
Chapter 3

Classification and Structure of
Groups

3.1 Interaction between Two Subgroups:
The Second Isomorphism Theorem and Semi-Direct
Products

We now consider two subgroups of a group G and prove several results about the
interaction between them. At first we make no additional assumptions on the two
subgroups groups, then we assume that one is normal in G, and finally that both
are. The main result is the second isomorphism theorem. But,we also get two key
corollaries that introduce the notion of an internal direct product (as opposed to
the external direct product that we have been using), and the more general notion
of a semi-direct product (both internal and external).

Lemma 3.1.1. Let K,H be subgroups of G. The following are equivalent:

(1) G = KH and K \H = {eG}

(2) Every element of G can be uniquely written as kh for k 2 K and h 2 H.

Proof. G = KH is equivalent to saying that every element of G can be written
in the form kh. We’ll next show K \H = {eG} if and only if any expression for
g 2 G as a product kh, with k 2 K and h 2 H, is unique.

Suppose K \ H = {eG} and k1h1 = k2h2. Then k
�1
1 k2 = h1h

�1
2 . Since this

is in both K and in H, it must be the identity. Therefore, h1 = h2 and k1 = k2,
which proves uniqueness.
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Now suppose that K \ H 6= eG; say g 2 K \ H is not equal to eG. Setting
h = g and k = eG gives one way to express g in the form kh, while setting h = eG

and k = g gives a di↵erent way. Thus we have non-uniqueness.

As another prelude to the second isomorphism theorem we have the following
lemma. In it we use the following argument to prove that a subset B of a group
G is a subgroup: We show that B�1

✓ B (closure under inversion) and BB ✓ B

(closure under products).

Lemma 3.1.2. Let H,K be subgroups of G.

HK = KH () KH is a subgroup of G

Proof. Suppose HK = KH we will show KH is a subgroup of G. We see KH

is closed under inversion: (kh)�1 = h
�1

k
�1

2 HK = KH. We can show that
KH is also closed under products with an element-wise argument, but let’s use
the associativity identified in Notation 2.7.1,

(KH)(KH) = K(HK)H

= K(KH)H since it is assumed that KH = HK

= (KK)(HH)

= KH since K and H are groups and closed under multiplication

Since KH is closed under inversion and under products, it is a subgroup of G.
For the converse, suppose KH is a subgroup of G. Since KH is closed under

inversion, KH = (KH)�1 = H
�1

K
�1 = HK. This gives the reverse implication

of the lemma.

Suppose now that H,N are subgroups of G with N normal in G. We can
conclude the following.

• HN = NH since gN = Ng for any g 2 G.

• HN is therefore a subgroup of G by the lemma.

• N is normal in HN , since it is normal in any subgroup of G that contains it.

Theorem 3.1.3 (Second Isomorphism). Let N be normal in G and H a subgroup

of G. Then H \N is normal in H and H/(H \N) ⇠= HN/N .

When these groups are finite we may take cardinalities to get

|H||N | = |HN ||H \N |
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Proof. Consider the canonical homomorphism G
⇡

�! G/N and restrict it to the
subgroup H. Call the restricted homomorphism ⇡

0 : H �! G/N . The kernel
of ⇡0 contains the elements of H that map to eN , that is H \ N . The image is
{hN : h 2 H} = HN/N and HN is a subgroup of G as we noted above. By the
first isomorphism theorem, H/(H \N) ⇠= HN/N .

The following special case is of interest. It combines the assumptions of Theo-
rem 3.1.3 with those of Lemma 3.1.1.

Corollary 3.1.4. Let H and N be subgroups of G with N EG. Suppose G = HN

and H \N = {eG}. Then G/N ⇠= H.

Proof. One simply substitutes G for HN and notes H ⇠= H/heGi.

Definition 3.1.5. In the situation of Corollary 3.1.4, we say that G is the internal
semi-direct product of N by H and we write G = N oH.

Note that the order is important: NoH and HoN mean two di↵erent things.
The first assumes N is normal in G and the second assumes H is normal in G.

If both H and N are normal then the two semidirect products are isomorphic
to each other and to the direct product, as the following corollary shows.

Corollary 3.1.6. Suppose K E G and N E G. Suppose also that G = KN and

K \N = {eG}. Then elements of K and N commute: for any k 2 K and n 2 N ,

kn = nk. Furthermore, G ⇠= K ⇥N .

Proof. To prove that elements of K and N commute with each other it is su�-
cient to show that knk

�1
n
�1 = e. Since N is normal, knk�1

2 N and therefore
(knk�1)n�1

2 N since it is the product of two elements of N . Similarly, since K

is normal, nk�1
n
�1

2 K so k(nk�1
n
�1) 2 K. Now K \N = {e} gives the result.

Consider the map K ⇥ N
'

�! G defined by (k, n) 7�! kn. The map is well
defined. It is injective since kn = e gives k = n

�1
2 K \N = {e}. It is surjective

since G = KN . It respects multiplication (and is consequently a homomorphism):

'
�
(k1, n1)

�
'
�
(k2, n2)

�
= (k1n1)(k2n2)

= k1(n1k2)n2

= k1(k2n1)n2

= (k1k2)(n1n2)

= '
�
(k1k2, n1n2)

�

= '
�
(k1, n1)(k2, n2)

�

Thus ' is an isomorphism. Note that the product in the last line is in K ⇥ H,
while the products in every other line are in G.
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Definition 3.1.7. In the situation of the last corollary, G is often called the
internal direct product of K and N .

The distinction between the internal direct product and the usual (external)
direct product of two arbitrary groups G and H is subtle, as the next examples
show. The first example shows that the external direct product of two groups is
also the internal direct product of two of its subgroups (in a way that seems per-
haps pedantic). The second example shows the real motivation for distinguishing
internal direct products, they can be rather hidden, and they give insight into the
structure of a group.

Example 3.1.8. Let G and H be two groups and consider the external direct prod-
uct G ⇥ H. Let G = G ⇥ {eH} and similarly H = {eG} ⇥ H. These are two
subroups of G ⇥ H, and the interesection of G and H is the identity element of
G⇥H. It is easy to see that every element of G⇥H may be written as a product
of something in G and H. Thus G⇥H is the internal direct product of G and H.

Example 3.1.9. Consider Z6. It has two proper subgroups K = {0, 3} and N =
{0, 2, 4} both of which are normal since Z6 is abelian. It is easy to verify that
every element of Z6 can be written as a sum of something in K and something in
N . Clearly K \N = {0}. Thus Z6 is the internal direct product of H and K. Of
course, in Z6, the subgroup {0, 3} is isomorphic to Z2, and {0, 2, 4} is isomorphic
to Z3. We know from Corollary 2.4.5 that Z6 is isomorphic to the external direct
product Z2 ⇥ Z3. More generally, for m and n coprime, Zmn is the internal direct
product of its subgroups hmi and hni.

One can also define the external semi-direct product of of two groups.

Definition 3.1.10. Let N , H be two groups and let ' : H �! Aut(N) be a
homomorphism. Write '(h) as 'h. Define a new group with elements N ⇥H and
multiplication defined by

(n1, h1) ⇤ (n2, h2) = (n1'h1(n2), h1h2)

This is the external semi-direct product of N and H defined by ' and is
written N o' H.

The relationship between the internal and external semi-direct product is even
more subtle than that for the internal and external direct product. Consider a
group G that is the internal semi-direct product of the normal subgroup N and
another subgroup H. So, we are assuming that NH = G and N \H = {e}. This
is There is a bijective map from the Cartesian product N ⇥H to G taking (n, h)
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to nh. It is not a homomorphism. But it is true that in G,

n1h1n2h2 = n1h1n2h
�1
1 h1h2

= n1'h1(n2)h1h2

Where 'h1 is conjugation by h1. Because N is normal in G, 'h is an automorphism
of N and, indeed, we have a homomorphism ' : H �! Aut(N) that takes h to
'h. Thus, if we use ' to to define the external semi-direct product N E'H we get
an isomorphism with G.

Exercises 3.1.11. The definition makes sense!
Using the notation in Definition 3.1.10, verify the following.

(a) (eH , eN ) is the identity element.

(b) Each element does have an inverse.

(c) The associative law holds.

Exercises 3.1.12. Some familiar semidirect products.
Several familiar groups are internal semidirect products of much simpler
groups. Verify that each of the following is an internal semidirect product of
the two given subgroups by using Corollary 3.1.4. In each case identify the
homorphism from one subgroup to the automorphism group of the other.

(a) Dn is the semidirect product of its rotation group and the group generated
by any reflection. There is an implicit homomorphism ' : C2 �! Aut(Cn).
What is it?

(b) Sn = An o h(1, 2)i.

(c) S4 = V oS3 where V is Klein-4 subgroup with elements of the form (a, b)(c, d)
with a, b, c, d distinct elements of {1, 2, 3, 4}.

(d) In GLn(F ), for F a field, let T be the upper triangular matrices with nonzeros
on the diagonal; let U be the upper triangular matrices with 1’s on the
diagonal and let D be the diagonal matrices with nonzero elements on the
diagonal. For n = 2, show that T = U oD.

(e) Do the previous problem for arbitrary n.

Proposition 3.1.13. Let N be a normal subgroup of G and let ⇡ : G �! G/N be

the quotient homomorphism. Suppose that there is a homomorphism ↵ : G/N �!

G such that ⇡ � ↵ is the identity map on G/N . Then G is the internal direct

product N o ↵(G/N).

Proof. Let the image of ↵ be H = ↵(G/N), which is a subgroup of G. By Corol-
lary 3.1.4, we need only show that HN = G and that H \N is trivial.
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Let g 2 G. Let h = (↵ � ⇡)(g) = ↵(⇡(g)). This is an element of H, since it is
in the image of ↵. I claim g

�1
h 2 N . This is because

⇡(g�1
h) = ⇡(g�1)⇡(h) = ⇡(g�1)⇡

�
↵ � ⇡(g)

�
= ⇡(g)

�
⇡ � ↵

��
'(g

�

Since ⇡ � ↵ is the identity map on G/N ,

= ⇡(g1)(⇡(g)) = ⇡(gg�1) = eN

Consequently g
�1

h = n for some n 2 N and therefor g = hn. Since g was an
arbitrary element of G we have shown G = HN .

Now suppose that h 2 H \ N . Since h 2 H, there is some gN 2 G/N such
that h = ↵(gN). We know that ⇡ � ↵ is the identity on H, so

↵

⇣
⇡
�
↵(g)

�⌘
=
�
↵ � ⇡

��
↵(g)

�
= ↵(g) = h.

On the other hand, since h 2 N ,

↵

⇣
⇡
�
↵(g)

�⌘
= ↵

�
⇡(h)

�
= ↵(eN) = e.

Consequently, h = e and we have shown H \N = {e}.

Exercises 3.1.14. Semidirect products and matrix groups
Let F be a field. Let GLn(F ) be the general linear group: n ⇥ n matrices
over F with nonzero determinant. Let SLn(F )) be the special linear group:
n⇥n matrices with determinant 1. Let F ⇤

I be the nonzero multiples of the
identity matrix. In this problem we investigate the finite fields F and values
of n for which GLn(F ) ⇠= SLn(F )⇥ F

⇤
I.

(a) For the fields F = F3 and F = F5, show that GLn(F ) is a direct product as
above for n odd, but not for n even.

(b) For the field F = F7, show that GLn(F ) is a direct product as above for n

coprime to 6, and is not otherwise.

(c) (Challenge) For which prime numbers p and which n is GLn(Fp) a direct
product as above?

Exercises 3.1.15. External semidirect products of cyclic groups.

(a) Use the definition of external semidirect product to create the other non-
abelian group of order 12 (besides D6 and A4), Z3o'Z4 where ' is the only
possible map Z4 �! Aut(Z3) that is not trivial. Let a be the generator for
Z3 and b the generator for Z4. Show the following:
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(1) Every element can be represented uniquely as aibj for i 2 {0, 1, 2} and
b 2 {0, 1, 2, 3}

(2) The group can be presented as ha, b|a3 = b
4 = 1, ba = a

2
bi

(3) Find the inverse of aibj .

(4) Find a general formula for (aibj)(amb
n). It may be useful to break this

into cases.

(b) Use the definition of external semi-direct product to create the only non-
abelian group of order 21 (the smallest non-abelian group of odd order),
Z7 o Z3. Let a be the generator for Z7 and b the generator for Z3. Show
how to represent, invert, and multiply elements of this group as you did in
the previous problem.

(c) (Challenge Problem) Use the definition of external semi-direct product to
construct semi-direct products Zm o Zn. You will need to start with a
homomorphism ' : Zn �! Aut(Zm). See how many of the small non-abelian
groups you can find in the table of small abelian groups on Wikipedia.

3.2 Finitely Generated Abelian Groups

In this section we show that the structure of finitely generated abelian groups
is fairly simple. Any finitely generated abelian group is isomorphic to a direct
product of cyclic groups that can be put in a standard, uniquely determined,
format. We proceed in several steps, each subsection below gives a complete story
about a particular class of abelian groups; each extends the result of the previous
subsection to a broader class of abelian groups.

Our first step is to show that a direct product of cyclic groups can be put into a
standard format that elucidates its structure. There are actually two such formats,
one using elementary divisors and the other using invariant factors. In particular,
two groups are isomorphic if and only if their standard formats are the same. Our
next step is to show that any finite abelian group is actually a direct product of
cyclic groups, and it therefore can be placed in the two standard formats. This
result has one very technical lemma whose proof we sketch. Finally, we state and
prove some aspects of the more general result that any finitely generated abelian

group can be written as a direct product of a finite group (with standard formats
above) and a group that is isomorphic to Zr for some integer r.

We will write the group operation additively. For A an abelian group, a 2 A,
and m an integer, we write mA for a + · · · + a with m summands. Think of ma

as repeated addition, not multiplication. The order of a is the smallest positive
integer m such that ma = 0. One can check that ma + na = (m + n)a and
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(mn)a = m(na). If B is a subgroup of A (it is normal since A is abelian) we write
a coset as a+B and the identity element of A/B is 0 +B.

A key tool in this chapter is Corollary 2.4.5, which says that for coprime integers
m and n the group Zmn is isomorphic to Zm ⇥ Zn. The corollary says more, that
there is a unique isomorphism that takes [1]mn to

�
[1]m, [1]n

�
, but we only need

the existence of the isomorphism in this section. An easy induction argument
establishes the following result

Proposition 3.2.1. Let m1,m2, . . . ,mt be pairwise coprime positive integers and

let m =
Q

t

i=1mi, then

Zm
⇠= Zm1 ⇥ Zm2 ⇥ · · ·⇥ Zmt

Products of Cyclic Groups

Let’s start with abelian groups that we understand well, cyclic groups, and direct
products of cyclic groups. The notation in the theorems below is a bit heavy, so
we start with an example.

Example 3.2.2. Consider the group Z60⇥Z12⇥Z8⇥Z25. Using Proposition 3.2.1,

Z60
⇠= Z4 ⇥ Z3 ⇥ Z5

Z12
⇠= Z4 ⇥ Z3

Z8
⇠= Z8

Z75
⇠= Z3 ⇥ Z25

Let’s take the direct product of all these factors ordering them by the prime in-
volved (2, 3,or 5) and for each prime, the highest power of that prime first.

Z60 ⇥ Z12 ⇥ Z8 ⇥ Z25
⇠= Z8 ⇥ Z4 ⇥ Z4 (3.1)

⇥ Z3 ⇥ Z3 ⇥ Z3

⇥ Z25 ⇥ Z5

Now, we regroup by combining the highest powers of each prime.

⇠= Z8 ⇥ Z3 ⇥ Z25

⇥ Z4 ⇥ Z3 ⇥ Z5

⇥ Z4 ⇥ Z3

Finally, we have

Z60 ⇥ Z12 ⇥ Z8 ⇥ Z25
⇠= Z600 ⇥ Z60 ⇥ Z12 (3.2)
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Both factorizations are of interest: one (3.1) into cyclic groups of prime power
order, the other (3.2) combining the factors prime power factors in a greedy fashion.

The following proofs are just adaptations of the computations in the example
to deal with the general context.

Theorem 3.2.3. Let m1, . . . ,mt be positive integers and A = Zm1 ⇥ · · · ⇥ Zmt.

Let P = {p1, . . . , ps} be the set of all primes dividing m1m2 · · ·mt and let the mj

have factorizations mj =
Q

s

i=1 p
eij

i
(allowing some eij = 0). Then

A ⇠= A1 ⇥ · · ·⇥As

where Ai = Z
p
ei1
i

⇥ Z
p
ei2
i

⇥ · · ·Z
p
eit
i
.

Furthermore |Ai| = p
ei where ei =

P
t

j=1 eij.

Proof. By Proposition 3.2.1, Zmj
⇠= Z

p
e1j
1

⇥ · · ·⇥ Z
p
esj
s

. Thus

A = Zm1 ⇥ · · ·⇥ Zmt

⇠= Z
p
e11
1

⇥ · · ·⇥ Z
p
es1
s

⇥ Z
p
e12
1

⇥ · · ·⇥ Z
p
es2
s

. . .

⇥ Z
p
e1t
1

⇥ · · ·⇥ Z
p
est
s

Rearranging terms so that the jth column of factors becomes the jth row, and the
ith row becomes the ith column, we have

⇠= Z
p
e11
1

⇥ · · ·⇥ Z
p
e1t
1

⇥ Z
p
e21
2

⇥ · · ·⇥ Z
p
e2t
2

. . .

⇥ Z
p
es1
s

⇥ · · ·⇥ Z
p
est
s

⇠= A1 ⇥ · · ·⇥As

The cardinality of Ai is just the product of the cardinalities of its factors. So,
letting ei =

P
t

j=1 eij , we have |Ai| = p
ei .

Definition 3.2.4. The multiset
�
p
eij

i
: i = 1, . . . , s; and j = 1, . . . t

 
is the set of

elementary divisors of A.

93



Theorem 3.2.5. With the notation of the previous theorem, for each i let fi1 �

fi2 · · · � fit be a permutation of the exponents ei1, . . . eit putting them in decreasing

order. For j = 1, . . . , t, let nj =
Q

s

i=1 p
fij

i
. Then nt | nt�1 | · · · | n1 and A ⇠=

Zn1 ⇥ · · ·⇥ Znt .

Proof. The fact that nj | nj�1 follows from fij  fi,j�1 for each i. Revisiting the
previous proof, we enter after the point where we rearranged the factors. In each
line we then permute the eij to have them in decreasing order (fi1, . . . , fit). The
final step is to rearrange again by combining all the largest prime power factors to
create Zn1 and proceeding iteratively with the next largest prime power factors.
As with the previous theorem this is just an application of Proposition 3.2.1.

A = Zm1 ⇥ · · ·⇥ Zmt

⇠= Z
p
e11
1

⇥ · · ·⇥ Z
p
e1t
1

⇥ Z
p
e21
2

⇥ · · ·⇥ Z
p
e2t
2

. . .

⇥ Z
p
es1
s

⇥ · · ·⇥ Z
p
est
s

⇠= Z
p
f11
1

⇥ · · ·⇥ Z
p
f1t
1

⇥ Z
p
f21
2

⇥ · · ·⇥ Z
p
f2t
2

. . .

⇥ Z
p
fs1
s

⇥ · · ·⇥ Z
p
fst
1

⇠= Z
p
f11
1

⇥ · · ·⇥ Z
p
fs1
s

⇥ Z
p
f12
1

⇥ · · ·⇥ Z
p
fs2
s

. . .

⇥ Z
p
f1t
1

⇥ · · ·⇥ Z
p
fst
s

⇠= Zn1 ⇥ · · ·⇥ Znt

Definition 3.2.6. The nj (that are not 1) in the previous theorem are called the
invariant factors of A.

Exercises 3.2.7.

(a) Find the elementary divisors and the invariant factors for Z50⇥Z75⇥Z136⇥

Z21000.
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(b) Let n1, n2, . . . , nr be integers larger than 1. Under what conditions will
Zn1 ⇥ Zn2 ⇥ · · ·⇥ Znr have r invariant factors?

Exercises 3.2.8. Dissecting a homomorphism.
For any d that divides 2400, there is a well defined homomorphism Z2400 �!

Zd that takes [1]2400 to [1]d. Given several divisors of 2400 we can use the
universal property of a direct product 2.4.4 to get a homomorphism into the
direct product of several such groups, for example

Z2400
'

�! Z40 ⇥ Z30 ⇥ Z16

(a) What is the kernel of '?

(b) Find the elementary divisors of (i) Z2400, (ii) Z40 ⇥ Z30 ⇥ Z16, and (iii) the
kernel of the homomorphism '.

(c) Find the invariant factors of (i) Z2400, (ii) Z40⇥Z30⇥Z16, and (iii) the kernel
of the homomorphism '.

Finite Abelian Groups

In the previous section we showed that a product of cyclic groups can be written
in two di↵erent forms that illuminate the structure better. One form uses cyclic
groups of prime power order (and gives the elementary divisors of the group) and
the other uses a format that identifies the largest cyclic component and, after
splitting o↵ that component, the next largest cyclic component, and so forth.
This gives the invariant factors of the group. We now want to show that this
classification applies to any finite abelian group.

The first step is to split a group into pieces that are, in a sense, coprime. We
then apply induction to write the group as a direct product of groups that have
prime power order. The di�cult step is to show that a group of prime power order
is actually a product of cyclic groups (whose orders are a power of the same prime).

Definition 3.2.9. Let A be an abelian group. For m 2 N let

mA = {ma : a 2 A}

A[m] = {a : ma = 0}

For p a prime define the p-torsion subgroup of A to be

A(p) =
n
a 2 A : ord(a) = p

k for some k

o

An abelian group such that A = A(p) is called a p-group.
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Exercises 3.2.10.

(a) Prove that mA, A[m] and A(p) are all subgroups of A.

(b) Prove that A(p) = [
1

i=0A[pi], and that, for A finite, A(p) = A[pk] for some
large enough k.

Proposition 3.2.11. Suppose that A is abelian with |A| = mn and m,n coprime.

Then

(1) mA = A[n]

(2) A is the internal direct product of A[m] and A[n]

Proof. Let u, v 2 Z be such that um + vn = 1. Let a 2 A[n]. Then a = (um +
vn)a = u(ma) + v(na) = m(ua), since we assume na = 0. This shows that
A[n] ✓ mA. On the other hand, an arbitrary element of mA can be written ma

for a 2 A. Since |A| = mn, n(ma) = (nm)a = 0, and this shows mA ✓ A[n] (we
have used Lagrange’s Theorem that the order of a divides the order of the group).

For the second claim of the proposition, we show that A[m] \ A[n] = {0} and
that A[m] +A[n] = A. Then, by Corollary 3.1.6, A ⇠= A[m]⇥A[n].

Let a 2 A. Since a = (mu+ nv)a = m(ua) + n(va) we see that a 2 mA+ nA,
which, by the argument above, is equal to A[n]+A[m]. Thus A[m]+A[n] = A. On
the other hand, if a 2 A[m]\A[n] then and a = (um+vn)a = u(ma)+v(na) = 0+0.
Thus A[m] \ A[n] = {0}. We have shown that A is the internal direct product of
A[m] and A[n].

The next proposition shows that our decomposition is uniquely determined.

Proposition 3.2.12. Let A1, A2, B1 and B2 be finite groups. Suppose that A1 ⇥

B1
⇠= A2 ⇥ B2 where everything in Ai has order dividing m and everything in Bi

has order dividing n, with m and n coprime. Then A1
⇠= A2 and B1

⇠= B2.

Proof. Assume A1 ⇥B1
⇠= A2 ⇥B2.

m(Ai ⇥Bi) = mAi ⇥mBi

= {(0,mb) : b 2 Bi}

= {0}⇥Bi

The first step because m(a, b) = (ma,mb) and the last step because multiplication
by m (coprime to n) gives an automorphism of Bi. Since m(A1⇥B1) ⇠= m(A2⇥B2)
we get B1

⇠= B2. Similarly we show A1
⇠= A2.
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Corollary 3.2.13. Let |A| = p
e1
1 . . . p

es
s then

A ⇠= A[pe11 ]⇥ · · ·⇥A[pess ] = A(p1)⇥ · · ·⇥A(ps)

This factorization is unique up to reordering.

Proof. Existence of the factorization follows from Proposition 3.2.11 by induction:

A ⇠= A[pe11 ]⇥A[pe22 p
e3
3 · · · p

es
s ]

⇠= A[pe11 ]⇥A[pe22 ]⇥A[pe33 p
e4
4 · · · p

es
s ]

and so forth. There is one subtlety though; we have usedA[pe22 ] =
⇣
A[pe22 p

e3
3 · · · p

es
s ]
⌘
[pe22 ].

This is easily verified. Any nonzero element of A whose order is a power of p2 is
in each of these groups, and nothing else is.

Uniqueness follows from a similar inductive application of Proposition 3.2.12

The previous corollary is the first step in the classification of finite abelian
groups. The next step is to classify groups satisfying the following definition.

Definition 3.2.14. Let p be a prime number. An abelian p-group is an abelian
group A in which every element of A has order that is a power of p.

The key lemma follows. Its proof is quite technical and not very illuminating,
so I sketch the proof in [Hun12][Sec 8.2].

Lemma 3.2.15. Let A be an abelian p-group and let a be an element of maximal

order. Then A = K + hai and K \ hai = {0} for some subgroup K of A. Thus A

is isomorphic to the direct product of K and hai.

Proof. Let a be an element of maximal order in the abelian p-group A; this order
is a power of p. Let K be as large as possible such that K \ hai = {0}. We want
to show that K + hai = A. Then Corollary 3.1.6 says that A ⇠= K ⇥ hai.

Suppose b 2 A \ (K + hai). Do some tricks to show:

(1) There is a c 2 A \ (K + hai) such that pc 2 K + hai. [ Take the minimal r
such that prb 2 K + hai, then let c = p

r�1
b.]

(2) There is a d 2 A \ (K + hai) such that pd 2 K. [ Let pc = k + ma, argue
that m = pm

0, for some integer m
0 using that a has maximal degree in A

and K \ hai = {0}. Then set d = c�m
0
a.]
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By assumption on K, (K + hdi) \ hai 6= {0}, so there is some k 2 K, and nonzero
r, s 2 Z such that k + rd = sa.

Now we consider two cases: If p | r then rd 2 K and consequently sa 2 K.
This contradicts K \ hai = {0}. If p - r then there are u, v such that up+ vr = 1.
Then d = u(pd) + v(rd). The first term is in K and the second in K + hai, so
d 2 K + hai, which is a contradiction.

Summarizing, we assumed K maximal such that K\hai = {0}. Supposing the
existence of some b 2 A \ (K + hai), we showed there was some d 2 A \ (K + hai)
such that pd 2 K. From the maximality assumption on K, there is some element
of (K + hdi) \ hai, which we can write as k + rd = sa for k 2 K and r, s 2 Z.
There are two possibilities, p divides r or not. Both lead to a contradiction. Thus
A must be equal to K + hai.

Theorem 3.2.16. Let A = A(p) be an abelian p-group. Then A is the direct

product of cyclic groups each of which has order a power of p. Consequently, the

order of A is also a power of p.

The decomposition is unique (up to reordering). Put another way, two abelian

p-groups are isomorphic if and only if their decompositions have the same number

of factors for each power of p.

Proof. Note first that a non-trivial abelian p-group must have order divisible by
p since Lagrange’s Theorem 2.7.7 says that the order of an element of the group
(which, by assumption, is a power of p) must divide the order of the group. We
will show that the order of an abelian p-group must actually be equal to a power
of p.

We proceed by induction on the largest power of p that divides the cardinality
of the abelian group. Our induction hypothesis for t � 0 is that any abelian p-
group with order that is divisible by p

t but not by p
t+1 is isomorphic to the direct

product of cyclic groups whose orders are a power of p. An immediate consequence
is that the order of such a group is a power of p, so the order is exactly p

t. We
noted above that the induction hypothesis is true for t = 0, in which case the
abelian p-group is trivial.

Let t � 1. Let A be an abelian p-group of cardinality p
t
m with m not divisible

by p. Using the lemma we can write A as a direct sum A = K + hai with K \

hai = {0}. The subgroup hai is cyclic of order p
s for some s > 0 and therefore

|K|  p
t�s

m. Applying the induction hypothesis to K, shows that m = 1 and K

is isomorphic to the direct product of cyclic groups whose order is a power of p.
Since hai is also cyclic of order p

s, we have that A is the direct product of cyclic
groups of order a power of p.

To prove uniqueness (up to reordering) we note first that if two groups have
the same number of factors for each power of p they are isomorphic. We will write
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factorizations by writing the factors in increasing powers of p as follows

A ⇠= (Zp)
k1 ⇥ (Z2

p)
k2 ⇥ · · ·⇥ (Zr

p)
kr

We now show that we can recover the ki by operating on A. In other words,
two factorizations, one with k1, k2 . . . and one with m� 1,m2, . . . are isomorphic
if and only if ki = mi.

We can recover the ki iteratively. Since logp(|Zn
p |) = n, we have logp(|A|) =P

r

i=1 iki. Notice that p
n�1Zn

p
⇠= Zp and p

kZn
p is trivial for k � n. Thus the

subgroup p
r�1

A is isomorphic to

p
r�1

A ⇠= (Zp)
kr

Thus we have logp(|p
r�1

A|) = kr. Similar computations for piA with i = r�2, r�
3, . . . , 1 allows one to recover the other ki. (Try it as an exercise!)

From Corollary 3.2.13 and the previous theorem we obtain the fundamental
theorem for finite abelian groups..

Theorem 3.2.17 (Fundamental Theorem of Finite Abelian Groups). Let A be an

abelian group of order p
e1
1 . . . p

er
r . Then A is a direct product of cyclic groups, each

having order a power of one of the pi. If we write

A(pi) ⇠= Z
p
ei,1
i

⇥ Z
p
ei,2
i

⇥ . . .Z
p
ei,si
i

then for each i,
P

si
`=1 ei,` = ei. The decomposition is unique, up to reordering.

Exercises 3.2.18. Classifying abelian groups
Consider the following problems for n = 72000 and n = 84000 and n =
p
6
q
5
r
4 with p, q, r distinct primes.

(a) How many abelian groups of order n are there?

(b) List all possibilities (you can use “choose one of these, one of these, ...”.

(c) How many have k invariant factors, for k = 1, 2, 3, 4, 5, 6? Check your answer
against the response to the first question.

Exercises 3.2.19. Another approach to proving uniqueness
Here is another approach to proving uniqueness in the classification of finite
abelian groups.

(a) Show that p
kZpn

⇠= Zpn�k for k  n. Seen another way, there is an exact
sequence

0 �! Zpm
·p

k

�! Zpk+m �! Zpk �! 0
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(b) Show that pk�1Zpn

.
p
kZpn

⇠= Zp for k  n.

(c) Suppose that A ⇠= (Zp)k1 ⇥ (Zp2)
k2 ⇥ · ⇥ (Zpn)kn . Show that p

t�1
A/p

t
A ⇠=

(Zp)kt+···+kn .

(d) Conclude the uniqueness part of the classification of finite abelian groups: If

(Zp)
k1 ⇥ (Zp2)

k2 ⇥ ·⇥ (Zpn)
kn ⇠= (Zp)

m1 ⇥ (Zp2)
m2 ⇥ ·⇥ (Zpn)

mn

then ki = mi.

Finitely Generated Abelian Groups

Our final step is to generalize the results on classification to finitely generated
abelian groups. The strategy is simple. Let A be a finitely generated group. The
torsion subgroup of A is the set of elements of finite order. The first proposition
below shows that it is indeed a subgroup of A. The torsion subgroup has to be a
finite group, since it is finitely generated, so it is classified by the results above.
The next big step is to show that A has a subgroup that is isomorphic to Zr

such that A is the direct product of that subgroup and Tor(A). Thus, a finitely
generated abelian group is isomorphic to a finite direct product of cyclic groups
that are either infinite of prime power order.

Proposition 3.2.20. Let A be an abelian group. Let

Tor(A) = {a 2 A : a has finite order}

(1) Tor(A) is a normal subgroup of A.

(2) All elements of A/Tor(A) (except the identity) have infinite order.

Proof. This was Exercise 2.11.4. Let T = Tor(A). Clearly 0 2 T , so T is nonempty.
If a 2 T has order m then so does �a = (m � 1)a. If b is another element in T

and it has order n, then a+ b has order at most mn since

mn(a+ b) = (mn)a+ (mn)b = n(ma) + n(mb) = 0

Thus T is closed under inversion and multiplication, so it is a subgroup of A.
Normality is immediate since A is abelian.

If b+ T has finite order m in A/T then

mb+ T = m(b+ T ) = 0 + T

This shows that mb 2 T , so mb has some finite order n in A. Then (nm)b =
n(mb) = 0, so b itself has finite order. Thus b 2 T and b+ T = 0+ T . So the only
element of finite order in A/Tor(A) is the identity element.
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Definition 3.2.21. A group that has no elements of finite order, other than the
identity, is said to be torsion free.

Let A be an abelian group and let S = {a1, a2, . . . , ar} be a set of elements
in A. We say that the elements of S are independent when for any integers
m1, . . .mr that are not all zero, m1a1 +m2a2 + · · ·+mrar 6= 0.

A free abelian group of rank r is a group that is isomorphic to Zr. It will
have r elements that are independent and also generate A. We will generally use
ei for the element of Zr that is 1 in the ith component and 0 elsewhere. Borrowing
from the language of vector spaces, we say that the ei are the standard basis for
Zr.

Proposition 3.2.22. The rank of a finitely generated free abelian group is unique.

Proof. Let A ⇠= Zr. Then A/2A ⇠= Zr
/(2Zr) ⇠= (Z2Z)r. The final isomorphism

comes from Theorem 2.8.10 and the observation that 2Zr = 2Z ⇥ 2Z ⇥ · · · ⇥ 2Z
(both containments are easy to show). Since (Z2Z)r has 2r elements, we may
recover the rank by computing log2(|A/2A|).

Exercises 3.2.23.

(a) Let A be an abelian group. Suppose f : A ! Z is a surjective homomorphism
with kernel K. Show that A has an element a such that A is the internal
direct product K ⇥ hai.

(b) In the previous problem, suppose f is not surjective but f(A) = nZ for some
n 2 N. Show that it still holds that there is an element a 2 A such that A
is the internal direct product K ⇥ hai.

(c) Suppose that A is torsion free and mA ⇠= Zr. Show that A ⇠= Zr.

We need two results before proving that a finitely generated torsion free abelian
group is actually isomorphic to Zr for some r.

Proposition 3.2.24. Let A  Zr
. Then A is isomorphic to Zs

for some integer

s  r.

Proof. We proceed by induction on r. For r = 1 we already know the subgroups
of Z. They are the trivial group (rank 0) and nZ, which is isomorphic to Z.

Assume the statement of the theorem is true for integers less than r. Let
A  Zr and let ei be the element of Zr that is 1 in the ith component and 0
elsewhere. Consider projection onto the rth component Zr ⇡

�! Z. The kernel of
this map is Zr�1 with generators {e1, . . . , er�1}. Let A

◆
�! Zr be the embedding of

A in Zr and consider the composite ⇡ � ◆. The kernel of this map is B = A\Zr�1.
By the induction hypothesis, B is isomorphic to Zs for some integer s  r � 1.
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If B = A we are done. Otherwise, ⇡ � ◆ has image nZ for some n > 0. Let
a 2 A be a preimage of n. By Exercise 3.2.23(b) we have A ⇠= B⇥ hai ⇠= Zs

⇥Z =
Zs+1.

Proposition 3.2.25. Let A be a finitely generated, torsion-free abelian group.

Then A is a free abelian group of finite rank.

Proof. Let b1, . . . , br be a maximal independent set in A. These elements are
independent and there is no set of r + 1 elements in A that is independent.

LetB be the subgroup ofA generated by b1, . . . , br, that isB = {
P

r

i=1mibi : mi 2 Z}.
Consider A/B. I claim that it is a torsion group; every element has finite order.

For any a 2 A, there are integers m0, . . . ,mr such that m0a+m1b1 +m2b2 +
· · · + mrbr = 0, for otherwise {a, b1, . . . br} would be an independent set, contra-
dicting maximality of {b1, . . . br}. Furthermore m0 is not zero, since {b1, . . . br} is
independent, so m0a is a nonzero element of B. Thus for any a 2 A there is an
m0 such that m0(a+B) = m0a+B = 0 +B.

We have shown every element of A/B has finite order. Since it is also finitely
generated it is a finite group. Thus the exponent of A/B (the lcm of the orders
of elements of A/B) is some finite m 2 N. Then, m(A/B) is the trivial subgroup
{0 +B} inside A/B. This shows mA is a subgroup of the free abelian group B.
Thus by Proposition 3.2.24 mA is free abelian of rank s  r, where r is the rank
of B. Applying Exercise 3.2.23(c) we have that A itself is free of rank s. This
concludes the proof.

It is worth noting that, since B  A, Proposition 3.2.24 says that the rank of
B is at most the rank of A, so r  s. We already showed s  r, so A and B have
the same rank.

The proof of the following theorem is similar to Proposition 3.1.13. Exer-
cise 3.2.23(a) was a special case (with r = 1).

Proposition 3.2.26. Let A be a finitely generated abelian group. and let ' : A �!

Zr
be a surjective homomorphism with kernel K. There exists a subgroup B  A

such that ' restricted to B is an isomorphism. Furthermore A = K ⇥B (We use

= rather than ⇠= because A is the internal direct product of the two subgroups).

Proof. Let b1, . . . , br 2 A map to the elements ei of Zr. Let B = hb1, . . . , bri =
{m1b1 + · · ·+mrbr : mi 2 Z}. We know that the bi are independent, because
their images in Zr are independent. In other words, since ' is a homomorphism,P

r

i=1mibi = 0 would imply that
P

r

i=1miei = 0. The latter is only true if all mi

are zero. Thus '|B is injective. Furthermore ' : B �! Zr is surjective since the
ei are in the image and they generate Zr. Thus '|B is an isomorphism.
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The conclusion that now follows from Proposition 3.1.13, but we will prove it
directly by using Corollary 3.1.6. The argument above shows that K \ B = {0}.
We will show K +B = A, which gives A ⇠= K ⇥B.

Let a 2 A and let '(a) =
P

r

i=1miei. Let b =
P

r

i=1mibi and consider a� b. It
is easy to see that '(a � b) = 0 so a � b = k for some k 2 K. Thus a 2 K + B.
Since a was arbitrary A = K +B.

Theorem 3.2.27. Let A be a finitely generated abelian group. There is a unique

integer r � 0 such that A has a subgroup B that is a free abelian group of rank r.

For any such B, A is the internal direct product of Tor(A) and B. Furthermore

Tor(A) is a finite abelian group, so it is the direct product of cyclic groups of prime

power order.

Proof. Proposition 3.2.20 shows that A/Tor(A) is torsion free. Proposition 3.2.25
shows that A/Tor(A) must then be free of some uniquely defined rank r. Proposi-
tion 3.2.26 shows that A has a subgroup B that maps isomorphically to A/Tor(A)
and that A = Tor(A)⇥B.

Finally, we note that A is finitely generated and the quotient group A/B is
isomorphic to Tor(A). Thus Tor(A) is finitely generated and a torsion group.
Therefore it is finite and is classified by Theorem 3.2.17, Tor(A) is also finitely
generated.

Exercises 3.2.28. Infinitely generated abelian groups
These can be much more complicated than finite ones. Consider the group
Q/Z.

(a) On a number line, sketch a region that contains exactly one element for each
equivalence class of Q/Z.

(b) Show that for any integer n there is an element of order n in Q/Z.
(c) How many elements of order n are there in Q/Z?
(d) Show that every element has finite order.

(e) Show that every nontrivial cyclic subgroup is generated by 1
n
for some integer

n > 1.

(f) Show that Q/Z is not finitely generated as an abelian group.

(g) Show that Q/Z cannot be written as a direct product of hai and another
group H for any nonzero a 2 Q/Z.
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3.3 Simple Groups and the Classification of Finite Groups

In the previous section we saw that finite abelian groups have a very simple struc-
ture; they are direct products of cyclic groups, each having order a power of a
prime. In this section we take steps to understand the the classification of arbi-
trary finite groups.

The model for classification is unique factorization of integers: Every positive
integer is the product of prime numbers in a unique way. Finite abelian groups
have a somewhat more complicated factorization because the constituents of the
unique factorization may involve Zpr for arbitrary r. So, Zp ⇥ Zp and Zp2 are
distinct even though they have the same number of elements.

The classification of finite groups is vastly more complicated than the classi-
fication of finite abelian groups. We would like to say that every finite group is
“built” from a set of groups that are analogous to the prime numbers, indivisible
themselves. The “building” process is much more complicated then simply form-
ing a direct product. As we have seen, for example, S3 is the semi-direct product
Z3oZ2 (with the action of Z2 on Z3 being a 7! �a), while Z6 is the direct product
Z3⇥Z2. We will consider S3 as built from the groups Z2 and Z3, just in a di↵erent
way than Z6 is built, so S3 and Z6 have the same constituent parts, but a di↵erent
pasting together of the parts.

As another example consider the quaternion group Q, which is not even a
semi-direct product. We will say that it is built from 3 copies of Z2 (as are all
groups of order 8). The reasoning is this: Q = {±1,±i,±j,±k} has a normal
subgroup generated by i with 4 elements. The quotient Q/hii is isomorphic to
Z2. That normal subgroup generated by i is isomorphic to Z4, and has a proper
normal subgroup generated by i

2 that is isomorphic to Z2. The quotient hii/hi2i
is isomorphic to Z2. We have what is called a composition series

h1iE hi
2
iE hiiEQ

Each subgroup is normal in the next in the sequence. Furthermore, the quotients
in this case are Z2 at each step, and Z2 is a group that has no normal subgroup
except for the group itself and the trivial group.

Definition 3.3.1. A group G is simple when the only normal subgroups of G
are heGi and G.

A composition series for a group G is a sequence of subgroups
G0 = heGi, G1, G2, . . . , Gn = G such that Gi is a normal subgroup of Gi+1 and
Gi+1/Gi is simple. The simple quotients are called composition factors of G.
We will write

G = G0 EG1 EG2 E . . . Gn�1 EGn = G

104



The length of the composition series is n.

Proposition 3.3.2. The only simple finite abelian groups are Zp for p prime.

Proof. We have already shown that every finite abelian group A is isomorphic to
the direct product of cyclic groups of prime power order. Each of the factors of
the direct product corresponds to a normal subgroup of A. Since a simple group
has no proper normal subgroups, the only possible simple groups are those whose
order is a power of a prime. But Zpr is not simple for r > 1. It is contructed from
r copies of Zp. There is in fact a unique composition series for Zpr when r > 1.

h0iE hp
r�1

iE hp
r�2

iE . . . hp
2
iE hpiE h1i = Zpr

Here are the two big theorems on classifying finite groups. The first is essen-
tially a uniqueness theorem about the composition factors of a group.

Theorem 3.3.3 (Jordan Holder). Suppose G has two composition series

heGi = G0 EG1 EG2 EG3 . . . Gn�1 EGn = G

heGi = G
0

0 EG
0

1 EG
0

2 EG
0

3 . . . G
0

m�1 EG
0

m = G

Then m = n and the lists of simple groups from the two series, G1/G0, . . . , Gn/Gn�1

and G
0

1/G
0

0, . . . , G
0
m/G

0

m�1 are the same up to reordering.

The proof takes several steps and is a bit technical, so we will skip it here and
suggest other references. [Hun03][Chap 8].

The second big theorem identifies all the simple groups. It was a massive
project in the late 20th century. See the Wikipedia article.

Theorem 3.3.4 (Finite Simple Groups). Every finite simple group is isomorphic

to one of the following:

(1) a cyclic group of prime order, Zp,

(2) an alternating group An, for n � 5,

(3) a group of Lie type,

(4) one of 27 “sporadic groups” (including the Tits group).

We have already shown that Zp is simple. In the rest of this section we get
halfway through the identification of simple groups ;-) by proving that An is simple
for n � 5. We start with two simple lemmas, then prove A5 is simple, then extend
by induction to An for n > 5.
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Lemma 3.3.5. Let n � 4. If N EAn and N contains a 3-cycle then N = An.

Proof. Suppose for simplicity (1, 2, 3) 2 N . Let a 2 {4, . . . , n}. Conjugate with
(1, 2)(3, a) to get another element of N .

(1, 2)(3, a)(1, 2, 3)(1, 2)(3, a) = (2, 1, a) 2 N

Now for b 6= 1, 2, a conjugate with (1, a)(2, b)

(1, a)(2, b)(1, a, 2)(1, a)(2, b) = (a, 1, b) 2 N

Finally, the same trick can be used to give an arbitrary (a, b, c) 2 N . We know
from Exercise 2.5.18 that the 3-cycles generate An, so N = An.

Lemma 3.3.6. Let N E An with n � 5. If N contains a product of two distinct

transpositions then N = An.

Proof. Let � = ⌧1⌧2 2 N . If ⌧1 and ⌧2 do not have disjoint support then their
product is a 3-cycle, and we can apply the last lemma. Suppose they have disjoint
support, � = (a, b)(c, d). Since n � 5 there is another element in {1, . . . , n}, call it
x. Since N is normal, conjugating gives another element of N ,

(a, b, x)
�
(a, b)(c, d)

�
(a, x, b) = (x, a)(c, d) 2 N.

Now take the product of the two elements of N that we have identified,

⇣
(a, b)(c, d)

⌘⇣
x, a)(c, d)

⌘
= (a, x, b) 2 N

Since N has a 3-cycle, N = An by the previous lemma.

Proposition 3.3.7. A5 is simple.

Proof. Let N be a non-trivial normal subgroup in A5. Let � be an element of
N that is not the identity and consider its signature. The possibilities are 2, 2, 1
or 3, 1, 1 or 5. In the lemmas above, we have shown that if � is a product of
disjoint transpositions, or if it is a 3-cycle, then N = An. Suppose the 5-cycle
� = (a, b, c, d, f) is in N and let � = (a, b, c). Note that ��1(����1) 2 N because
the conjugation of � by an element of An lands in N , and N is closed under
multiplication. On the other hand,

(��1
��)��1 = (b, c, d)(c, b, a)

= (a, d, b)

This shows N contains a 3-cycle, so N = An.
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Theorem 3.3.8. An is simple for n � 5.

Proof. We proceed by induction, the case n = 5 has been established. Assume that
Ai is simple for i < n; we’ll prove that An is simple. We start with several obser-
vations about Gi = {� 2 An : �(i) = i}. First, Gi is a subgroup and Gi

⇠= An�1.
Second, the Gi are all conjugate subgroups in An since Gi = (1, i, 2)G1(1, 2, i)
(check!). Finally, we show in the next paragraph that An = hG1, . . . , Gni.

Any � 2 An can be written as a product of an even number of transpositions.
Since n � 5, the product of a pair of transpositions must fix some i, and is
therefore in Gi. For example (1, 2)(3, 4) 2 G5. Pairing o↵ consecutive terms in
the factorization of � we see that � can be written as a product of elements in the
groups Gi. Thus An = hG1, . . . , Gni.

The strategy now is to show that if N is normal in An with N 6= {id} then
N \ Gi 6= {id} for some i. This in turn, by the following argument, implies that
N = An. By the induction hypothesis, each Gi is simple. Since N \ Gi is a
nontrivial normal subgroup of Gi, we have N \Gi = Gi. We noted above that the
Gi are conjugate, so for any j there is some ⇡ 2 An such that Gj = ⇡Gi⇡

�1. But
then

Gj = ⇡Gi⇡
�1

= ⇡(N \Gi)⇡
�1

= (⇡N⇡
�1) \ (⇡Gi⇡

�1)

= N \Gj

Since N \Gj = Gj for all j and the Gj generate An we have N = An.
Finally, to complete the proof, we will show that for a nontrivial N E An we

must have N \ Gi 6= {id} for some i. Suppose that N contains an element �

whose cycle decomposition has a cycle of length at least 3; say �(a) = b, �(b) = c

with a, b, c distinct. Let d, f be di↵erent from a, b, c (we are using n � 5) and
let ⌧ = (a, d, f). Then (⌧�⌧�1)��1

2 N and straightforward computation shows
⌧�⌧

�1
�
�1(c) = c. This shows that N \Gc 6= {id} and therefore, by the previous

paragraph, that N = An.
If N contains no element whose cycle decomposition has a cycle of length at

least 3, then all elements of N are products of disjoint transpositions. Suppose �

is such a nontrivial element of N . We may assume that � doesn’t fix anything, for
we have already shown this would imply An = G. We are assuming n � 6, so �

has at least 3 transpositions � = (a, b)(c, d)(f, g) · · · . Conjugate by ⌧ = (a, b)(c, f)
and multiply by �

�1 and we have (⌧�⌧�1)��1
2 N and ⌧�⌧

�1
�
�1(b) = b. As

above this implies that N = An.
Thus for n � 5, any normal subgroup of An is either trivial or An itself.
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Exercises 3.3.9. Details simplicity of An

This problem fleshes out some details in the proof of Theorem 3.3.8: An is
simple for n > 5.

(a) Within the alternating groupAn for each i = 1, . . . , n, letGi = {� 2 An : �(i) = i}.
Show that Gi is a subgroup of An.

(b) Find a ⇡ 2 An such that each Gi = ⇡Gj⇡
�1.

(c) Justify the statement in the fourth paragraph of the proof of 3.3.8 “Then
(⌧�⌧�1)��1

2 N and straightforward computation shows ⌧�⌧�1
�
�1(c) = c.”

(d) Justify the statement in the fifth paragraph of the proof of 3.3.8 “(⌧�⌧�1)��1
2

N and ⌧�⌧
�1

�
�1(b) = b.”
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