.5.5. Properties of cycles

(a) Show that disjoint cycles commute.

(b) Suppose σ is a t-cycle. For which r is σr a t-cycle? What can happen for
other r?

(c) Show that for a t-cycle σ, there is an injective homomorphism Zr −→ Sn
taking 1 to σ.

Definition 2.5.6. Let π ∈ Sn. The orbit of a ∈ {1, . . . , n} under π is the set{
πi(a) : i ∈ Z

}
.

Let π ∈ Sn. A cycle decomposition for π is a product of disjoint cycles that
is equal to π.

We want to show every permutation has a unique cycle decomposition. The
first step is this lemma.

Lemma 2.5.7. Let π ∈ Sn. Any two orbits of π are either equal or disjoint.
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Proof. Suppose two orbits of π ∈ Sn are not disjoint. We will show they are equal.
Let a, b, c be distinct elements of {1, 2, . . . , n}. Suppose that b is in the orbit of a
and also in the orbit of c. We will show that orb(a) = orb(c). We have assumed
πi(a) = b and πj(c) = b for some i, j ∈ Z. Then πi(a) = πj(c) so πi−j(a) = c
so c is in orb(a). Moreover, anything in the orbit of c must be in the orbit of
a since πk(c) = πk+i−j(a). The reverse is also true by the same reasoning, so
orb(a) = orb(c).

Proposition 2.5.8. Every permutation in Sn has a cycle decomposition, and it is
unique up to reordering the factors.

Proof. This is just a sketch that should make sense, and one could formalize it
using induction. Take an element a ∈ {1, . . . , n}. Since {1, . . . , n} is finite, there
is some pair of distinct positive integers such that πi(a) = πj(a). Notice that
πi(a) = πj(a) implies πi−1(a) = πj−1(a) and so forth until πi−j(a) = a. Thus,
there is some minimal positive integer, call it d, such that πd(a) = a. It should
be clear that, for m ∈ Z, πm(a) = πr(a) for r the remainder when m is divided
by d. Now consider the cycle (a, π(a), . . . , πr−1(a)). The orbit of a is this set
of elements, orb(a) =

{
a, π(a), . . . , πr−1(a)

}
. Consequently, π can be written as

the product of (a, π(a), . . . , πr−1(a)) and some other permutation that fixes each
element in orb(a). Now choose an element of {1, . . . , n} \ orb(a) and look at its
orbit; continue.

A permutation π ∈ Sn may take an element to itself. We say π fixes a ∈
{1, . . . , n} when π(a) = a. We can denote this one-cycle by (a). Usually we don’t
write the one cycles in the cycle decomposition if the context is clear. For example,
(1, 3, 5)(2, 7) as an element of S7 is really (1, 3, 5)(2, 7)(4)(6).

Definition 2.5.9. We will call the list of cycle lengths, in decreasing order, the
signature of the permutation.

For example, the permutation π in S5 from Exercise 2.5.1 has cycle decom-
position π = (1, 3)(2, 5, 4) and signature 3, 2. If we consider π as an element of
S6, we have π = (1, 3)(2, 5, 4)(6) and the signature is 3, 2, 1. The permutation
(1, 3, 5)(2, 7) as an element of S7 has signature 3, 2, 1, 1.

Exercises 2.5.10. The signature of a permutation

Prove the following results about the signature of a permutation.

(a) For π ∈ Sn, the sum of the signature list is n.

(b) If π = σ1σ2 · · ·σr is a cycle decomposition, then πk = σk1σ
k
2 · · ·σkr . Under

what conditions is this also a cycle decomposition in the sense that each σki
is a cycle?
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(c) The order of π ∈ Sn is the lcm of the signature list.

Exercises 2.5.11. A sanity check on symmetric groups

For n = 4 and n = 5 do the following to check that all elements of Sn are
accounted for.

(a) Identify all possible signatures for elements of Sn and find the order of an
element with the given signature.

(b) For each possible signature in Sn, count how many elements have that sig-
nature. Then check that you get the correct total number of elements in
Sn.

(c) What is the exponent of Sn for n = 4, 5, 6, 7?

Transpositions and the Alternating Group

There is another factorization that is important.

Proposition 2.5.12. Every permutation can be written as a product of transpo-
sitions.

Proof. Since every permutation is a product of cycles, it is enough to show that
every cycle is a product of transpositions. This is shown by verifying that

(a1, a2, . . . , at) = (a1, a2) ∗ (a2, a3) ∗ · · · ∗ (at−2, at−1) ∗ (at−1, at)

Recall that we treat permutations are functions and we apply the rightmost per-
mutation first. One can see that at gets mapped to at−1 then at−2 and so forth,
until the final transposition is applied and takes a2 (the image of at at this point)
to a1. Similar arguments apply to the other ai.

We may interpret the previous result as saying that Sn is generated by trans-
positions. That is somewhat good news: there are n! elements of Sn but only

(
n
2

)
transpositions. Thus n(n− 1)/2 elements of Sn are enough to generate Sn. In fact
we can do much better!

Exercises 2.5.13. Generators for Sn

(a) Show that Sn is generated by the n − 1 elements (1, k) for k = 2, . . . , n.
[Show that you can get an arbitrary transposition by conjugating (1, k) by
some (1, j), see Definition 2.7.10.]

(b) Show that Sn is generated by 2 elements: (1, 2) and (1, 2, 3, . . . , n − 1, n).
[Show that you can get all (1, k) from these two using conjugation and then
apply the previous exercise.]

Exercises 2.5.14. Preparing for the next proposition
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(a) Let a, b, c be distinct elements of {1, . . . , n}. Write down all possible factor-
izations of the 3-cycle (a, b, c) as a product of 2 transpositions.

(b) Let a be an element of {1, . . . , n}. Let τ1, τ2 be transpositions in Sn with
τ1 6= τ2. Show that there exist transpositions σ1, σ2 ∈ Sn such that σ1σ2 =
τ1τ2 and a is not in the support of σ2. [You will need to consider a few
different cases depending on whether a is in the support of τ1 or τ2.]

We know from the previous proposition that a permutation can be written
as a product of transpositions. This “factorization” is not unique, for example
id = (1, 2)(1, 2) = (1, 3)(1, 3), but the next proposition shows that the parity of
the factorization is.

Proposition 2.5.15. The identity element of Sn cannot be written as the product
of an odd number of transpositions.

Consequently, no permutation can be written as a product of an even number
of transpositions and also as a product of an odd number of transpositions.

Proof. We will show that if id is the product of n transpositions then it is the
product of n−2 transpositions. Consequently, if it is the product of an odd number
of transpositions, inductively we could show that id is a single transposition. This
is clearly false.

Suppose that id = τ1 · · · τm with τi = (b2i−1, b2i). The bi are not necessarily
distinct, except b2i 6= b2i−1 so that τi is indeed a transposition. Let a = b1. Let
k be the largest integer such that a is in the support of τk (so either b2k−1 or b2k
is equal to a). Note that k 6= 1 because if a was only in the support of τ1 then
τ1 · · · τm(a) = τ1(b1) = b2 6= a and the factorization would not be the identity.

Using the previous exercise we can rewrite the factorization of the identity
replacing τk−1τk with σk−1σk in which a is not in the support of σk (the indexing
of k − 1 and k on σk−1 and σk is just for notational convenience). We have a new
factorization of id with m terms, but now, only the transpositions τ1, . . . , τk−2 and
σk−1 can have a in the support. If τk−2 = σk−1 we can cancel and get a shorter
factorization of the identity using n− 2 transpositions, as claimed. Otherwise we
repeat the process: find the largest index such that the transposition with that
index has a in the support; use the exercise to move a into a lower index term;
cancel if possible; if not repeat. Eventually we either get a cancellation, or we arrive
at a factorization τ1σ2 · · · τk+1τk+2 · · · τm in which only the first two transpositions
τ1 and σ2 have a in their support. Then τ1σ2(a) = id(a) = a. This is possible
only if τ1 = σ2. Thus we may cancel and get id equal to the product of m − 2
transpositions as claimed.

For the second part, suppose that π is the product of transpositions in two
ways: π = σ1σ2 . . . σm = θ1θ2 . . . θk. Then id = σ1σ2 . . . σmθ

−1
1 θ−12 . . . θ−1k . Thus

m+k must be even, and this implies that m and k must have the same parity.
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We now have an important and easy consequence.

Proposition 2.5.16. The set of even parity permutations forms a subgroup of Sn.
This is called the alternating group and is denoted An.

Furthermore, there is a homomorphism from Sn to Z2 whose kernel is An.

Proof. Define a function from f from Sn to Z2 that takes even permutations to 0
and odd permutations to 1. This is well defined by the proposition. Let π and σ
have the following decompositions as products of transpositions π = τ1 · · · , τk, σ =
τ ′1 · · · , τ ′m. Then πσ has the following decomposition as a product of transpositions:

πσ = τ1 · · · , τkτ ′1 · · · , τ ′m

Consequently,

f(πσ) = m+ k mod 2

= f(π) + f(σ)

This shows f is a homomorphism.
By construction, the kernel of f is An, the set of even permutations. Since the

kernel of a homomorphism is a subgroup of the domain, An is a subgroup of Sn.

Exercises 2.5.17. Parity of a t-cycle

(a) Show that the parity of a t-cycle is the not t mod 1.

(b) Find a formula for the parity of σ ∈ Sn that uses the signature of σ.

Exercises 2.5.18. Details for proving the simplicity of An

(a) Suppose that σ is a k-cycle and τ is an m-cycle and there is exactly one
element of {1, . . . , n} that is in the support of both σ and τ . Show that στ
is a (k +m− 1)-cycle.

(b) Show that the product of two disjoint transpositions can also be written as
the product of two 3-cycles.

(c) Use part (a) (with k = m = 2) and part (b) to prove that An is generated
by 3 cycles.

(d) Compute (1, 2, a)(1, b, 2) for a, b distinct and not equal to 1 or 2. Use the
result as motivation to show that the 3-cycles of the form (1, 2, a) generate
An for n ≥ 4.

Exercises 2.5.19. More on An

(a) Find all subgroups of A4. Draw a diagram of the subgroup lattice.

(b) What is the intersection of A4 and D4 (generated by (1, 2, 3, 4) and (1, 3)?
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(c) There are other subgroups of S4 isomorphic to D4, for example the group
generated by (1, 3, 4, 2) and (1, 3). What is the intersection of these versions
of D4 with A4?

Cayley’s Theorem

For any set T , the set of bijections from T to itself forms a group under composition
with the indentity map, id(t) = t, acting as identity element and f mapping to the
inverse of a function f as the operation of inversion. In a manner similar to our
notation for permutations of {1, . . . , n}, we will write the group of bijections of an
arbitrary set T as ST . The elements of ST will also be called permutations of T .
It should be clear that if |T | = n then ST ∼= Sn.

For a group G, we can forget that G is a group and just look at arbitrary
bijections (set maps) from G to itself, that is SG. The next theorem shows there
is an injective homomorphism from G to SG.

Theorem 2.5.20. Any group G is isomorphic to a subgroup of SG, the group of
(set) bijections of G to itself. If |G| = n there is an embedding of G in Sn.

Proof. For each a ∈ G, left multiplication by a maps elements of G to elements
of G. Let us call this map λa : g −→ ag. We can see that λa is a permutation
of G as follows. For any g ∈ G, λa(a

−1g) = a(a−1g) = g, so a−1g is a preimage
for g. Since g was arbitrary, λa is surjective. We also have λa is injective because
λa(g) = λa(g

′) implies ag = ag′, which by cancellation in G gives g = g′.
(We could also prove that λa is a permutation of G by showing that λa−1 and

λa are inverse functions of each other: both compositions, λa ◦ λa−1 and λa−1 ◦ λa
give the identity map.)

Define λ : G −→ SG by λ : a −→ λa. Since λa(e) = a, we have λa = λb can
only be true if a = b. Thus λ is injective. To show it is a homomorphism we have
to show that λab = λa ◦ λb. The following computation does that. We have for all
g ∈ G,

λab(g) = (ab)g = a(bg) = λa(bg) = λa(λb(g)) = (λa ◦ λb)(g)

For a finite set T of cardinality n, we noted earlier that ST is isomorphic to
Sn. It is worth explicitly giving a construction of an embedding of G into Sn
(for |G| = n) by enumerating the elements of G so G = {g1, . . . , gn}. For any
a ∈ G, we have shown that λa, left multipication by a, permutes the elements of
G. Define ϕa ∈ Sn by ϕa(i) is the unique j such that agi = gj . We may then write
agi = gϕa(i). Observe that

gϕab(i) = abgi = a(bgi) = a(gϕb(i)) = gϕa(ϕb(i)) = gϕa◦ϕb(i)
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This shows that ϕab = ϕa ◦ ϕb so the function ϕ is a homomorphism.

Exercises 2.5.21. Cayley’s Theorem: three examples

(a) Let n = 5 and think of Zn in the usual way as {0, 1, 2, 3, 4} with addition
modulo n. For each a ∈ Zn write down in tabular form the function on Zn
defined by addition of a.

(b) Show that part (a) defines a function from Z5 to S5, provided you think of
S5 as the group of permutations of {0, 1, 2, 3, 4}. Show that this function is
a homomorphism.

(c) Now consider Z2 × Z2. Enumerate the 4 elements in any way you choose as
a1, a2, a3, a4. For each ai define a permutation σi by aia1 = aσi(1), aia2 =
aσi(2), aia3 = aσi(3), aia4 = aσi(4).

(d) Show in part (c) that this gives a homomorphism from Z2 × Z2 to S4.

(e) Similarly, the next steps define a homomorphism from D3 to S6. Enumerate
the elements of as follows

D3 =
{
a1 = r0, a2,= r, a3 = r2, a4 = t, a5 = rt, a6 = r2t

}
For each ai define a permutation σi in S6. Since a1 is the identity in D3, σ1
is the identity permutation in S3. One can see that σ2 is given by σ2(i) = k
whenever rai = ak. Verify that each σi is indeed a permutation by writing
it in permutation notation.

(f) Verify in three examples that for any a, b ∈ D3, the permutation correspond-
ing to ab equals the product of the permutations corresponding to a and b.

(g) Which elements of D3 correspond to odd permutations in S6?

Exercises 2.5.22. The product of two symmetric groups

(a) Let A and B be disjoint subsets of {1, . . . , n}. Explain how to think of
SA × SB as a subgroup of Sn.

(b) Generalize to any partition of {1, . . . , n}.
Exercises 2.5.23. Counting elements of Sn

(a) Let n be a positive integer and k > n/2. Find a formula for the number of
elements of Sn that include a k-cycle.

(b) Use Stirling’s formula to approximate the formula you just computed.

(c) Estimate the probability that a random element of Sn has a cycle of length
larger than n/2.
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2.6 Generators and Relations

There is another way to describe groups: using “generators” and “relations.” A
set of generators for the group is given, and then certain properties that must be
satisfied by those generators are listed. The latter are called the relations. Identi-
fying the generators and relations for a group is called giving a presentation of
the group. The group is then the set of all possible products of the generators and
their inverses (these are informally called “words”). The relations say that some
words are equal to the identity, so they give a way to simplify words. The descrip-
tion via generators and relations can be straightforward in the simplest instances,
but it is quite subtle in general. We give a few examples here and defer a more
thorough treatment to Section 3.4.

We have noted that Z requires only one generator, as do the groups Zn. We
may describe Zn (actually a group isomorphic to it) using the generator a, and the
relation an = 1, in which I use 1 for the identity element. This would be written

〈a|an = 1〉

The homomorphism Zn −→ 〈a|an = 1〉 taking 1 to a is clearly an isomorphism.
We could also describe Zn in other ways. For example when p and q are distinct

primes (or even just coprime to each other), we could use two generators.

Zpq ∼= 〈a, b|ap = 1, bq = 1, ab = ba〉

This tells us that a is an element of order p, b is an element of order q and that a
and b commute. The latter relation could also be written aba−1b−1 = 1.

Exercises 2.6.1. A presentation of Zpq
(a) Show that the presentation for Zpq in the previous paragraph is isomorphic

to the group with presentation 〈c|cpq = 1〉 via the function c→ ab.

(b) Show that the same presentation works provided only that p and q are co-
prime.

(c) Find a presentation for Zpqr with p, q, r pairwise coprime.

The dihedral group Dn has a presentation as follows

〈a, b|an = 1, b2 = 1, ba = an−1b〉

The generator a is clearly playing the role of rotation by 2π/n and b the role of
a reflection. The final relation tells us that in any product using a and b we can
switch any occurrence of ba to be an−1b and thereby rearrange so that all the as
are on the left and all the bs on the right. So, just using these relations we know
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that any element of this group can be uniquely written aibk for i ∈ {0, . . . , n− 1}
and k ∈ {0, 1}. The group product is easily summarized by the following

(ai)(ajbk) = ai+jbk

(aib)(ajbk) = ai−jbk+1

Exponents on a are computed modulo n and on b modulo 2. It is easy to verify
that our earlier discussion of Dn (Section 1.2) is consistent with the description
here: for any reflection ti, tir = r−1ti.

Exercises 2.6.2. The Quaternion Group

Consider the presentation

Q = 〈a, b | a4 = 1, b2 = a2, ba = a−1b〉

(a) Show that Q has 8 elements. List them in a useful fashion and show how to
multiply them as we did for the dihedral group.

(b) Find the order of each element of Q.

(c) Draw the lattice diagram for this group.

(d) Show that no two of the groups Z2 × Z2 × Z2, Z4 × Z2, Z8, D4, and Q are
isomorphic. [Investigate the number of elements of order 4. Or, Compare
lattice diagrams.]

Exercises 2.6.3. The infinite dihedral group

Let
D∞ = 〈a, b | b2 = 1〉

(a) Show that D∞ is a symmetry group of the following diagrams.

(b) What other symmetries do the diagrams have that are not captured by D∞?
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2.7 Cosets and Conjugates

Let H be a subset of G. In this section we define cosets of H and show an
extremely important result (Lagrange’s Theorem) that the cosets form a partition
of G. We also show there is another interesting partition of G that is determined
by a relation called conjugacy.

The following bit of notation is useful.

Notation 2.7.1. Let S and T be subsets of a group G.

ST = {st : s ∈ S, t ∈ T}

So, ST is the set of all products of an element in S (on the left) and an element of
T (on the right). Similarly, for g ∈ G, gS = {gs : s ∈ S}. We may use analogous
notation for the set of all products from 3 or more sets.

If a group is abelian and the operation is + we write S + T instead of ST .

Proposition 2.7.2. Associativity holds for the notation in 2.7.1. If S, T, U are
subsets of G then (ST )U = S(TU).

Proof.

(ST )U = {st : s ∈ S, t ∈ T}U
= {(st)u : s ∈ S, t ∈ T, u ∈ U}
= {s(tu) : s ∈ S, t ∈ T, u ∈ U}
= S {tu : t ∈ T, u ∈ U}
= S(TU)

The proposition shows that we may write unambigously STU for the product
of three sets (taken in the order given). Notice that ST and TS are not necessarily
equal when the group G is not abelian.

Exercises 2.7.3. Revisiting the properties of a subgroup.

(a) Let T be a nonempty subset of a group G. Prove that T is a subgroup of G
if and only if TT = T and T−1T = T .

(b) Let T be a nonempty subset of the finite group G. Prove that TT = T if
and only if T is a subgroup of G.

(c) Give an example to show that for an arbitrary group G and nonempty subset
T , TT = T is not sufficient to ensure T is a subgroup of G.
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Definition 2.7.4. Let H ≤ G and let g ∈ G. The set gH is a left coset of H in
G. Similarly, Hg is a right coset of H in G.

We will prove several results for left cosets. There are analogous results for
right cosets.

Lemma 2.7.5. Let G be a group and H a subgroup of G. The function

λg : H −→ gH

h 7−→ gh

is a bijection.

Proof. The function λg is a surjection by the definition of gH. Suppose gh = gh′.
Multiplying on the left by g−1 gives h = h′. This shows λg is injective.

Lemma 2.7.6. Let G be a group and H a subgroup of G. For a, g ∈ G, if
gH ∩ aH 6= ∅ then gH = aH.

Proof. First, we show that if g ∈ aH then gH ⊆ aH. Let g ∈ aH, so there is some
k ∈ H such that g = ak. For any h ∈ H, we have gh = akh. This is an element of
aH because kh ∈ H since H is a subgroup of G. This shows gH ⊆ aH.

Suppose gH ∩ aH is nonempty, containing some element x. Then there are
h, k ∈ H such that x = gh = ak. Then g = akh−1 ∈ aH and similarly a =
ghk−1 ∈ gH. From the previous paragraph, we have aH ⊆ gH and gH ⊆ aH, so
aH = gH.

Theorem 2.7.7 (Lagrange). Let G be a group with subgroup H. The set of cosets
of H form a partition of G.

Consequently, if G is a finite group with subgroup H then the order of H divides
the order of G. In particular, the order of any element of G divides |G|.

Proof. Any g ∈ G is in some coset, namely gH, so the cosets cover G. The previous
lemma shows that any two unequal cosets are disjoint. Thus the cosets partition G.

Suppose G is finite. Since the cosets of H partition G, there are elements
a1, . . . , at such that G is the disjoint union of a1H, a2H, . . . , atH. The cosets of H
all have the same number of elements by Lemma 2.7.5. Thus |G| =

∑t
i=1|aiH| =

t|H|, and the number of elements of G is a multiple of |H|.
For any a ∈ G the number of elements in the subgroup 〈a〉 is ord(a). So ord(a)

divides |G|.

Definition 2.7.8. Let H ≤ G. The index of H in G, written [G : H], is the
number of cosets of H in G, which may be infinite.
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If G is finite and H ≤ G then [G : H] = |G|/|H|, since all cosets have |H|
elements.

Exercises 2.7.9. The exponent of a group

Recall that the exponent of a group G is the lcm of the orders of the elements
(if this is finite).

(a) Give an example to show that there may not be an element in G whose order
is the exponent of G, even if G is finite.

(b) Let G be a finite group with finite exponent t. Show that t divides the order
of G.

Conjugation

Now we consider conjugation.

Definition 2.7.10. Let a ∈ G and g ∈ G. The element aga−1 is called the con-
jugation of g by a. If S is a subset of G, we define aSa−1 to be

{
asa−1 : s ∈ S

}
.

It is the conjugation of S by a.

Proposition 2.7.11. Conjugacy on a group G determines an equivalence relation.

Proof. Let G be a group and define a relation on G by a is related to b if there
is some g such that b = gag−1. The relation is reflexive, because for any a ∈ G,
eae−1 = a. The relation is symmetic, because if a is related to b (say b = gag−1)

then we also have a = g−1b
(
g−1
)−1

so b is related to a. Finally suppose a is
related to b (again b = gag−1) and b is related to c (so there is some h ∈ G with
c = hbh−1). Then

c = hbh−1 = h
(
gag−1

)
h−1 =

(
hg
)
a
(
hg
)−1

This shows that a is related to c. We have shown that conjugacy determines an
equivalence relation on G.

Exercises 2.7.12. The Centralizer of an element

For a ∈ G we define the centralizer of a to be C(a) = {g ∈ G : ga = ag}.
(a) Show that C(a) is a subgroup of G.

(b) Let G be a finite group. Show that the number of elements of G conjugate
to a is |G|/|C(a)|. [Consider the cosets of C(a).]

Exercises 2.7.13. Conjugation in the symmetric and dihedral groups

(a) Show that An is invariant under conjugation: for any π ∈ Sn, πAnπ
−1 = An.

(b) Let Cn be the rotation subgroup of Dn. Find two elements of C4 that are
conjugate as elements of D4 but are not conjugate as elements of C4.
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(c) Find two elements of D4 that are conjugate as elements of S4 but are not
conjugate as elements of D4.

Exercises 2.7.14. Conjugates and subgroups.

Let H be a subgroup of a group G.

(a) Let a ∈ G. Show that aHa−1 is a subgroup of G.

(b) Show that there is an isomorphism between H and aHa−1.

Proposition 2.7.15. Let π ∈ Sn. For any σ ∈ Sn, the signature of σ and the
signature of πσπ−1 are the same.

One proof is contained in the following suite of exercises.

Exercises 2.7.16. Conjugation and cycle decomposition.

Consider conjugation by π ∈ Sn.

(a) Let (a1, a2, . . . , ak) ∈ Sn be a k-cycle, so the ai are distinct. Show that

π ∗ (a1, a2, . . . , ak) ∗ π−1 =
(
π(a1), π(a2), . . . , π(ak)

)
[Consider two cases, b = π(ai) for some i, and b 6∈ {π(a1), π(a2), . . . π(ak)}.
Explain why this breakdown into two cases makes sense.]

(b) If A and B are disjoint subsets of {1, . . . , n} show that π(A) and π(B) are
also disjoint.

(c) If σ = σ1σ2 · · ·σk is the cycle decomposition of σ, find the cycle decomposi-
tion of πσπ−1 and justify your answer.

(d) Conclude that the conjugation of any σ ∈ Sn by π has the same signature
as σ.
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2.8 Normality and the First Isomorphism Theorem

Let’s pause for a moment to think about homomorphisms, particularly the spe-
cial cases: injective homomorphisms (one-to-one) and surjective homomorphisms
(onto).

Suppose H is a subgroup of G. There is a injective function from H to G, which
is called the inclusion map, that simply takes h ∈ H to itself, as an element of
G. Since H is a subgroup of G (it’s multiplication is the same as the one on G),
the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that
ϕ : H −→ G is an injective homomorpism. Proposition 2.3.5 shows that ϕ(H) is
a subgroup of G. Thus the bijection ϕ : H −→ ϕ(H) is actually a homomorphism
of groups. This shows that the image of an injective homomorphism ϕ : H −→ G
is a subgroup of G that is isomorphic to H. Thus, the study of injective homo-
morphisms is essentially the study of subgroups and their automorphisms.

This section and Section 2.10 are focused on surjective homomorphisms, which
are intimately related to subgroups that have a special property, treated in the
next proposition.

Theorem 2.8.1 (Normal Subgroups). Let N be a subgroup of G. The following
are equivalent.

(1) Na = aN for all a ∈ G.

(2) aNbN = abN for all a, b ∈ G.

(3) aNa−1 ⊆ N for all a ∈ G.

(4) aNa−1 = N for all a ∈ G.

Proof. We prove a series of implications that shows the conditions are equivalent.
(1) =⇒ (2): Assume Na = aN for all a ∈ G. Then

(aN)(bN) = a(Nb)N = a(bN)N = (ab)N

Here we have used asociativity, then the assumption in (1), and finally, NN = N
since N is a subgroup of G.
(2) =⇒ (3): Assume aNbN = abN for all a, b ∈ G. Set b = a−1. Then, using (2),
aNa−1N = aa−1N = eN . In particular, this shows that aNa−1 ⊆ N .
(3) =⇒ (4): Assume aNa−1 ⊆ N for all a ∈ G. For any a ∈ G, applying (3) to
a−1, we have that a−1Na ⊆ N . Conjugating by a, we get

a(a−1Na)a−1 ⊆ aNa−1
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The left hand side is N . Thus, assuming (3) we have both aNa−1 ⊆ N and
N ⊆ aNa−1, which proves (4).
(4) =⇒ (1): Assume aNa−1 = N for all a ∈ G. Multiplying aNa−1 = N on the
right by a gives (1).

These arguments may seem slippery since they involve computations with sets.
The proofs can also be done elementwise. Consider (4) =⇒ (1). Let a ∈ G. Given
any n ∈ N , we know ana−1 ∈ N , say ana−1 = n′. Then an = n′a ∈ Na. Since
n was arbitrary, aN ⊆ Na. The reverse containment is proven analogously, using
a−1na ∈ N .

Definition 2.8.2. A group satisfying the conditions of the theorem is called nor-
mal. We write N E G for N a normal subgroup of G.

Exercises 2.8.3. A weaker requirement for normality

(a) Let H be a subgroup of a group G such that for any a ∈ G there is a b
in G such that aH = Hb. (Every left coset is also a right coset, but not
necessarily defined by the same element of G.) Prove that H is normal in G.

Let N be normal in G. Suppose aN = bN and rN = sN . Then a ∈ bN and
r ∈ sN , so ar ∈ bNsN = bsN . By Lemma 2.7.6, arN = bsN . Consequently,
there is a well-defined operation on cosets of N in G that takes the pair (aN, bN)
to abN (it doesn’t matter which element we choose to represent each coset, their
product always defines the same coset). The next theorem shows that this gives a
group structure on the cosets of N in G.

Theorem 2.8.4. Let N be a normal subgroup of G. Let G/N be the set of cosets
of N in G with the binary operation by aN ∗ bN = abN . Then G/N is a group.

Proof. We have proven above that the product aNbN is well defined and equal to
abN . Associativity is inherited from associativity of ∗G (check!). The identity is
eN . The inverse of aN is a−1N .

We call G/N the quotient of G by N and the homomorphism G −→ G/N is
called the quotient map. Some sources call G/N a factor group.

Every subgroup of an abelian group A is normal in A, so for any subgroup B
of A there is quotient group A/B.

Example 2.8.5. In Z the only subgroups are nZ. The quotient group Z/nZ has the
distinct elements a+nZ for a ∈ {0, . . . , n− 1}. Clearly this is just another way to
think about the additive group of integers modulo n. It is isomorphic to Zn.

Exercises 2.8.6. Additional properties of normal subgroups.

(a) Let N be a normal subgroup of G. For any subgroup H of G, H ∩ N is a
normal subgroup of H.
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(b) If ϕ : G −→ H is a homomorphism and N is normal in H, then ϕ−1(N) is
normal in G.

(c) Show that any subgroup of index 2 is normal.

Exercises 2.8.7. The Center of of a group

We defined Z(G), the center of G to be the set of elements in G that commute
with all elements of G, Z(G) = {a ∈ G : ag = ga for all g ∈ G}.

(a) Prove that any subgroup of the center of G, including Z(G) itself, is normal
in G.

(b) Find the center of D4; it is not trivial.

(c) Show that the centers of D3 and D5 are trivial.

Exercises 2.8.8. Example of normal subgroups.

(a) Find all normal subgroups of D4, D5, and D6.

(b) Find all normal subgroups of A4.

(c) Find all normal subgroups of the quaternions, Q.

Isomorphism and Factor Theorems

We are now in the position to say more about the relationship between homomor-
phisms and normal subgroups.

Theorem 2.8.9 (First Isomorphism). Let ϕ : G −→ H be a surjective homomor-
phism with kernel K. Then K is a normal subgroup of G and G/K is isomorphic
to H.

Proof. We showed in Proposition 2.3.7 that the kernel of any homomorphism of
groups is a normal subgroup of the domain.

Let g ∈ aK, so g = ak for some k ∈ K. Then ϕ(g) = ϕ(a)ϕ(k) = ϕ(a).
Consequently, all elements of a fixed coset of K ahve the same image under ϕ, so
there is a well defined map ϕ̃ : G/K → H taking aK to ϕ(a).

To show ϕ̃ is a homomorphism, let aK and bK be elements of G/K. Since
K is normal, ϕ̃(aKbK) = ϕ̃(abK) = ϕ(ab) by the definition of multiplication in
G/K and the definition of ϕ̃. Since ϕ is a homomorphism, ϕ(ab) = ϕ(a)ϕ(b) =
ϕ̃(aK)ϕ̃(bK). thus ϕ̃(aKbK) = ϕ̃(aK)ϕ̃(bK), which shows ϕ̃ is a homomorphism.

Since ϕ is surjective, for any h ∈ H there is some a ∈ G such that ϕ(a) = h.
Then ϕ̃(aK) = h, so ϕ̃ is surjective.

To show that ϕ̃ is injective, suppose ϕ̃(aK) = eH . Then ϕ(a) = eH so a ∈ K
and aK = eGK. Thus the kernel of ϕ̃ just contains just the identity element of
G/K.

Here is an important use of the First Isomorphism theorem.
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Theorem 2.8.10. Let G1, G2, . . . Gr be groups and let N1, N2, . . . , Nr be normal
subgroups, Ni EGi. There is a well defined map

(G1 ×G2 × · · · ×Gr)/(N1 ×N2 × · · · ×Nr) −→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr)

(g1, g2, . . . , gr) (N1 ×N2 × · · · ×Nr) 7−→ (g1N1, g2N2, . . . grNr)

and it is an isomorphism.

Proof. By the Direct Product Theorem 2.4.2, the projection of G1×G2×· · ·×Gr
onto Gi is a homomorphism. Composing this with the quotient map Gi −→
Gi/Ni, we get maps G1 ×G2 × · · · ×Gr −→ Gi/N . Proposition 2.4.4 then gives a
homomorphism

G1 ×G2 × · · · ×Gr
ϕ−→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr),

To be specific, let us show that ϕ respects products. Let (g1, g2, . . . , gr) and
(g′1, g

′
2, . . . , g

′
r) be elements of G1 ×G2 × · · · ×Gr. Then

ϕ
(

(g1, g2, . . . , gr) ∗ (g′1, g
′
2, . . . , g

′
r)
)

= ϕ
(

(g1g
′
1, g2g

′
2, . . . , grg

′
r)
)

= (g1g
′
1N1, g2g

′
2N, . . . , grg

′
rNr)

= (g1N1, g2N2, . . . , grNr) ∗ (g′1N1, g
′
2N2, . . . , g

′
rNr)

= ϕ(g1, g2, . . . , gr) ∗ ϕ(g′1, g
′
2, . . . , g

′
r)

We used, in order, the definition of multiplication in G1 × G2 × · · · × Gr, the
definition of ϕ, the definition of multiplication in G1/N1 ×G2/N/2× · · · ×Gr/Nr

(and the Ni being normal), and finally, the definition of ϕ.
The kernel of ϕ is the set of (g1, . . . , gr) such that g1N1, g2N2, . . . , grNr =

N1 ×N2 × · · · ×Nr. Each gi must be in Ni. So, the kernel is e1N1 × e2N2 × · · · ×
erNr. Surjectivity is easy to check, so the first isomorphism theorem now gives
the result.

A generalization of the first isomorphism theorem that we will often use treats
the case when ϕ : G −→ H is not necessarily surjective.

Theorem 2.8.11 (Factor). Let ϕ : G −→ H be a homomorphism of groups with
kernel K. Let N be a normal subgroup of G that is contained in K. Then ϕ can
be factored into the canonical surjective homomorphism π : G −→ G/N followed
by a homomorphism ϕ̄ : G/N −→ H.

By letting N = K we conclude that any homomorphism can be factored into a
surjective homomorphism followed by an injective homomorphism.
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Proof. Define ϕ̃ by gN 7−→ ϕ(g). This is well defined because N is contained in
the kernel of ϕ so for any n ∈ N , ϕ(gn) = ϕ(g)ϕ(n) = ϕ(g)eH = ϕ(g). From this
definition it is immediate that ϕ̃ ◦ π = ϕ.

The proof that ϕ̃ is a homomorphism is similar to the proof of the First Iso-
morphism Theorem.

When N = K, we want to show that ϕ̃ is injective. Suppose ϕ̃(gN) = eH . By
the definition of ϕ̃, we have ϕ(g) = eH . Thus g ∈ K, and therefore gK = eK, the
identity element of G/K.

The Factor Theorem and First Isomorphism Theorem give us a framework for
understanding the material that we have seen earlier. As we said above, the group
Zn is just the quotient of Z by its normal subgroup nZ.In the context of groups
we have given a shorthand notation to Z/nZ, calling it Zn.

Recall that Proposition 2.3.4 says that given any group G and g ∈ G there is
a homomorphism Z −→ G taking 1 to g. If g has infinite order then the cyclic
group, 〈g〉, is isomorphic to Z. If g has finite order n then the factor theorem says
that Zn is isomorphic to 〈g〉 via the homomorphism taking 1 (in Zn) to g.
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2.9 More Examples of Groups

Before continuing the theoretical development we introduce a few more interesting
families of groups. The first set are abelian, derived from the number systems
discussed in Section 1.2. The second family is matrix groups, which are (generally)
non-abelian.

Groups from Familiar Number Systems

We have already treated the additive group of the integers, Z as well as its sub-
groups nZ. We have also used the integers modulo n, which we can now identify
as the quotient group of Z by its subgroup nZ. As pointed out in Section 1.2,
the additive group of the fields Q (rational numbers), R (real numbers) and C
(complex numbers) are abelian groups. They are complicated as groups because
they are not finitely generated. The next exercise shows that the quotient Q/Z is
interesting; every element has finite order, but the group is not finitely generated.

Exercises 2.9.1. The group Q/Z
(a) Show that every element in Q/Z has finite order.

(b) On a number line, sketch a region that contains one element for each equiv-
alence class of Q/Z.

(c) Show that for any integer n there is an element of order n in Q/Z.

(d) How many elements of order n are there in Q/Z?

(e) Show that for any finite set {r1, r2, . . . , rt} of rational numbers,

〈r1 + Z, r2 + Z, . . . , rt + Z〉 6= Q/Z

This shows that the group Q/Z is not finitely generated.

We can also consider the multiplicative groups from familiar number systems.
We noted in Section 1.1 there is both an additive and a multiplicative structure

Z/n, to the integers modulo n. For an integer a that is comprime to n there are
integers u, v such that ua+ nv = 1 by the GCD theorem. Then u and a are mul-
tiplicative inverses of each other in Z/n. We call them units. In Proposition 2.1.8
we showed that Un, the set of units in Z/n, forms a group under multiplication: 1
is the identity element, every element has an inverse by definition, the product of
two units is also a unit (with (ab)−1 = a−1b−1), and multiplication is associative
and commutative.

For a prime number p, every nonzero element in Z/p is a unit, so Z/p is a field.
When considering it as a field we will write it Fp.
Exercises 2.9.2. Automorphism groups of Zn
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(a) Prove that Aut(Zn) ∼= Un, the group of units in Zn.

(b) We will prove in Section 3.2 that every finite abelian group is isomorphic to
a cyclic group or a direct product of such. For each of n = 8, 9, 10, 11, 12
find the product of cyclic groups that is isomorphic to Un.

Returning to the fields Q, R, C, we now consider their multiplicative groups,
which are written Q∗, R∗, and C∗.
Example 2.9.3. In Q∗, there is only one element of finite order Q∗, other than
the identity element, namely −1. It has order 2. Similarly the only non-identity
element of R∗ which has finite order is −1. To get elements of order n we are, in
effect, looking for solutions of xn − 1, that is nth roots of unity. These live in the
complex number field C.

Exercises 2.9.4. Subgroups of Q∗

(a) For any rational number r 6= ±1 show that
{
ri : i ∈ Z

}
is a subgroup of Q∗

that is isomorphic to Z.

(b) Show that the subgroup generated by 2 and 2 is 〈2, 3〉 =
{

2i3j : i, j ∈ Z
}

and that it is isomorphic to Z× Z. Generalize.

(c) Show that the positive rational numbers Q∗∗ = {a ∈ Q : a > 0} form a sub-
group of Q∗.

(d) Show that Q∗ is isomorphic to the direct product of Q∗∗ and 〈−1〉.
(e) Extend this result to the multiplicative group of the real numbers, R∗.

Exercises 2.9.5. An additive group isomorphic to a multiplicative group.

(a) Show that there is a homomorphism from Q,+ to C∗, ∗, namely a 7−→ ea2πi.

(b) Show that the image is the set of all nth roots of unity (for n ∈ N) and that
this forms a subgroup of C∗ under multiplication.

(c) What is the kernel?

Matrix Groups

We will work primarily with matrix groups over the fields, Q, R, C and Fp, but
the general results below are true for any field, so we express them for a general
field F . We denote the multiplicative group of F by F ∗.

Definition 2.9.6. Let F be a field and let n be an integer. The set of n×nmatrices
over F with nonzero determinant is called the General Linear Group and is
written GLn(F ). The subgroup consisting of the matrices with determinant 1 is
the Special Linear Group and is written SLn(F ). The next proposition shows
that these are indeed groups with the identity matrix, In as identity element.
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Proposition 2.9.7. Let F be a field and let n be an integer. The set of n ×
n matrices over F with nonzero determinant forms a group. The determinant
function

det : GLn(F ) −→ F ∗

is a homomorphism, and its kernel is SLn(F ).

Proof. Matrix multiplication is associative: One can show that for n× n matrices
A,B,C, the i, j component of the product of A(BC) and of (AB)C is

n∑
s=1

n∑
t=1

aisbstctj

Thus A(BC) = (AB)C. (Associativity holds for any product of matrices that is
well defined. We are treating the special case where they are all square of the same
dimension.)

The result from linear algebra (which we assume here) that the determinant of
a product of two matrices is the product of their determinants shows, in particu-
lar, that the product of two matrices with nonzero determinant also has nonzero
determinant. So GLn(F ) is closed under multiplication. The identity matrix, In,
and the usual formula for the inverse of a matrix perform the expected roles to
make GLn(F ) a group. The determinant function respects products, so it gives a
homomorphism to F ∗. The kernel is the subgroup of matrices with determinant
1, that is SLn(F ).

Exercises 2.9.8. Interesting subgroups of the general linear group

Show that the general linear group has these subgroups:

(a) The matrices of the form aIn for a ∈ F are called the constant diagonal
matrices. Taking a nonzero we get the subgroup F ∗In of GLn(F ). Show
that F ∗In is the center of GLn(F ) when n > 1. [Show first that F ∗In is in
the center of (GLn(F )). Then show no other matrices are in the center.]

(b) The diagonal matrices with nonzero entries on the diagonal.

(c) The upper triangular matrices with nonzero entries on the diagonal.

(d) The orthogonal group O(n, F ) is the group of matrices Q such that Q−1

is the transpose of Q.

(e) For any subgroup H of F ∗ the set of all matrices with determinant in H.

There are two other matrix groups of particular interest. In the exercises above,
you showed that for n > 1, the constant diagonal matrices, F ∗In form the center
of GLn(F ). In particular F ∗In is normal in GLn(F ).
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Definition 2.9.9. The quotient group GLn(F )/F ∗In is called the Projective

General Linear Group and is written PGLn(F ). The quotient group SLn(F )/
(
F ∗In∩

SLn(F )
)

is called the Projective Special Linear Group and is written PSLn(F ).

Exercises 2.9.10. Upper and lower triangular matrices

(a) Show that the subgroup of upper triangular 2 × 2 matrices is conjugate to

the group of lower triangular matrices. [Hint:

[
0 1
1 0

]
.]

(b) Show that the set of matrices with nonzero determinant of the form

[
0 a
b c

]
is a coset of the upper triangular matrices.

Exercises 2.9.11. Another version of the quaternions

In GL(2,C) consider the matrices

I =

[
1 0
0 1

]
A =

[
i 0
0 −i

]
B =

[
0 1
−1 0

]
C =

[
0 i
i 0

]
(a) Show that the set of matrices {±I,±A,±B,±C} forms a subgroup of GLn(C).

It is called the quaternion matrix group.

(b) Show that this group is isomorphic to the quaternions as defined in Exer-
cise 2.6.2.

Exercises 2.9.12. Another version of the dihedral group D4

(a) Show thatD4 is isomorphic to the matrix group with elements {±I,±A,±B,±C}
where

I =

[
1 0
0 1

]
A =

[
0 1
−1 0

]
B =

[
1 0
0 −1

]
C =

[
0 1
1 0

]
(b) Draw the lattice diagram for this matrix group (it looks just like D4, but

use the elements here).

(c) More generally find a subgroup of GL2(R) that is isomorphic to Dn. (Re-
member your trigonometry.)

Consider the matrix P σ that has a single 1 in each column with the other
entries being 0, specifically, P σσ(i),i = 1. Notice that P σ can be considered as a

matrix over any field F . For v ∈ Fn, and i ∈ {1, . . . , n} the σ(i) component of
the vector P σ(v) is vi. So, P σ permutes the components of v. Another way to say
this is that the ith component of P σ(v) is vσ−1(i).

In particular, the null space of P σ is trivial, so P σ ∈ GLn(F ).
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Proposition 2.9.13. The function from Sn to GLn(F ) taking σ to P σ is an
injective homomorphism.

Proof. We must check that P πP σ = P πσ, which we do by verifying that for any
v ∈ Fn, the ith components of P π

(
P σ(v)

)
= P πσ(v) are the same. The ith

component of P πσ(v) is v(πσ(i). The ith component of P π
(
P σ(v)

)
is the π(i)

component of P σ(v), which is the σ
(
π(i)

)
component of v. Since πσ = σ−1π−1,

the two matrices P πP σ and P πσ are giving the same answer.
Injectivity is clear because the only permutation σ such that P σ takes each

basis vector to itself is the identity permutation.
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2.10 Structure in the Quotient Group:
The Third Isomorphism Theorem and the Corre-
spondence Theorem

The next step is to understand the structure of a quotient group. The two main
results—the third isomorphism theorem and the correspondence theorem—have
fairly simple statements, which obscure some subtle issues. The proof of the third
isomorphism theorem is a consequence of the first isomorphism theorem.

Theorem 2.10.1 (Third Isomorphism). Let N and K be normal subgroups of G
with K contained in N . Then N/K is a normal subgroup of G/K and

(G/K)

(N/K)
∼= G/N.

Proof. We have two well defined quotient groups of G: G/K and G/N . I claim
that there is a well-defined function from G/K to G/N taking gK to gN . To prove
this, we have to check that if two cosets aK and bK are equal then the cosets aN
and bN are also equal. Suppose aK = bK. Then a−1b ∈ K and since K ⊆ N we
have a−1b ∈ N . Consequently aN = bN . Thus, there is a function taking aK to
aN .

We now do the straightforward verification that the function ϕ : G/K −→
G/N defined above is surjective and a homomorphism. Given any gN there is an
element, namely gK, that clearly maps to it, ϕ(gK) = gN , so we get surjectivity.
Also, ϕ respects multiplication: ϕ(gK ∗ g′K) = ϕ(gg′K) = gg′N = gN ∗ g′N =
ϕ(gK) ∗ ϕ(g′K)

The kernel of ϕ is {gK : gN = eN}. But gN = eN if and only if g ∈ N . So the
kernel is N/K. Applying the First Isomorphism Theorem 2.8.9 to ϕ : G/K −→
G/N ,

(G/K)

(N/K)
∼= G/N.

The more powerful theorem is the Correspondence Theorem, which we may be
seen as a strengthening of the First Isomorphism Theorem. Recall what we said
about isomorphic groups at the end of Section 2.3: If G and H are isomorphic
the isomorphism sets up a correspondence between subgroups of G and subgroups
of H, so the lattices of G and H have the same structure. Furthermore, normal
subgroups of G are paired with normal subgroups of H under this correspondence
by Exercise 2.8.6. The Correspondence Theorem gives similar information in the
more general setting of a surjective homomorphism ϕ : G −→ H.
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Before stating it, let us recall some simple facts about functions. Let f : X → Y
and let A ⊆ X and B ⊆ Y . Then A ⊆ f−1

(
f(A)

)
because for any a ∈ A,

a ∈ f−1
(
f(a)

)
. On the other hand, for an element b ∈ B, if x is a preimage

of b then f(x) = b, but there may be no preimage for b, so we know only that
f
(
f−1(B)

)
⊆ B.

If f is surjective then for each b ∈ B there is some x ∈ X such that f(x) = b.
Thus for f surjective, f

(
f−1(B)

)
= B. Respecting containment is also immediate:

If A ⊆ A′ ⊆ X then f(A) ⊆ f(A′) and similarly if B ⊆ B′ ⊆ Y then f−1(B) ⊆
f−1(B′).

Theorem 2.10.2 (Correspondence). Let ϕ : G −→ H be a surjective homomor-
phism with kernel K. There is a one-to-one correspondence, given by ϕ, between
subgroups of H and subgroups of G that contain K.

G −→ H

A←→ ϕ(A)

ϕ−1(B)←→ B

The correspondence respects containment, normality, and quotients as follows. For
A,A′ containing K,

(1) K ≤ A ≤ A′ if and only if ϕ(A) ≤ ϕ(A′).

(2) A is normal in G if and only if ϕ(A) is normal in H.

(3) When A is normal in G, the map ϕ induces an isomorphism G/A ∼= H/ϕ(A).

Proof. Let A be a subgroup of G containing K and let B be a subgroup of H. From
Proposition 2.3.5 we know that ϕ(A) is a subgroup of H and ϕ−1(B) is a subgroup
of G. Based on the above discussion, we know ϕ(ϕ−1(B)) = B and A ⊆ ϕ−1(ϕ(A)
so we need to show that ϕ−1(ϕ(A)) ⊆ A to get the one-to-one correspondence. Let
g ∈ ϕ−1(ϕ(A)). Then ϕ(g) = ϕ(a) for some a ∈ A. Consequently, ϕ(ga−1) = eH
and therefore ga−1 ∈ ker(ϕ) = K. Since K ⊆ A, ga−1 ∈ A so g ∈ A. Thus
ϕ−1(ϕ(A)) = A. We have established the one-to-one correspondence.

We have also shown in a problem in Exercise 2.8.6 that if B is normal in H
then ϕ−1(B) is normal. These results are true for an arbitrary homomorphism.
Let’s now show that when ϕ is surjective, if A is normal in G then ϕ(A) is normal
in H.

Let h ∈ H. We need to show hϕ(A)h−1 = ϕ(A), or equivalently, hϕ(a)h−1 ∈
ϕ(A) for all a ∈ A. Since ϕ is surjective, there is some g ∈ G such that ϕ(g) = h.

hϕ(a)h−1 = ϕ(g)ϕ(a)ϕ(g)−1 = ϕ(gag−1) ∈ ϕ(A)
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The last step holds because A is normal in G, so gag−1 ∈ A.
Now we apply the first isomorphism theorem. Let B be normal in H. We have

a composition of surjective homomorphisms

G −→ H −→ H/B

whose kernel is ϕ−1(B). Letting A = ϕ−1(B), the first isomorphism theorem says
that G/A ∼= H/ϕ(A).

If ϕ : G −→ H is a surjective homomorphism the First Isomorphism Theorem
says that H is isomorphic to G/ ker(ϕ). So the statements in the Correspondence
Theorem can be rewritten to say that there is a one-to-one correspondence between
sbgroups of G/K and subgroups of G containing K. In particular, we can derive
the Third Isomorphism Theorem as a corollary of the Correspondence Theorem.

Corollary 2.10.3 (Third Isomorphism Theorem). Let K and N be normal sub-

groups of G with K ≤ N . Then G/N ∼= (G/K)
/

(N/K).

Proof. Apply the correspondence theorem to G −→ G/K. The subgroup N of G

corresponds to the subgroup N/K of G/K. Thus G/N ∼= (G/K)
/

(N/K).

The Third Isomorphism Theorem gives a framework for understanding the
lattices of subgroups

ADD EXAMPLES

Exercises 2.10.4. Lattices and the Correspondence Theorem

For each of the following groups G and for each of the normal subgroups
N E G, identify the sublattice of the G that has the same structure as the
lattice of the quotient group G/N .

(a) D4

(b) A4

(c) Z45

(d) Z4 × Z4
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2.11 Problems

Exercises 2.11.1. Weakened group axioms

Define a hemigroup to be a set G with an operation ∗ that is associative, has
an identity element, and such that each element has a right inverse.

(a) Show that the right inverse of a is also a left inverse of a, so that a hemigroup
is actually a group.

Exercises 2.11.2. Unit groups of Zn
Let (Un, ∗) be the group of invertible elements of Z/n. Find all n such that
(Un, ∗) is isomorphic to the following.

(a) (Z2,+);

(b) (Z4,+);

(c) (Z2 × Z2,+).

Exercises 2.11.3. Some subgroups of abelian groups.

Let A be an abelian group and let m be an integer.

(a) Show that multiplication by m gives a homomorphism of A:

ϕm : A −→ A

a −→ ma

(b) Show that the image and kernel are the groups mA and A[m] from Exer-
cise 2.2.6.

(c) If A is a finite group that has no elements of order m then multiplication by
m gives an isomorphism of A.

(d) If m and n are coprime show that A[m] ∩A[n] = {0}.
Exercises 2.11.4. The torsion subgroup of an abelian group

Let A be an infinite abelian group. Let Tor(A) be the set of elements with
finite order, which is called the torsion subgroup of A.

(a) Show that Tor(A) is, indeed, a subgroup of A and that it is normal.

(b) Show that Tor(A) =
⋃
m∈NA[m]. (Note that, even inside an abelian group,

the union of subgroups is not usually a group!)

(c) Show that Tor(A/Tor(A)) is trivial. That is, letting T = Tor(A), the only
element of finite order in A/T is the identity element, e+ T .

(d) Give an example of a finitely generated abelian group in which the identity
element together with the elements of infinite order do not form a subgroup.
(As opposed to the torsion subgroup.)

Exercises 2.11.5. “Almost” abelian groups

A group is metabelian when it has a normal subgroup N such that N
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and G/N are both abelian. A group is metacyclic when it has a normal
subgroup N such that N and G/N are both cyclic.

(a) Show that S3 is metacyclic.

(b) Show that A4 is metabelian but not metacyclic.

(c) Prove that any subgroup of a metabelian group is also metabelian.

(d) Prove that any quotient group of a metabelian group is metabelian. [Look
carefully at the proof of the 2nd isomorphism theorem and adapt it to this
question.]

Exercises 2.11.6. The Heisenberg group

Let H = H(F ) be the set of 3 by 3 upper triangular matrices over a field F
with 1s on the diagonal.

(a) Give a brief explanation of why this is indeed a subgroup of GL(3, F ).

(b) (HW) Show that the center Z(H) consists of all matrices of the form1 0 c
0 1 0
0 0 1

. Furthermore Z(H) ∼= (F,+).

(c) (HW) Show that H/Z(H) is isomorphic to F × F .

(d) (HW) Conclude that H is metabelian.

(e) Show that the following 3 types of matrices generate the Heisenberg group.1 a 0
0 1 0
0 0 1

 ,
1 0 c

0 1 0
0 0 1

 ,
1 0 0

0 1 b
0 0 1


(f) Suppose that F = Fp. Explain why H is then generated by 3 matrices, those

in the form above with a = b = c = 1.

(g) Show that H(F2) ∼= D4.

Exercises 2.11.7. Upper triangular matrices

(a) Let F be a field and let F ∗ be its multiplicative group. Show that there is a
homomorphism

{upper triangular matrices in GL(2, F )} −→ (F ∗)2[
a b
0 c

]
7−→ (a, c)

(b) Show that kernel is isomorphic to (F,+) the additive group of F .

Exercises 2.11.8. Some normal subgroups

(a) Show that the intersection of two normal subgroups of G is normal in G.
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(b) Let G be a group, possibly infinite. Let I be some indexing set and for each
i ∈ I let Hi be a subgroup of G. Prove that for any a ∈ G,

a
(⋂
i∈I

Hi

)
a−1 =

⋂
i∈I

aHia
−1

(c) Let H be a subgroup of G and let N =
⋂
g∈G g

−1Hg. Prove that N is normal
in G.

(d) Let n ∈ N and let K be the intersection of all subgroups of G of order n.
Prove that K is normal in G.

Exercises 2.11.9. Normal subgroups and index

Exercise 2.8.6 showed that every group of index 2 is normal. Here is a
generalization due to Lam [MAA Monthly Mar. 2004 p. 256].

Theorem 2.11.10. Let H be a subgroup of G with [G : H] = p a prime
number. The following are equivalent.

(1) H is normal in G.

(2) For any a ∈ G \H, ap ∈ H.

(3) For any a ∈ G \ H, an ∈ H for some positive integer n that has no
prime divisor less than p.

(4) For any a ∈ G−H, a2, a3, . . . , ap−1 6∈ H.

(a) Prove Lam’s theorem by showing (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1). The
last step is the one requiring some cleverness.

(b) Show that Lam’s theorem implies that any group whose index is the smallest
prime dividing |G| is normal in G.

Exercises 2.11.11. Inner automorphisms of a group

For a ∈ G let ϕa be the inner automorphism defined by a and consider
the function ϕ : a 7−→ ϕa.

ϕa : G −→ G ϕ : G −→ Aut(G)

g 7−→ aga−1 a 7−→ ϕa

Clearly im(ϕ) = Inn(G).

(a) Show that Inn(G) is a normal subgroup of Aut(G).

(b) Show that ϕ is a homomorphism and that im(ϕ) ∼= G/Z(G).

Exercises 2.11.12. Computing some simple automorphism groups.

(a) Compute Aut(Q) for Q the quaternion matrix group.

(b) Show that Aut(D4) ∼= D4
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Exercises 2.11.13. Classification of the groups of order 8

Let G be a group of order 8. Prove each of the following.

(a) If G has an element of order 8 then G ∼= Z8.

(b) If every nonzero element of G has order 2 then G is abelian and isomorphic
to Z2 × Z2 × Z2.

(c) Suppose G has no element of order 8 and some element a ∈ G has order 4.

• If G is abelian then it is isomorphic to Z4 × Z2.

• Suppose G is not abelian. Let b 6∈ 〈a〉. Show that if b has order 2 then
G ∼= D4. If b has order 4 then G ∼= Q. [See Exercise 2.6.2

Exercises 2.11.14. Counting in Sn

(a) How many k-cycles are there in Sn?

(b) How many product of disjoint transpositions are there in Sn?

Exercises 2.11.15. The normalizer and centralizer of a subgroup

Let K be a subgroup of G and define

NG(K) =
{
g ∈ G : gKg−1 = K

}
CG(K) =

{
g ∈ G : gkg−1 = k for all k ∈ K

}
These are called the normalizer of K in G and the centralizer of K in G.

(a) Show that NG(K) is a subgroup of G.

(b) Show that K is a normal subgroup of NG(K).

(c) If H ≤ G and K is a normal subgroup of H show that H ≤ NG(H). So,
NG(K) is the largest subgroup of G in which K is normal.

(d) Show that CG(K) is a normal subgroup of NG(K).

(e) Show that NG(K)/CG(K) is isomorphic to a subgroup of Aut(K).

Exercises 2.11.16. The commutator subgroup

In a group G, the commutator of a, b is aba−1b−1. Notice that this is eG iff
a and b commute. The commutator subgroup of a group G is the group
G′ generated by the commutators.

G′ = 〈aba−1b−1 : a, b ∈ G〉

(a) Compute the commutator subgroup of Dn (two cases: n odd and n even).
Think of Dn as generated by r, t with rn = t2 = e and tr = rn−1t.

(b) Write down the commutator of the conjugation of a by x and the conjugation
of b by x.

(c) Prove that G′ is a normal subgroup of G. It is enough to show that the
conjugation of any commutator is another commutator.

84



(d) Prove that G/G′ is abelian.

(e) Prove that G/N abelian implies G′ ≤ N . So, the commutator subgroup of
G is the smallest normal subgroup N group such that the quotient G/N is
abelian.
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