PROBLEM SET 1

Exercises with (HW) are due Friday 9/6 in class. Your homework should be easily legible, but need not be typed in Latex. Use full sentences to explain your solutions, but try to be concise as well.

Exercises for Wednesday, 8/28

Exercises 1.1. An alternative version of the QR Theorem.

- (a) Let a and b be integers with $b \neq 0$. There exist unique integers q, r such that
 - (1) a = bq + r, and
 - (2) $|b|/2 < r \le |b|/2$

[There are two approaches: use the existing QR Theorem to prove the alternative, or prove it from scratch by redefining S and modifying the proof of the QR Theorem.]

Exercises 1.2. The Euclidean algorithm

(a) Use the matrix version of the Euclidean algorithm to express the greatest common divisor of 89 and 24 as a linear combination of 89 and 24.

Exercises 1.3. A CONSEQUENCE OF UNIQUE FACTORIZATION

(a) Every nonzero rational number a can be uniquely expressed in the form

$$a = up_1^{e_1} \cdots p_t^{e_t}$$

for some $u=\pm 1$, $t\in \mathbb{N}_0$, prime numbers $p_1< p_2< \cdots < p_t$, and nonzero integers e_1,\ldots,e_t .

Exercises 1.4. Invertible elements in \mathbb{Z}/n

- (a) Let p be a prime number. Let $[a] \in \mathbb{Z}/p$ with $[a] \neq [0]$ (so a is not divisible by p). Use the GCD Theorem to show there is some $r \in \mathbb{Z}/p$ such that [a][r] = [1]. Consequently, each nonzero element of \mathbb{Z}/p has a multiplicative inverse.
- (b) Extend this result, partially, to \mathbb{Z}/n for composite n. If $[a] \in \mathbb{Z}/n$ is such that the integer a is coprime to n, then there is some $[r] \in \mathbb{Z}/n$ such that [a][r] = [1].

SDSU Fall 2024 1 August 21, 2024

Exercises for 9/4

Exercises 1.5. Basic Group Properties.

Let G,* be a group. Give succinct but complete proofs of the following.

- (a) The identity element is unique.
- (b) The inverse of any element is unique.
- (c) The cancellation law holds: a*b = a*c implies b = c (and similarly for cancellation on the right).
- (d) If a * g = g for some $g \in G$, then $a = e_G$.
- (e) $(a*b)^{-1} = b^{-1}*a^{-1}$.
- (f) $(a^{-1})^{-1} = a$.
- (g) (HW) If every non-identity element has order 2, then G is abelian.

Exercises 1.6. A Perverse Group

- (a) Show that \mathbb{Z} is a group under the operation \square defined by $a\square b = a + b 2$. (What is the identity element? What is the inverse of an element a?)
- **(b)** (HW) Find an isomorphism from \mathbb{Z} , + to \mathbb{Z} , \square .

Exercises 1.7. Formulas for the operations in D_5

The goal of this problem is to find formulas for the product of two arbitrary elements of D_5 . We will use arithmetic in $\mathbb{Z}/5$ with the system of representatives 0, 1, 2, 3, 4.

- (a) Observe that the reflection t_i applied to the original position of the pentagon (in Figure 1) switches i+1 with i-1 and i+2 with i-2 where computations are modulo 5. Show that when t_i is applied to the original position of the pentagon the vertex at base point a is 2i-a. We can write this as $t_i(a) = 2i-a$.
- (b) Explain why the product of two reflections is a rotation, and find a formula for $t_i * t_j(a)$.
- (c) (HW) Show that $r*t_i = t_{i+3}$ by arguing that $r*t_i$ is a reflection and that, applied to the pentagon in the original position, it takes i+3 to itself.
- (d) (HW) Find a formula for $r^j * t_i$; that is, give a function of $\mathbb{Z}/5$ [Hint: linear] for $r^j * t_i(a)$. Do the same for $t_i * r^j$.

SDSU Fall 2024 2 August 21, 2024

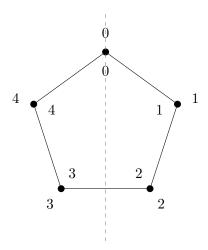


Figure 1: The Pentagon

Exercises 1.8. (HW) Some subgroups of Abelian Groups Let A be an abelian group and let m be an integer.

- (a) Let $mA = \{ma : a \in A\}$. Show that mA is a subgroup of A.
- (b) Let $A[m] = \{a \in A : ma = 0\}$. Show that A[m] is a subgroup of A.
- (c) Give an example in which $mA \cap A[m]$ is trivial (just 0) and given an example in which it is not trivial.

Exercises 1.9. (HW) ORDER AND COMMUTATIVITY.

- (a) If $g \in G$ has order m and $h \in H$ has order n, find the order of $(g,h) \in G \times H$.
- (b) Suppose that $a, b \in G$ commute (that is ab = ba). If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are coprime find the order of ab.
- (c) Let A be an abelian group with finite exponent. Show that there is some $a \in A$ such that $\operatorname{ord}(a) = \exp(A)$.

SDSU Fall 2024 3 August 21, 2024

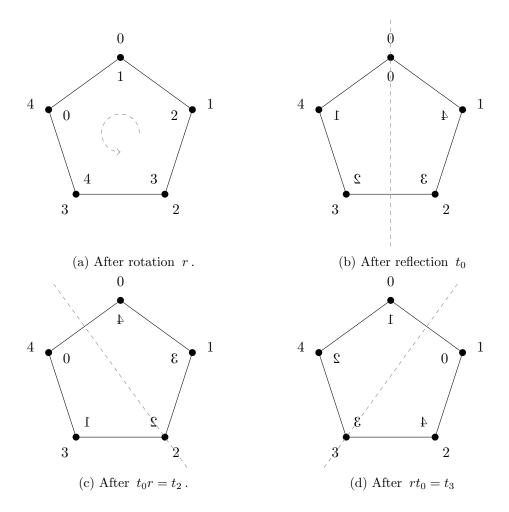


Figure 2: The pentagon after various transformations

SDSU Fall 2024 4 August 21, 2024