PROBLEM SET 3

exercises with (HW) are due Friday 9/27. Your homework should be easily legible, but need not be typed in Latex. Use full sentences to explain your solutions, but try to be concise as well. Think of your audience as other students in the class.

Exercises 3.1. GENERATORS FOR A_n .

- (a) Suppose that σ is a k-cycle and τ is an m-cycle and there is exactly one element of $\{1, \ldots, n\}$ that is in the support of both σ and τ . Show that $\sigma\tau$ is a (k + m 1)-cycle.
- (b) Show that the product of two disjoint transpositions can also be written as the product of two 3-cycles.
- (c) (HW) Use part (a) (with k = m = 2) and part (b) to prove that A_n is generated by 3 cycles.
- (d) (HW) Compute (1,2,a)(1,b,2) for a,b distinct and not equal to 1 or 2. Use the result as motivation to show that the 3-cycles of the form (1,2,a) generate A_n for $n \ge 4$.

Exercises 3.2. CAYLEY'S THEOREM

- (a) Let n = 5 and think of \mathbb{Z}_n in the usual way as $\{0, 1, 2, 3, 4\}$ with addition modulo n. For each $a \in \mathbb{Z}_n$ write down in tabular form the function on \mathbb{Z}_n defined by addition of a.
- (b) Show that part (a) defines a function from \mathbb{Z}_5 to S_5 , provided you think of S_5 as the group of permutations of $\{0, 1, 2, 3, 4\}$. Show that this function is a homomorphism.
- (c) Now consider $\mathbb{Z}_2 \times \mathbb{Z}_2$. Enumerate the 4 elements in any way you choose as a_1, a_2, a_3, a_4 . For each a_i define a permutation σ_i by $a_i a_1 = a_{\sigma_i(1)}$, $a_i a_2 = a_{\sigma_i(2)}$, $a_i a_3 = a_{\sigma_i(3)}$, $a_i a_4 = a_{\sigma_i(4)}$.
- (d) Show in part (c) that this gives a homomorphism from $\mathbb{Z}_2 \times \mathbb{Z}_2$ to S_4 .
- (e) (HW) Similar to the above examples, the next steps define a homomorphism from D_3 to S_6 . Enumerate the elements of as follows $D_3 = \{a_1 = r^0, a_2, = r, a_3 = r^2, a_4 = t, a_5 = rt, a_6 = r^2t\}$ For each a_i define a permutation σ_i in S_6 . σ_1 is the identity, and σ_2 is given by $\sigma_2(i) = k$ whenever $ra_i = a_k$. Verify that each σ_i is indeed a permutation by writing it in permutation notation.
- (f) (HW) Verify in three examples: for any $a, b \in D_3$, the permutation corresponding to ab equals the product of the permutations corresponding to a and b.

(g) (HW) Which elements of D_3 correspond to odd permutations in S_6 ?

Exercises 3.3. MORE EXAMPLES OF CONJUGATION.

- (a) Show that A_n is invariant under conjugation: for any $\pi \in S_n$, $\pi A_n \pi^{-1} = A_n$.
- (b) (HW) Let C_n be the rotation subgroup of D_n . Find two elements of C_4 that are conjugate as elements of D_4 but are not conjugate as elements of C_4 .
- (c) (HW) Find two elements of D_4 (the subgroup generated by (1, 2, 3, 4) and (1, 2)(3, 4)) that are conjugate as elements of S_4 but are not conjugate as elements of D_4 . A computer algebra system will be useful.

Exercises 3.4. (HW) INNER AUTOMORPHISMS

For a an element of a group G, define a function $\varphi_a: G \longrightarrow G$ by $\varphi_a(g) = aga^{-1}$.

- (a) We have shown that φ_a is an automorphism of G. Show that $\varphi: G \longrightarrow \operatorname{Aut}(G)$ defined by $\varphi: a \longmapsto \varphi_a$ is a homomorphism. The image, $\{\varphi_a : a \in G\}$, is therefore a subgroup of $\operatorname{Aut}(G)$. It is called $\operatorname{Inn}(G)$, the group of **inner automorphisms** of G.
- (b) What is the kernel of φ ?

Exercises 3.5. CHALLENGE PROBLEM

- (a) Let n be a positive integer and k > n/2. Find a formula for the number of elements of S_n that include a k-cycle.
- (b) Use Stirling's formula to approximate the formula you just computed.
- (c) Estimate the probability that a random element of S_n has a cycle of length larger than n/2.