
Chapter 5

Fields

subfield / extension field vector spaces basis. prome field
focus on number fields and finite fields

5.1 First Fields and Automorphisms

Definition 5.1.1. A field is a set F with two binary operations, + and ⇤, called
addition and multiplication, two special elements 0 and 1, and two unary opera-
tions, a 7�! �a, and, for all but the 0 element, a 7�! a

�1 such that

• F is an abelian group under + with identity element 0 and additive inverse
a 7�! �a.

• F
⇤ = F \ 0 is an abelian group under ⇤ with identity element 1 and multi-

plicative inverse a 7�! a
�1.

• Multiplication distributes over addition: a ⇤ (b+ c) = a ⇤ b+ a ⇤ c.

There are a few fields that should be familiar to you. The following were
discussed in the first chapter.

• The rational numbers Q. This is the smallest field that contains the integers.

• The prime fields, Fp for each prime number p. A fundamental result from
modular arithmetic is that each nonzero element in Z/p, the ring of integers
modulo p, is invertible. One can compute the inverse of a nonzero element
by using the extended Euclidean algorithm. This shows that Z/p is a field.
When studying fields we will write Fp instead of Z/p.

• The real field, R.
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• The field of complex numbers C. The complex numbers also form a vector
space of dimension 2 over R with basis {1, i} where i =

p
�1. That is,

every element can be written in a unique way as a+ bi for a, b 2 R, and the
properties of a vector space hold for scalar multiplication by a real number.
Just as we have r(a, b) = (ra, rb) for (a, b) 2 R2 and r 2 R, we have r(a+bi) =
(ra) + (rb)i.

• Inside the field of complex numbers is the field of Gaussian rationals (see
Section 1.2)

Q(i) = {a+ bi : a, b 2 Q}

This is a field, and also a two-dimensional vector space over Q.

Definition 5.1.2. Let K be a field and let F be a subset of K such that F is a
field using the operations ⇤K and +K . We say F is a subfield of K and K is an
extension field of F . We will write F  K and also K/F depending on whether
the emphasis is on F being a subfield of K or K an extension of F .

Exercises 5.1.3. Intersection of fields.

(a) Let F and E be subfields of K. Show that F \ E is a subfield of K.

(b) Let F be a set of subfields of K, then

\

F2F

F

is a subfield of K.

(c) We have a similar property for rings: Let R be a set of subrings of a ring S,
then \

R2R

R

is a subring of S.

Exercises 5.1.4. Field extension as a vector space
A vector space over a field F is an abelian group V,+ that also admits a
multiplication by elements of F , that is called scalar multiplication. Scalar
multiplication satisfies three properties that coordinate the operations on F

with addition on V .

• For a 2 F and v 2 V , av = va.

• For all v 2 V , 1F v = v.

• For a, b 2 F and v 2 V , (ab)v = a(bv).

• For a, b 2 F and v 2 V , (a+ b)v = av + bv.
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• For a 2 F and v, w 2 V , a(v + w) = av + aw.

(a) Let V be a vector space over F . Verify that the properties above imply that
0F v = 0V for all v 2 V . Verify also that (�1)v is the additive inverse of v.

(b) Let K be an extension field of F . Show that K is a vector space over F . This
involves checking that the properties of a vector space over F are satisfied
by K.

The previous exercise shows that when F  K, K is a vector space over F .

Definition 5.1.5. For K and extension field of F , write [K : F ] for the dimension
when it is finite. It is also called the degree of the extension.

We have seen that [C : R] = 2 and [Q(i) : Q] = 2. Our focus in the study of
fields is to identify the structure (whatever that means, we will see!) of finite field
extensions.

The Prime Field

For any field F , there is a ring homomorphism Z �! F taking 1 to 1F , by
Theorem 4.2.13. If the kernel is trivial, then F contains a subring isomorphic
to the integers. We will simply say that F contains the integers since there is only
one ring homomorphism from Z to F . Since F is a field, it must also contain the
inverses of all the integers. Thus, it must contain the rationals, Q. 1

Suppose now that the kernel of Z �! F is not trivial. By the first isomorphism
theorem for rings, F contains a subring isomorphic to Z/m for some integer m.
Since F is a field, Z/m cannot have zero-divisors, so m must be prime. We will
write this subfield as Fp (p indicating a prime!) rather than Z/p.

Thus we have two cases, a field F either contains Fp or it contains Q. This
smallest field contained in F is called its prime field. We say F has character-
istic p, when Fp  F and F has characteristic 0 in the case Q  F .

Homomorphisms are just Embeddings

As with groups and with rings, a natural topic to investigate is the functions that
respect the structure of fields.

Definition 5.1.6. For fields F and K, a function ' : F �! K is a field homo-

morphism when

1
Strictly speaking, there is a field isomorphic to the rationals inside of F . But, as with the

integers inside of F , there is a unique way for Q to map to F , so we will just think of F containing

Q.
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(1) ' is a homomorphim from the group F,+F to K,+K , and

(2) ' is a homomorphism from the group F
⇤
, ⇤F to K

⇤
, ⇤K .

Applying Proposition 2.3.2, ' : F �! K is a homomorphism of fields if it
respects addition and multiplication:

'(a1 +F a2) = '(a1) +K '(a2), and

'(a1 ⇤F a2) = '(a1) ⇤K '(a2)

In these two equations I have emphasized that the addition and multiplication
on the left is done in F and the addition and multiplication on the right is in
K. Generally, we follow standard practice and do not write the subscripts on
the operation signs to make the equations more legible. But, don’t forget the
distinction! We will also usually not write the multiplication sign, unless there is
some important reason to use it.

It turns out that a homomorphism of fields is always injective!

Proposition 5.1.7. Let ' : F �! K be a homomorphism of fields. Then '(a) =
'(b) implies a = b, so ' is injective.

Proof. Let ' : F �! K be a homomorphism. Let a be a nonzero element of F .
Since aa

�1 = 1F , applying ' we get '(a)'(a�1) = 1K . Since 0K does not have a
multiplicative inverse, '(a) cannot be 0K . Thus a 6= 0F implies '(a) 6= 0K .

Now suppose '(a) = '(b). Then '(a�b) = 0K , and the contrapositive of what
we showed in the previous paragraph gives a� b = 0, so a = b.

A homomorphism of fields ' : F �! K is often called an embedding of F in
K since it places an isomorphic copy of F , namely '(F ) inside of K.

The next proposition is completely analogous to results about the composition
of homomorphisms of groups, Proposition 2.3.2, and properties of isomorphisms,
Proposition 2.3.11.

Proposition 5.1.8.

(1) The composition of two field homomorphisms is a field homomorphism.

(2) The composition of two isomorphisms of fields is an isomorphism of fields.

(3) Let ' : F �! K be an isomorphism of fields. The inverse function '
�1 :

K �! F is also an isomorphism of fields.
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Proof. (1) We have already shown that the composition of group homomor-
phisms is a group homomorphism. Thus the composition of two field ho-
momorphisms ↵ : F �! H and � : H �! K is both a homomorphism of the
additive group F,+F to K,+K and a homomorphism of the multiplicative
group F, ⇤F to K, ⇤K . Therefore � � ↵ is a field homomorphism.

(2) The composition of two bijections is a bijection and the composition of two
homomorphisms is a homomorphism.

(3) We can apply the fact that the inverse of an isomorphism of groups is also
an isomorphism of groups to prove the result in a similar fashion to the first
item.

5.1.1 The Automorphism Group

And now the culmination of this section!

Definition 5.1.9. Let K be a field. The automorphism group of K is the set of
all isomorphisms from K to itself, with the operation of composition. It is written
Aut(K). Let F be a subfield of K. An automorphism � such that �(a) = a for
all a 2 F is said to fix F . The set of automorphisms K that fix F is denoted
Aut(K/F ).

Proposition 5.1.8 shows that the composition of two field isomorphisms is a field
isomorphism. When the isomorphism is from K to itself, we call it an automor-
phism of K. Proposition 5.1.8 shows that the composition of two automorphisms
of K is an automorphism of K and that the inverse of an automorphism of K is
also an automorphism of K. Thus, Aut(K) is a group, which justifies the definition
above. It is a simple exercise to show that the composition of two automorphisms
that fix F also fixes F and that the inverse of an automorphism that fixes F also
fixes F . So, Aut(K/F ) is a group.

Corollary 5.1.10. For K a field, Aut(K) is a group under composition. If F is a
subfield of K, Aut(K/F ), the automorphisms of K that fix F , form a group under
composition.

What can we say about automorphisms of the examples of fields discussed
earlier? First, note that any automorphism has to take 1 to itself. Consider an
automorphism ' of Q. We must have '(1) = 1. Since ' respects addition,

'(1 + · · ·+ 1| {z }
b terms

) = '(1) + · · ·+ '(1)| {z }
b terms
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which shows that '(b) = b for each positive integer b. Since ' also respects
additive inverses, '(�b) = �b for positive integers b, so ' is the identity map on
the integers. Since ' respects multiplicative inverses, '(1/b) = 1/'(b) = 1/b for
any integer b, and since ' respects products '(a/b) = '(a)'(1/b) = a/b. Thus
we have shown that the only automorphism of Q is the identity map. A similar
(shorter argument) shows that the only automorphism of Fp is the identity map.

Notice also that there can be no homomorphism from Q to Fp since any homo-
morphism must be injective. There can’t be a homomorphism from Fp to Q since
we would have to map 1Fp to 1Q, but 1 + · · ·+ 1| {z }

p terms

= 0 in Fp while 1 + · · ·+ 1| {z }
p terms

6= 0

in Q.
The reals are vastly more complicated, so let’s consider automorphims of C

that fix R. That is, we consider automorphisms ' such that '(r) = r for r 2 R.
We know that i⇤ i = �1 so '(i)⇤'(i) = '(�1) = �1. We know there are only two
square roots of 1 in C, so there are only two possibilities: '(i) is either i itself or �i.
In the first case ' has to be the identity map, '(a+ bi) = '(a)+'(b)'(i) = a+ bi

since ' fixes the reals. In the second case ' is the conjugation map:

'(a+ bi) = '(a) + '(b)'(i) = a+ b(�i) = a� bi

It is clear that the composition of the conjugation map with itself is the identity
map. Thus, Aut

�
C/R

�
⇠= Z2.

A similar argument applies to the field Q(i). The field Q has to be fixed,
and the only non-identity automorphism takes a + bi to a � bi. Thus we have
Aut

�
Q(i)

�
⇠= Z2.

This simple example is the model for much of our work in this chapter. For a
field K containing another field F , we seek to understand the automorphisms of
K that fix F , and to use that knowledge to better understand the field K.

5.2 Constructing Fields

We have three main tools for constructing new fields.

Construction I: In Section 1.1 we showed that the ring of integers modulo a
prime forms a field, which we write Fp. Similarly, in Section 1.3 we showed
that for F a field and m(x) irreducible, F [x]/m(x) is a field (see also Theo-
rem 4.1.9). More generally, for any ring R, Theorem 4.6.11 shows that R/I

is a field whenever I is a maximal ideal.

Construction II: The second method is based on the construction of the ratio-
nal numbers from the integers. For an integral domain R, let D = R \ {0}
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and form the ring of fractions D
�1

R as in Section 4.7. This is a field.
For the ring of integers Z, the field thus constructed is Q. For the in-
tegral domain F [x] over a field F , the resulting field is written F (x) =
{a(x)/b(x) : a(x), b(x) 2 F [x] with b(x) 6= 0}.

Construction III: The third method is to take a subfield of a given field. We did
this in Section 1.2 when we introduced the subfield of the complex numbers
Q(i). Given any field K and a subset S ✓ K we can take the intersection
of all subfields of K containing S. Exercise 5.1.3 show that this is a field
(letting F be the set of all fields containing S). It contains S and it is, by
construction, a subfield of every field containing S. Thus it makes sense
to call it the smallest subfield containing S. We often are interested in the
smallest subfield of K containing a specific subfield F and some additional
set of elements S ✓ K \ F . We write this F (S). If no subfield is specificied,
we know that this field must contain one of the prime fields Q, or Fp, so we
may write it Fp(S) or Q(S) as appropriate.

With the notation of Construction III, given a subset S of K we may also take
the intersection of all rings containing S and some subfield F , which we write F [S].
It is a ring, and is, by construction, the smallest subring of K that contains F and
S. (See Exercise .)

There is a relationship between Construction III and the other constructions,
which we can illustrate with two examples inside the complex field. Before intro-
ducing the two examples recall Theorem 4.3.9, which we adapt here as follows.

Theorem Let F be a subfield of a field K. For any s 2 K there is a unique
homomorphism from F [x] to K that takes x to s, namely

' : F [x] �! K
X

i

aix
i
7�!

X

i

ais
i

Definition 5.2.1. Continuing with the notation as stated above, if the homo-
morphism is injective we say that s is transcendental over F . Otherwise, s is
algebraic over F . When s is algebraic, the monic generator of the kernel in the
theorem is called the minimal polynomial of s.

Proposition 5.2.2. If s is algebraic over F then the minimal polynomial of s is
an irreducible polynomial. Consequently, the image of ' as defined in the theorem
is a subfield of K. Thus F [s] = F (s). The dimension [F (s) : F ] is equal to the
degree of the minimal polynomial.

153



Proof. Suppose by way of contradiction, that the monic generator of the kernel is
m(x) and it factors as m(x) = f(x)g(x) 2 F [x]. Then f(s)g(s) = 0 in K. Since K
is a field either f(s) or g(s) is zero. Without loss of generality, suppose the former.
Then f(x) is in the kernel, and is therefore a multiple of m(x). Since f(x) is also
a factor of m(x) we must have that g(x) has degree 0, so it is a constant. This
shows that m(x) is irreducible.

Alternatively, we can prove the result by applying the First Isomorphism The-
orem for rings: F [x] modulo m(x) is isomorphic to its image in K. Since K is a
field, the image must be an integral domain. Since a reducible polynomial yields a
quotient ring with zero divisors by Corollary 4.1.10, the kernel must be generated
by an irreducible polynomial. Moreover, the quotient of F [x] by an irreducible
polynomial is a field, so the image of ' is actually a subfield of K.

Note that the image of ' consists of polynomials in s. Thus the smallest ring
containing F and s is also the smallest field containing F and s: F [s] = F (s). We

note also that this is
nP

n�1
i=0 ais

i

o
where n = deg(m(x)), since the polynomials

of degree less than n form a system of representatives for F [x]/m(x). Since each
element of F [s] is uniquely expressed as a polynomial in s of degree less than
deg(m(x)), the degree of the extension F (s)/F is equal to deg(m(x)).

Proposition 5.2.3. If K contains some transcendental element over F then K/F

has infinite dimension as a vector space over F . Conversely, if K is finite dimen-
sional over F then every element of K is algebraic over F .

Proof. Suppose that ↵ 2 K is transcendental over F . Then F [↵] is isomorphic
to F [x] since it is the image of the injective homomorphism ' : F [x] �! K that
takes x to ↵ and fixes F . In F [x] the powers of x, that is xi for i 2 N0, are linearly
independent, so F [x] is infinite dimensional over F . Since F [↵] is isomorphic to
F [x], it is also infinite dimensional over F . Since K contains F [↵] it is infinite
dimensional over F .

Example 5.2.4. Consider the homomorphism ' : Q[x] �! C that takes x to i =
p
�1. This is not injective. The kernel is x2 + 1 and the image is Q[i], the ring of

polynomials in i with rational coe�cients. It is isomorphic to Q[x]/(x2 + 1). This
is a field because x

2 + 1 is irreducible. Thus the field Q(i) is the same as the ring
Q[i].

Similarly Q(
p
2) ⇠= Q[x]/(x2 � 2).

Example 5.2.5. For a more subtle example, consider Q( 3
p
2). Using the homo-

morphism Q[x] �! C that takes x to 3
p
2, we have Q[ 3

p
2] ⇠= Q[x]/(x3 � 2).

There are three cube roots of 2 in C, the others are 3
p
(2)! and 3

p
(2)!2 where

! = (1�
p
3i)/2. Define ' : Q[x] �! C by '(x) = 3

p
(2)!. This gives Q( 3

p
2!) ⇠=
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Q[x]/(x3 � 2). We may do the same for 3
p
2!2, so there are three distinct embed-

dings of Q[x]/(x3 � 2) in C.
Example 5.2.6. Consider the homomorphism ' : Q[x] �! C that takes x to e

where e is the Euler number e ⇡ 2.71. It is not obvious, but e is transcendental,
not algebraic []. The homomorphism ' is therefore an isomorphism of Q[x] with
its image Q[e]. The smallest field containing Q[e] is

Q(e) =

⇢
f(e)

g(e)
: f(e), g(e) 2 Q[e] and g(e) 6= 0

�

The stipulation that g(e) 6= 0 is simply requiring that the coe�ecients of g not all
be zero, since no nonzero polynomial in Q[x] evaluates at e to 0.

The number ⇡ ⇡ 3.14 is also transcendental [] so there is an isomorphism
between Q[x] and Q[⇡] and between Q(x) and Q(⇡).

The set of algebraic numbers (the complex numbers algebraic over Q) is ac-
tually countable, while the complex numbers (and therefore the transcendental
numbers) are uncountable.[]

Adjoining a Root

Our focus henceforth is on Construction I. A critical, and rather subtle, phrase
that is used repeatedly in the study of fields is “adjoin a root.” We finish the
section, with an explanation of this phrase.

Let m(x) be a monic irreducible polynomial of degree n > 1 over a field F . Let
m(x) = x

n+mn�1x
n�1+ · · ·+m1x+m0. Elements of the quotient ring F [x]/m(x)

are cosets of hm(x)i, and each coset is uniquely represented as a(x) + hm(x)i
for some polynomial a(x) of degree less than n. The powers of x + hm(x)i are
x
i + hm(x)i for i < n, whereas xn + hm(x)i is represented by �(mn�1x

n�1 + · · ·+
m1x+m0) + hm(x)i. This is because m(x) + hm(x)i = 0 + hm(x)i. Thus, in the
quotient ring F [x]/m(x),

(x+ hm(x)i)n +mn�1(x+ hm(x)i)n�1 +mn�2(x+ hm(x)i)n�2 + · · ·

· · ·+m2(x+ hm(x)i)2 +m1(x+ hm(x)i) +m0(1 + hm(x)i

= (xn +mn�1x
n�1 +mn�2x

n�2 + · · ·+m2x
2 +m1x+m0) + hm(x)i

= 0 + hm(x)i

In other words, we may think of m(x) as having a root in F [x]/m(x), namely the
coset x+ hm(x)i.

It is common therefore to give this coset a new symbol, let’s call it ↵, and to
speak of the quotient ring as follows: We adjoin a root ↵ of m(x) to the field
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F and obtain the field F (↵). Over this field x � ↵ is now a factor of m(x), so
m(x) is no longer irreducible. In the polynomial ring F (↵)[x], we can then factor
m(x) by dividing m(x) by x � ↵. A natural question is whether m(x)/(x � ↵) is
now irreducible, or does it factor completely (into linear factors), or something in
between?

The upcoming sections explore this question. It is clear though that if deg(m(x)) =
2 then adjoining a root of m(x) will factor m(x) completely, since the quotient
m(x)/(x� ↵) will be another linear factor.

More generally, over Q, every extension by a root of a quadratic is isomorphic
to Q(

p
D) for some square free integer D. The exercise below steps through the

proof.

Exercises 5.2.7. Quadratic Extensions of Q
Let m(x) = x

2 + ax+ b be an irreducible quadratic over Q.

(a) Use the quadratic formula to find two distinct embeddings of Q[x]/m(x) into
C.

(b) Show that these two embeddings have the same image (although the image
of x+ hm(x)i itself is di↵erent in the two cases).

(c) Show that there is some square free integer D such that Q(
p
D) is the same

field as the one determined by Q[x]/m(x).

(d) Conclude that every degree 2 extension of Q is isomorphic to Q(
p
D) for

some square free integer D.

(e) Conclude also that every degree 2 extension of Q has one non-trivial auto-
morphism.

Finally, we have this relationship between an automorphim of a field extension
and the minimal polynomial of an element in the extension.

Proposition 5.2.8. Let K be an extension of F . Let ↵ 2 K have minimum
polynomial m(x) over F . For any � 2 Aut(F/K), �(↵) is also a root of m(x).

Proof. Let m(x) = x
d +md�1x

d�1 + · · ·+m0 be the mimimum polynomial for ↵
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over F . Each mi 2 F so

�

⇣
m(↵)

⌘
= �

 
nX

i=0

mi↵

!

=
nX

i=0

�(mi↵) since � respects sums,

=
nX

i=0

mi�(↵) since � respects products and fixes elements of F

= m (�(↵))

Since m(↵) = 0 we have m(�(↵)) is also 0.

157



5.3 Finite Fields

Compared to extension fields of the rationals like Q(
p
2) or Q(i), which are some-

what familiar, extensions fields of the field Fp may seem strange. Yet, the study
of finite fields is in many ways much simpler than the study of number fields. We
will see in this section that there is a complete classification of finite fields, and
that the multiplicative structure is quite simple. Furthermore, for a small finite
field, we can write down all the elements and compute by hand (or with computer
software) in a way that builds intuition for the structure of a finite field.

Finite fields have become important tools in electrical engineering, specifically
in the mathematics of communications systems. Many cryptographic systems and
error correction systems are based on finite field arithmetic. The design of hard-
ware to implement finite field arithmetic is also an important area of research and
commercial development.

In this section we characterize finite fields by proving the following theorem.
It has three main parts. The first identifies several properties that a finite field
must hold, and relates these properties to Construction 1 of fields, working in Fp[x]
modulo an irreducible polynomial m(x). The second part establishes the existance
and uniqueness of a field of order p

n for any prime p and n 2 N. The third part
shows that the automorphism group of a finite field (over Fp) is a cyclic group.

Let us start with the smallest example of a finite field that is not a prime field.

Example 5.3.1. There are four polynomials of degree 2 in F2[x]. They are x
2
, x

2+
1, x2+x and x

2+x+1. The first three all have roots in F2, so are reducible. Only
x
2+x+1 is irreducible. Let’s use it to construct a field with 4 elements F2[x]/(x2+

x+1). Let ⌘ be the congruence class x+hx
2 + x+ 1i, then ⌘ is a root of x2+x+1.

We say that we have adjoined ⌘ to F2 to create the field F2(⌘). The elements of
F2(⌘) are polynomials in ⌘ of degree less than 2: F2(⌘) = {0, 1, ⌘, ⌘ + 1}. Addition
is component-wise (relative to the basis {1, ⌘}). Multiplication must take account
of ⌘2 = ⌘ + 1. Here is a multiplication table for this field.

⇤ 1 ⌘ ⌘ + 1

1 1 ⌘ ⌘ + 1
⌘ ⌘ ⌘ + 1 1

⌘ + 1 ⌘ + 1 1 ⌘

We can also see that both ⌘ and ⌘+1 generate the multiplicative group. Since
F2(⌘)⇤ has 3 elements, any element besides 1 generates.

Here is a “dictionary” between the powers of ⌘ and the polynomial form of the
elements of F2(⌘). We will see that this type of dictionary is a useful tool for larger
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fields.
exponential form polynomial form

1 1
⌘ ⌘

⌘
2

⌘ + 1

Theorem 5.3.2. Let K be a field with a finite number of elements.

(1) K has p
n elements for some prime p and n 2 N.

(2) Each element of K is a root of xp
n
� x, so x

p
n
� x factors completely, into

distinct linear factors, over K.

(3) There is an element ⌘ 2 K whose powers ⌘
1
, ⌘

2
, . . . , ⌘

p
n
�1 = 1 give all the

nonzero elements of K. Consequently, K⇤ is cyclic of order p
n
� 1.

(4) K is isomorphic to Fp[x]/m(x) for some irreducible polynomial m(x) of de-
gree n over Fp. Furthermore m(x) is a factor of xp

n
� x.

For any prime p and any positive integer n:

(4) There exists a field with p
n elements.

(5) Any two fields with p
n elements are isomorphic.

(6) The field with p
n elements has a subfield with p

d elements if and only if d
divides n.

We use Fpn to denote the unique field with p
n elements. The automorphism group

of Fpn satisfies:

(7) Aut(Fpn) is generated by the Frobenius map, '(�) = �
p for � 2 Fpn.

(8) Aut(Fpn) ⇠= Z/n.

As a first step we prove item (1) of the theorem.

Proposition 5.3.3. A finite field is a vector space over Fp for some prime p.
Consequently, the number of elements of K is a power of p.

Proof. Suppose that K is a finite field. The smallest field contained in K, its prime
field, must be Fp for some prime number p.

From the definition of a field, we can see that K satisfies the properties for
a vector space over Fp (This was Exercise 5.1.4.) For example: if a 2 Fp and
�, � 2 K then a(� + �) = a� + a� follows from the distributive law, but may be
also considered as the property concerning scalar multiplication (by ↵) of a sum
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of vectors, �+ �. If the dimension of K over Fp is n then K has a basis u1, . . . , un
and the elements of K are a1u1 + . . . , anun for ai 2 Fp. Thus K must have p

n

elements.

Suppose that q = p
n is the number of elements in K. By the definition of a

field, the set of nonzero elements of K is a group under multiplication. This group
is denoted K

⇤. Recall that the order of an element ↵ in a finite group G is the
smallest positive integer r such that ↵

r is the identity. The order of an element
divides the order of the group by Lagrange’s Theorem 2.7.7.

Proposition 5.3.4. Let K be a field with p
n elements. The polynomial xp

n
� x

factors completely, into distinct linear factors, over K.

x
p
n
�1

� 1 =
Y

↵2K⇤

(x� ↵) and,

x
p
n
� x =

Y

↵2K

(x� ↵)

Proof. The multiplicative group K
⇤ has pn � 1 elements, so each element ↵ 2 K

⇤

has order dividing p
n
� 1. Thus, each ↵ 2 K

⇤ is a root of xp
n
�1

� 1. Furthermore,
each root corresponds to a factor x � ↵ of xp

n
�1

� 1. We have identified p
n
� 1

roots of xp
n
�1

� 1, so it factors into linear factors: x
p
n
�1

� 1 =
Q

↵2K⇤(x � ↵).
Taking account of the 0 element gives the factorization of xp

n
� x.

This establishes item (2) of the theorem.
Before we proceed further, recall the following properties from Theorem 2.1.13

and problems immediately following it.
Order Theorem Let ↵ be an element of order r in an group G.

(1) ↵
i = ↵

j i↵ i ⌘ j mod r.

(2) The order of ↵i is r/d where d = gcd(i, r).

(3) Let G be abelian. Let � 2 G have order s, coprime to r = ord(↵). Then
ord(↵�) = rs.

(4) Let G be abelian. If ↵1, . . . ,↵n have orders r1, . . . , rn where the ri are pair-
wise coprime, then ord(

Q
n

i=1 ↵i) =
Q

n

i=1 ri.

Now we can establish item (3) of the Theorem. The key ideas we exploit are
(1) an element of K⇤ of order t is a root of xt � 1, and (2) the polynomial xt � 1
has at most t roots.
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Proposition 5.3.5. The multiplicative group of a finite field K is cyclic. That is,
if |K| = p

n, there is some element ⌘ 2 K such that the nonzero elements of K are
1, ⌘, ⌘2, . . . , ⌘p

n
�2.

Proof. LetK have pn elements and let the prime factorization of pn�1 be
Q

r

i=1 q
bi
i
.

We will show below that for each i = 1 . . . , r there is an element ⌘i 2 K
⇤ of order

q
bi
i
. Let ⌘ =

Q
r

i=1 ⌘i. Since the q
bi
i

are coprime to each other, the theorem above

shows that the order of ⌘ is
Q

r

i=1 q
bi
i
= p

n
�1. Thus ⌘ generates the multiplicative

group of K.
Now we prove the claim. Suppose that q is prime and q

b appears in the prime
factorization of pn � 1, so q

b divides pn � 1 but qb+1 does not. Let t = (pn � 1)/qb

and consider the set S = {↵
t : ↵ 2 K

⇤
}. This set is the image of the left hand

map below.

K
⇤
�!K

⇤
�! K

⇤

↵ 7�! ↵
t

� 7�! �
q
b

The set S is also contained in the kernel of the righthand map because

(↵t)q
b
= ↵

p
n
�1 = 1

This shows that every element of S is a root of xq
b
� 1. There can be only q

b roots
of xq

b
� 1, so S has at most q

b elements. On the other hand, for any � 2 S the
polynomial xt � � has at most t roots so there can be at most t elements of K
whose tth power is �. Therefore the cardinality of S is at least (pn � 1)/t = q

b.
We have therefore proven that |S| = q

b.

Every element of S is a root of xq
b
� 1, but at most qb�1 of the elements in S

can be roots of xq
b�1

� 1. Consequently, there must be at least qb � q
b�1 elements

of S whose order in K is q
b. This shows what we wanted: there is some element

of K of order qb.

Definition 5.3.6. An element of a finite field whose powers generate the nonzero
elements of the field is called primitive.

Proposition 5.3.5 says that every finite field has a primitive element. Further-
more, from the Order Theorem, if ⌘ is primitive in a field of pn elements then ⌘

k is
also primitive whenever k is coprime to p

n
� 1. Thus there are '(pn� 1) primitive

elements, where ' is the Euler totient function ('(n) is the number of positive
integers less than n and coprime to n).
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To prove item (4) of the Theorem we need to use the minimal polynomial of a
primitive element.

Proposition 5.3.7. Let K be a finite field of pn elements. Let ⌘ be any primitive
element of K, let ' : Fp[x] �! K take x to ⌘ and let m(x) generate the kernel (so
m(x) is the minimal polynomial of ⌘ over Fp). Then K is isomorphic to Fp[x]/m(x)
and degm(x) = n. Furthermore, m(x) divides xp

n
�x and m(x) factors completely

in K.

Proof. From the First Isomorphism Theorem for rings, ' gives rise to an isomor-
phism from Fp[x]/m(x) to its image in K. Proposition 5.2.2 shows that m(x) must
be irreducible, since K has no zero divisors. But, the image of ' contains ⌘ and
therefore all of its powers. Thus the image is all ofK and we haveK ⇠= Fp[x]/m(x).
The dimension of K over Fp is n and the dimension of Fp[x]/m(x) is deg(m(x)),
so the degree of m(x) is n.

By Proposition 5.3.4, xp
n
� x factors into linear factors in K and ⌘ is one of

the roots. This implies that xp
n
� x is in the kernel of ', so m(x) divides xp

n
� x.

Since x
p
n
� x factors completely in K so to does m(x).

We have established items (1)-(4) of the theorem which identify the fundamen-
tal properties that a finite field must satisfy. We can now prove existence and
uniqueness for fields of prime power order. We will need one more property, the
“Freshman’s dream”:

Proposition 5.3.8. Let ↵,� be elements of a field of characteristic p. Then
(↵+ �)p = ↵

p + �
p.

Proof. Expanding (↵+ �)p using the binomial theorem we get terms like

✓
p

k

◆
↵
k
�
p�k

The binomial coe�cient really means 1 added to itself
�
p

k

�
times. Since p divides

the binomial coe�cient when 1 < k < p the coe�cient is 0 unless k = 0 or k = p.
That gives the result.

We can now prove items (5)-(6) of the theorem.

Proposition 5.3.9. For any prime power there exists a unique field of that order.

Proof. Uniqueness: Let K and K
0 be two fields with p

n elements. Let ⌘ be a
primitive element in K and let m(x) be its minimal polynomial over Fp. The
previous proposition showed that ⌘ is a root of xp

n
� x, and m(x) divides xp

n
� x.
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By Proposition 5.3.7, xp
n
� x factors into distinct linear factors in both K and K

0

so there must be a root of m(x) in K
0. Call this root ⌘0. Then the homomorphism

from Fp[x] to K
0 that takes x to ⌘

0 must have image that is a subfield of dimension
n in K

0, and is therefore all of K
0. By Proposition 5.3.7, both K and K

0 are
isomorphic to Fp[x]/m(x) so they are isomorphic to each other.

Existence: By successively factoring x
p
n
�x and adjoining roots of a nonlinear

irreducible factor, we can, after a finite number of steps, arrive at a field in which
x
p
n
� x factors completely. I show below that the roots of xp

n
� x form a field.

Since the derivative of xp
n
� x is �1, xp

n
� x does not have multiple roots, so

by the roots-factors theorem it has exactly p
n roots. Thus we have a field of pn

elements.
To show the roots of xp

n
� x form a field, we need to show that the sum of

two roots is a root, that the additive inverse of a root is a root, that the product
of two roots is a root and that the multiplicative inverse of a root is a root. These
are straightforward and left as an exercise.

Exercises 5.3.10. The roots of x
p
n
� x form a field.

Let ↵,� be roots of xp
n
� x in some finite field K.

(a) Show that �↵ is also a root of xp
n
� x.

(b) Show that ↵+ � is a root of xp
n
� x, using the “Freshman’s dream.”

(c) Show that ↵�1 is a root of xp
n
� x.

(d) Show that ↵� is a root of xp
n
� x.

We are now justified in using Fpn to denote the unique field of order p
n. We

can now identify the possibilities for one finite field to contain another finite field,
which is item (7) of the theorem.

Proposition 5.3.11. The field Fpd is contained in Fpn if and only if d divides n.

Proof. See Exercise 5.3.21.

Definition 5.3.12. Let m(x) 2 Fp[x] be a polynomial over Fp. If m(x) is irre-
ducible and the coset x+ hm(x)i is primitive in Fp[x]/m(x), then we say m(x) is
a primitive polynomial.

The following example shows that there can be many ways to construct a given
field.

Example 5.3.13. Let p = 2. We can construct the field F23 by adjoining to F2 a
root ⌘ of the irreducible polynomial m(x) = x

3 + x+ 1. Since the degree of m(x)
is 3, the elements of the field will be polynomials of degree less than 3 in ⌘. Since
F⇤

3 has 7 elements, any element, other than 1 generates the multplicative group.
Thus we know that ⌘ is primitive.
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Here is the “dictionary” between powers of ⌘ and corresponding polynomials
in ⌘. We use ⌘

3 = ⌘ + 1 to compute successive rows in the table.

exponential form polynomial form
1 1
⌘ ⌘

⌘
2

⌘
2

⌘
3

⌘ + 1
⌘
4

⌘
2 + ⌘

⌘
5

⌘
2 + ⌘ + 1

⌘
6

⌘
2 + 1

The next line in the table would be

⌘
7 = ⌘

3 + ⌘ = ⌘ + 1 + ⌘ = 1

This is to be expected, since F⇤

8 is a cyclic group of order 7.
We can use this table to verify that ⌘2 is another root of x3 + x+ 1.

(⌘2)3 + ⌘
2 + 1 = ⌘

6 + ⌘
2 + 1

= 0

Similarly ⌘
4 is also a root.

(⌘4)3 + ⌘
4 + 1 = ⌘

12 + ⌘
4 + 1

= ⌘
5 + ⌘

4 + 1

= (⌘2 + ⌘ + 1) + (⌘2 + ⌘) + 1

= 0

The Finite Field Theorem says that there is a unique field of order 8 so every
irreducible polynomial of degree 3 over F2 must have roots in the field that we
constructed. There are 2 monic irreducible polynomials of degree 3 over F2: x3 +
x+1, which we used to construct this field, and x

3 + x
2 +1. As an exercise, show

that ⌘3, ⌘5 and ⌘
7 are the roots of x3 + x

2 + 1.
Here is a multiplication table (omitting 0) for the representation of F8 using

x
3 + x+ 1.

⇤ 1 ⌘ ⌘ + 1 ⌘2 ⌘2
+ 1 ⌘2

+ ⌘ ⌘2
+ ⌘ + 1

1 1 ⌘ ⌘ + 1 ⌘2 ⌘2
+ 1 ⌘2

+ ⌘ ⌘2
+ ⌘ + 1

⌘ ⌘ ⌘2 ⌘2
+ ⌘ ⌘ + 1 1 ⌘2

+ ⌘ + 1 ⌘2
+ 1

⌘ + 1 ⌘ + 1 ⌘2
+ ⌘ ⌘2

+ 1 ⌘2
+ ⌘ + 1 ⌘2

1 ⌘
⌘2 ⌘2 ⌘ + 1 ⌘2

+ ⌘ + 1 ⌘2
+ ⌘ ⌘ ⌘2

+ 1 1

⌘2
+ 1 ⌘2

+ 1 1 ⌘2 ⌘ ⌘2
+ ⌘ + 1 ⌘ + 1 ⌘2

+ ⌘
⌘2

+ ⌘ ⌘2
+ ⌘ ⌘2

+ ⌘ + 1 1 ⌘2
+ 1 ⌘ + 1 ⌘ ⌘2

⌘2
+ ⌘ + 1 ⌘2

+ ⌘ + 1 ⌘2
+ 1 ⌘ 1 ⌘2

+ ⌘ ⌘2 ⌘ + 1
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Now we consider the automorphism group of a finite field. Recall that any
automorphism has to take 1 to itself, and must therefore fix the subfield Fp.

Proposition 5.3.14. The automorphism group of Fpn is cyclic of order n, gener-
ated by the Frobenius map ' : ↵ 7�! ↵

p.

Proof. The Frobenius map respects addition, by the Freshman’s dream, and it
clearly respects multiplication: '(↵�) = (↵�)p = ↵

p
�
p = '(↵)'(�). Thus ' is a

homomorphism of fields. Since a homomorphism of fields must be injective, and
since an injective function on a finite set is also surjective, we conclude that ' is
an automorphism.

Repeatedly composing the Frobenius with itself gives other automorphims and
one can inductively establish the formula: 't(↵) = ↵

p
t
. Since F⇤

pn has order pn�1

we have for ↵ 6= 0, 'n(↵) = ↵
p
n
= ↵

p
n
�1

⇤ a = 1 ⇤ ↵ = ↵. Thus 'n is the identity
map.

I claim no lower power of ' is the identity map. Suppose that 'r is the identity
automorphism and let ⌘ be primitive in Fpn . Then ⌘ = '

r(⌘) = ⌘
p
r
, so ⌘

p
r
�1 = 1.

Since ⌘ is primitive it has order pn � 1, so we see r � n as claimed.
We need to show that there are no other automorphisms of Fpn . Let ⌘ be

primitive, and let m(x) = x
n+mn�1x

n�1+ · · ·+m0 be its mimimum polynomial.
The lemma showed that 'r(⌘) = ⌘

p
r
is another root of m(x). Since ⌘ is primitive,

⌘, . . . , ⌘
p
n�1

are all distinct and thus they form the complete set of roots of m(x).
Let � be an arbitrary automorphim of Fpn . Then � must take ⌘ to one of these

other roots of m(x). The action of � on ⌘ determines � completely, so if �(⌘) = ⌘
p
r

then � = '
r.

In conclusion Aut(Fpn) is cyclic of order n, and is generated by '.

Constructing Finite Fields

To construct the field Fn
p we need an irreducible polynomial of degree n (which

we may assume to be monic). How can we identify a monic irreducible? The
analogous question for the integers (as compared to Fp[x] is: How can we identify
prime numbers? Neither problem is easy to address. Since we are not concerned
here developing the most e�cient methods to find irreducibles, we will fall back on
something akin to the Sieve or Eratosthenes, which is a method for finding primes.

The process proceeds iteratively. Assume that we have identified all monic
irreducibles of degree less than n. We show how to find all monic irreducibles of
degree n. We list all polynomials of degree n. Then eliminate all products of the
irreducibles of degree less than n that give a polynomial of degree n (which will,
by construction, be reducible). The polynomials of degree n remaining after this
process are irreducible.
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For n = 3 one must consider a product of 3 linear factors and a product of
a linear and an irreducible quadratic. For degree 4 one must consider a product
of 4 linear factors, a product of two linear factors and an irreducible quadratic, a
product of one linear and an irreducible cubic, and a product of two irreducible
quadratics.

Exercises 5.3.15. Irreducible polynomials over F2.
We have seem that there is one irreducible of degree 2 over F2, x2 + x+ 1.

(a) Find all irreducible polynomials over F2 of degree at most 4. You should
justify your list.

(b) Find all all irreducible polynomials over F2 of degree 5. Use the list from part
(a) to explain your result. Notice any patterns in the list of polynomials.

(c) Determine how many irreducible polynomials of degree 6 there are over F2

based on part (a). Justify your answer briefly.

Example 5.3.16. Consider now the degree 3 extension of F3, the field with 27
elements, F27. In this field there is just one subfield F3, so there are 24 elements
that have a minimal polynomial of degree 3. Each of these minimal polynomials
factors completely in F27 by Proposition 5.3.7. Thus we have 24/3 = 8 monic
irreducible polynomials of degree 3 over F3.

Let’s count the number of irreducible monic polynomials of degree 3 over F3

using the method related to the Sieve of Eratosthenes. The monic polynomials of
degree 3 over F3 are all of the form x

3 + a2x
2 + a1x+ a0 for ai 2 F3. Thus there

are 27 monic polynomials of degree 3. A reducible polynomial is either the product
of 3 linear factors or the product of a linear and a quadratic irreducible. There
are 3 monic linear polynomials, and 3 monic quadratic irreducibles, so 9 possible
products. For a product of linear monic polynomials we choose 3 factors with
replacement from the 3 linear polynomials, so there are

�3+2
3

�
= 10 possibilites.

Thus the number of irreducibles shoule be 27� 9� 10 = 8. That checks with our
computation from the previous paragraph.

The multiplicative group F⇤

27 is cyclic of order 26. In Z/26 the odd numbers,
other than 13, are all generators for the group so there are 12 generators. Conse-
quently in F⇤

27 there are 12 primitive elements. Each is a root of one of the monic
irreducible polynomials of degree 3, so we expect 12/3 = 4 di↵erent primitive
monic polynomials of degree 3.
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Here are the monic irreducibles of degree 3 over F3 that are not primitive

x
3 + 2x2 + 2x+ 2,

x
3 + x

2 + x+ 2

x
3 + 2x+ 2

x
3 + x

2 + 2,

and here are the ones that are primitive.

x
3 + 2x+ 1

x
3 + 2x2 + x+ 1

x
3 + x

2 + 2x+ 1

x
3 + 2x2 + 1

Exercises 5.3.17. The field F23.

(a) Construct the multiplication table for the field F8 using x
3 + x

2 + 1.

(b) Make a table showing the powers of the primitive element, call it ⌘, and the
corresponding vector form, using the basis {1, ⌘, ⌘2}.

(c) Show that the polynomial x3 + x+ 1 also has roots in your construction of
F8.

Exercises 5.3.18. The field F16.

(a) One of the irreducible polynomials of degree 4 in Exercise 5.3.15 has roots
which are not primitive. Which one?

(b) Construct the field with 16 elements using one of the primitive irreducible
polynomials of degree 4: Make a table showing the powers of the primi-
tive element, call it ⌘, and the corresponding vector form, using the basis
{1, ⌘, ⌘2, ⌘3}. Give also the multiplicative order of each element and its min-
imal polynomial.

(c) Identify the subfield F4.

(d) Factor over F4 the irreducible polynomial that you chose to construct F16.

(e) How many elements of F16 are primitive?

Exercises 5.3.19. The field F32.

(a) Write a multiplication table for F3[x]/hx2 + x+ 2i. [You may omit 0. It may
be easier to take the elements in the order 1, x, x+1, x+2 followed by twice
each.]

(b) Find all irreducible polynomials of degree 2 over F3 and find their roots in
the table you constructed.
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Exercises 5.3.20. Factoring a polynomial over different fields.

(a) Factor x9 � x over F3.

(b) Factor x5 + x
4 + 1 over F2 (it is reducible!), F4 and F8.

(c) Factor x16 � x over F2, F4, F8 and F16.

Exercises 5.3.21. Subfields of a Finite Field
Let n > m be positive integers and d = gcd(n,m). Show that the intersection
of Fpm and Fpn is Fpd as follows.

(a) Recall that the remainder xn � 1 divided by x
m
� 1 is xr � 1 where r is the

remainder when n is divided by m.

(b) Show that the gcd of xn � 1 and x
m
� 1 is xd � 1.

(c) Combine the previous results and the theorem that the roots of xp
n
� x are

the elements of Fpn to conclude that Fpd is a subfield of Fpn i↵ d divides n.
(Strictly speaking Fpn has a subfield isomorphic to Fpd . See 11.10.)

Exercises 5.3.22. Subfields and (multiplicative) order of an element.

(a) Make a table showing the possible multiplicative orders and the number of
elements of each order for F64, F128, and F256. Relate this information to
subfields (refer to the previous problem).

Exercises 5.3.23. The Field F81.

(a) The polynomials x2+x+2 and x
2+2x+2 are both irreducible over F3. Can

you construct F81 by using one of these polynomials and then the other?

(b) In a computer algebra system use m(x) = x
4 + x+2 and r(x) = x

4 +2x+2
to construct two versions of F81. Using a brute force search, find a root of
m(x) in the second field and a root of r(x) in the first field. These give
isomorphisms between the two fields. Check by hand that each composition
is an automorphism of the appropriate version of F81.

(c) Factor x
80

� 1 over F3. For each irreducible factor a(x), find the roots of
a(x) in F3[x]/m(x).

Exercises 5.3.24. The field F64.

(a) The polynomials m(x) = x
6 + x + 1 and r(x) = x

6 + x
5 + x

4 + x + 1 are
both irreducible over F2. Using a computer algebra system construct two
versions of F64, using m(x) for one and r(x) for the other. Using a brute
force search, find a root of m(x) in the second field and a root of r(x) in the
first field. These give isomorphisms between the two fields. Check by hand
that each composition of the two isomorphisms is an automorphism of the
appropriate version of the field.

(b) Factor x63�1 over F2. For each irreducible factor a(x), find the roots of a(x)
in F2[x]/m(x). Use Sage, but also use your understanding of the theory.
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(c) The field F64 can also be constructed as an extension of F4. Construct F4,
then factor x63�1 in F4[x]. Choose one of the factors of degree 3 to construct
F64.

(d) Now create F8 using an irreducible polynomial of degree 3 over F2, then
factor x

63
� 1, then create F64 using an irreducible polynomial of degree 2

in F8[x].

Exercises 5.3.25. The algebraic closure of Fp.
This problem extends Exercise 5.3.21, which showed that we may consider
Fpd as contained in Fpn if and only if d|n.

(a) Let Fp =
S

t�1 Fpt . Prove that F is a field.

(b) Prove that Fp is algebraically closed.

(c) Prove that every element of Fp is algebraic over Fp so there is no algebraically
closed field properly contained in Fp.

(d) Conclude that Fp is the algebraic closure of Fpn for any n.

Exercises 5.3.26. Irreducible polynomials over Fp.
Suppose you have formulas for the number of irreducible monic polynomials
of degree m over Fp for each m < n. Using some combinatorial arguments
you can then compute the number of monic reducible polynomials of degree
n. Subtracting this from the number of monic polynomials of degree n yields
the number of monic irreducible polynomials of degree n.

(a) Show that the number of monic irreducible quadratics over Fp is (p2 � p)/2.

(b) Show that the number of monic irreducible cubics over Fp is (p3 � p)/3.

(c) You might want to guess at a general formula. A di↵erent counting method
yields the result more easily than the one above. Try this if you want, noting:

• For a 2 Fpn , a is in no proper subfield i↵ the minimal polynomial for a
has degree n.

• Each monic irreducible of degree n has n distinct roots in Fpn .
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