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CHAPTER

ONE

ABOUT THIS TUTORIAL

1.1 Introduction

1.1.1 How to use this tutorial

This tutorial is divided into four parts. This part, About this tutorial, discusses some basic properties of SageMath,
introduces you to the structure of the tutorial, and explains how to contribute to the project if you so desire.

The second part, SageMath as a Calculator, covers topics such as how to do arithmetic, evaluate functions, create
simple graphs, solve equations and do basic calculus. We call this section SageMath as a Calculator because most of
the topics covered are those that are commonly done with a standard graphing calculator. The target audience for this
section is any motivated pre-calculus or calculus student.

Programming in SageMath introduces the reader to some more advanced topics such as how SageMath handles num-
bers; how to define and use variables and functions; how to manipulate lists, strings, and sets; and SageMath universes
and coercion.

The final part, Mathematical Structures, introduces the reader to topics that one finds in a college-level curriculum:
linear algebra, number theory, groups, rings, fields, etc.

Since this tutorial is an introduction to SageMath, we will be using examples to demonstrate ideas and the reader is
encouraged to follow along as we progress by entering the commands into their own copy of SageMath. We have
included exercises for practice and problems for more extensive exploration of a given topic. The reader is also
encouraged to do many of these.

While the tutorial mostly progresses in a linear fashion, we still include at the beginning of each section a list of the
most important prerequisite topics. This list follows the text “You should be familiar with.” and by clicking one of
those links you will be taken to the relevant portion of the tutorial. We have also included links to further information
and other on-line references. These will follow the “See also:” text.

Some sections may contain numbered citations such as “1.” The list of these citations will be at the bottom of a section
with at least one citation. These citations will direct the reader to texts which contain more information about the topic
being presented.

References:

1.2 Getting Started

1.2.1 About SageMath

SageMath (previously Sage or SAGE) is a free open-source mathematical software system based on the Python pro-

1 William A. Stein et al. Sage Mathematics Software (Version 8.2), The Sage Development Team, 2018, http://www.sagemath.org.
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gramming language. Originally created for research into Mathematics, it has been evolving into a powerful tool for
Math education. It combines numerous other mathematical software packages with a single interface, using Python.
By learning SageMath, you are also learning a lot about Python.

As an open source project, SageMath invites contributions from all of its users. This tutorial is one of many sources
of information for learning about how to use SageMath. For more information see the SageMath project’s website.

This tutorial assumes that the reader has access to a running copy of SageMath. On most operating systems, installing
SageMath usually consists of downloading the proper package from the project’s main website, unwrapping it, and
executing sage from within. For more information on the process of installing sage see SageMath’s Installation Guide.

A good alternative is to run SageMath in the cloud using Cocalc. All you need to do is either sign up for a free account
or sign in through a Google/Github/Facebook/Twitter account. Once you are signed up, you can start a project using
SageMath, and also share it with other users. For more information about Cocalc and its features, visit Cocalc Tutorial.

If you opted for the physical installation and started SageMath, you should know that there are two ways to enter
commands: either from the command line or by using the web-based notebook. The notebook interface is similar in
design to the interface of Matlab, Mathematica, or Maple and is a popular choice.

Everything that follows the sage: prompt is a command that we encourage the reader to type in on their own.
For example, if we wanted to factor the integer 1438880 we would give the following example using SageMath’s
factor() command.

sage: factor(1438880)
2^5 * 5 * 17 * 23^2

The line after the sage: contains the output that the user should expect after properly entering the command.

From the command line the interaction would probably look a bit like this:

4 Chapter 1. About this tutorial
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If the user is using the notebook (most likely) the interaction will look a little like:

1.2. Getting Started 5
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For Cocalc users, it will look like:
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If you are in fact using Cocalc, you have probably already noticed the red banner that pops up at the very top of the
page that says Upgrade this project, every time you create a new project. Just ignore it. It is a bit annoying to the eye,
but will do no harm.

1.2.2 Tab Completion

Next we will discuss how to use a couple of important features of the various SageMath interfaces; tab-completion
and the built-in help system.

One of the handiest features built into SageMath is the tab completion of commands. To use tab completion, just
type in the first couple of letters of the command that you would like to use, and then press the tab-key. For instance,
suppose that you want to compute 56! but don’t remember the exact command name to do this. A good guess is that
the command will have factorial somewhere in its name. To see if that guess is correct, just type the first three letters
fac and hit the tab-key.

sage: fac[TAB]
factor factorial
sage: factor

The output tells you that only two SageMath commands begin with fac, factor() and factorial(). Note
that SageMath has already changed the command from fac to factor because this is the common root for both

1.2. Getting Started 7
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commands. Since factorial looks like the correct command, we will select this by typing the next letter, i, and hitting
the tab key again.

sage: factorial

This time no list is returned because the only command that begins with factori is factorial(). So to compute
56! you just complete the command by adding the argument (56).

sage: factorial(56)
710998587804863451854045647463724949736497978881168458687447040000000000000

Another good use of tab-completion is to discover what methods an object has. Say you have the integer 𝑎 = 56 and
were wondering what commands SageMath offers to work with integers like 56. In this case the 𝑎 is our object and
we can find all of the methods associated with integers by typing a. then hitting the tab-key.

sage: a = 56
sage: a.[TAB]
a.N a.kronecker
... A long list of Commands ...
a.divisors a.parent
a.dump a.popcount
a.dumps a.powermod
a.exact_log a.powermodm_ui
--More--

Do not be intimidated by the length of this list. SageMath is a very powerful system and it can do a lot with integers.
On the command line, the --More-- at the bottom of the screen tells you that the list of possible commands is longer
than what will fit on a single screen. To scroll through this list a page at a time, jut hit any key and SageMath will
display the next page.

On the second page you see that factor() is an option. To use this method, which factors 56 into unique prime
factors, you enter a.factor().

sage: a.factor()
2^3 * 7

Tab-completion can not only reduce the amount of typing needed, but it can be used to discover new commands in
SageMath.

1.2.3 Help using ?

Once you have identified a command that interests you, the next step is to find out exactly what this command does
and how to use it. SageMath has a built-in help system to help you achieve this very goal.

Let’s suppose that you wish to compute the lowest common multiple of two integers and are not sure which command
does this. A good place to begin the search is by typing l at the command prompt and then hitting the tab-key.

sage: l[TAB]
laguerre list_plot3d
lambda lk
laplace ll
latex ln
lattice_polytope lngamma
lazy_attribute load
lazy_import load_attach_path
lc load_session
lcalc loads

8 Chapter 1. About this tutorial
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lcm local/LIB
ldir local/bin
...
lisp_console ls
list lucas_number1
list_composition lucas_number2
list_plot lx

Once again you have quite a long list of commands from which to select. Scanning down the list, you see the lcm()
command listed which seems like what you are trying to compute. To make sure of this enter lcm?.

sage: lcm?

The output of this command is a page that explains both the use and the purpose of the command.

Base Class: <type 'function'>
String Form: <function lcm at 0x32db6e0>
Namespace: Interactive
File: /home/ayeq/sage/local/lib/python2.6/site-packages/sage/rings/arith.py
Definition: lcm(a, b=None)
Docstring:

The least common multiple of a and b, or if a is a list and b is
omitted the least common multiple of all elements of a.

Note that LCM is an alias for lcm.

INPUT:

* ``a,b`` - two elements of a ring with lcm or

* ``a`` - a list or tuple of elements of a ring with lcm

EXAMPLES:

sage: lcm(97,100)
9700
sage: LCM(97,100)

Again, there will be a whole lot of information, usually more than will fit on one screen. On the command line,
navigation is easy; the space bar will take you to the next page, and b, or the up-arrow key, will move backward in the
documentation. To exit the help system hit the q key.

When first starting out; the description, the INPUT, and the EXAMPLES sections are good sections to read. The
description gives a short summary describing what the command does, INPUT gives you information on what you
should provide as arguments to the command, and EXAMPLES gives concrete examples of the command’s usage.

The description in this case is:

The least common multiple of a and b, or if a is a list and b is
omitted the least common multiple of all elements of a.
Note that LCM is an alias for lcm.

From this description, you can be pretty sure that this is the command that you am looking for. Next examine the
INPUT:

INPUT:

* ``a,b`` - two elements of a ring with lcm or

* ``a`` - a list or tuple of elements of a ring with lcm

1.2. Getting Started 9
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Here you see that lcm can either accept two arguments, for our purposes two integers, or a list of objects. Finally by
perusing the EXAMPLES you can get a good idea on how this command is actually used in practice.

EXAMPLES:

sage: lcm(97,100)
9700
sage: LCM(97,100)
9700
sage: LCM(0,2)
0
sage: LCM(-3,-5)
15
sage: LCM([1,2,3,4,5])
60
sage: v = LCM(range(1,10000)) # *very* fast!
sage: len(str(v))
4349

Having a comprehensive help system built into SageMath is one of its best features and the sooner you get comfortable
with using it the faster you will be able to use the full power of this CAS.

1.2.4 Source Code, ??

There are probably some readers of this tutorial who like programming and would like to take a look at how a command
is built in SageMath. To do this, you simply need to type the command whose source code you are interested in, and
then press the <tab> key. For instance, going back to our factor() command

sage: factor??
Source Code (starting at line 2139):

def factor(n, proof=None, int_=False, algorithm='pari', verbose=0, **kwds):
"""comments inserted here"""

try:
m = n.factor

except AttributeError:
"""Maybe n is not a Sage element, try to convert it
e = py_scalar_to_element(n)

if e is n:
# Either n was a Sage Element without a factor() method
# or we cannot it convert it to Sage
raise TypeError("unable to factor {!r}".format(n))

n = e
m = n.factor

"""code continues"""

The output of this command is very long and will not fit in a single page or snapshot (try it yourself). However, we
reported some of the lines of the code to show you how the syntax is Pythonic. Once you run the command, you will
see a lot of comments (marked by a triple quote “”“) in the code that will navigate you on how to read it, what it does
and to interpret the Python syntax, if you are not familiar with it.

See also:

SageMath Screencasts

10 Chapter 1. About this tutorial
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1.3 Contributing to the tutorial

Additions to this tutorial are encouraged as are suggestions for additional topics for inclusion.

When this website was first developed, all of its code was available for download from the original project’s bitbucket.
However, given the increased and still growing popularity of GitHub over the past few years, we decided to transition
the whole repository there. All of its contents can be accessed from GitHub. There you will find a complete copy of
the source code for generating this website. To build the site from its source, the reader will need to install the Sphinx
Documentation, which is written in the Python Programming Language. We are excited to see any changes that you
make so please let us know of any new material that you add. We want this tutorial to be as comprehensive as possible
and any assistance toward this goal is welcomed.

The content of this tutorial is written using reStructured Text, which is processed by Sphinx to produce the HTML and
PDF output. Sphinx and reStructured Text are used throughout the official SageMath and Python documentation, so it
is useful for contributors to either of these projects.

There are four parts to the tutorial: About this tutorial has basic instructions about using and amending the tutorial, and
the others have mathematical content. SageMath as a Calculator is intended, as the title suggests, to cover straight-
forward computations, plotting graphs, and content that one might find in a high school algebra course, introductory
statistics or calculus. We intend it to be accessible to an entering college student, or to a bright high school student.

“Programming in SageMath” eases the transition to higher level mathematics by treating topics that relate to the
interface between mathematical concepts and computational issues. The first chapter covers universes and coercion
(rationals, reals, booleans etc.); variables; and basic structures like lists, sets and strings. The second chapter covers;
programming essentials like conditionals and iterative computation; file handling and data handling; etc. The third
chapter discusses mathematical software packages within SageMath. Finally, there is a brief discussion of interactive
demonstrations with the notebook.

“Mathematical Structures” is written at a more sophisticated level than the earlier material, since the intended audience
is college students taking upper division math courses. The emphasis is on learning about specific mathematical
structures that have a SageMath class associated to them. We intend each chapter to ne independent of the others.

See also:

reStructured Text Primer

1.3.1 Credits and License

The content and code for this tutorial was written by David Monarres under the supervision of Mike O’Sullivan and
was supported by a generous grant from San Diego State University’s President’s Leadership Fund. The tutorial is
licensed under the Creative Commons Attribution-ShareAlike 3.01 License. You are free to share and to remix, but
attribution should be given to the original funder and creators. You may add your name to the list of contributors
below.

Other contributors include:

• Ryan Rosenbaum.

• Matteo Polimeno.
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CHAPTER

TWO

SAGEMATH AS A CALCULATOR

This part of the tutorial examines commands that allow you to use SageMath much like a graphing calculator. The
chapter on arithmetic and functions and the chapter on solving equations and inequalities serve as a foundation for the
rest of the material. The chapters on plotting, statistics and calculus are independent of each other, although plotting
may be useful to read next since plotting graphs is so is useful in calculus and in statistics.

2.1 Arithmetic and Functions

2.1.1 Basic Arithmetic

The basic arithmetic operators are +, -, *, and / for addition, subtraction, multiplication and division, while ^ is used
for exponents.

sage: 1+1
2
sage: 103-101
2
sage: 7*9
63
sage: 7337/11
667
sage: 11/4
11/4
sage: 2^5
32

The - symbol in front of a number indicates that it is negative.

sage: -6
-6
sage: -11+9
-2

As we would expect, SageMath adheres to the standard order of operations, PEMDAS (parenthesis, exponents, multi-
plication, division, addition, subtraction).

sage: 2*4^2+1
33
sage: (2*4)^2+1
65
sage: 2*4^(2+1)
128

13
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sage: -3^2
-9
sage: (-3)^2
9

When dividing two integers, there is a subtlety: SageMath will return a either a fraction or its decimal approximation.
Unlike most graphing calculators, SageMath will attempt to be as precise as possible and will return the fraction
unless told otherwise. One way to tell SageMath that we want the decimal approximation is to include a decimal in
the expression itself.

sage: 11/4.0
2.75000000000000
sage: 11/4.
2.75000000000000
sage: 11.0/4
2.75000000000000
sage: 11/4*1.
2.75000000000000

Exercises:

1. Divide 28 by 2 raised to the 5th power as a rational number, then get its decimal approximation.

2. Compute a decimal approximation of
√
2

3. Use sage to compute (-9)^(1/2). Describe the output.

2.1.2 Integer Division and Factoring

You should be familiar with “Basic Arithmetic”

Sometimes when we divide, the division operator doesn’t give us all of the information that we want. Often we would
like to know not only what the reduced fraction is, or even its decimal approximation, but rather the unique quotient
and the remainder of the division.

To calculate the quotient we use the // operator and the % operator is used for the remainder.

sage: 14 // 4
3
sage: 14 % 4
2

If we want both the quotient and the remainder all at once, we use the divmod() command

sage: divmod(14,4)
(3, 2)

Recall that 𝑏 divides 𝑎 if 0 is the remainder when we divide the two integers. The integers in SageMath have a built-in
command ( or ‘method’ ) which allows us to check whether one integer divides another.

sage: 3.divides(15)
True
sage: 5.divides(17)
False

A related command is the divisors() method. This method returns a list of all positive divisors of the integer
specified.

14 Chapter 2. SageMath as a Calculator
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sage: 12.divisors()
[1, 2, 3, 4, 6, 12]
sage: 101.divisors()
[1,101]

When the divisors of an integer are only 1 and itself then we say that the number is prime. To check if a number is
prime in sage, we use its is_prime() method.

sage: (2^19-1).is_prime()
True
sage: 153.is_prime()
False

Notice the parentheses around 2^19 -1 in the first example. They are important to the order of operations in Sage-
Math, and if they are not included then SageMath will compute something very different than we intended. Try
evaluating 2^19-1.is_prime() and notice the result. When in doubt, the judicious use of parenthesis is encour-
aged.

We use the factor() method to compute the prime factorization of an integer.

sage: 62.factor()
2 * 31
sage: 63.factor()
3^2 * 7

If we are interested in simply knowing which prime numbers divide an integer, we may use its prime_divisors()
(or prime_factors()) method.

sage: 24.prime_divisors()
[2, 3]
sage: 63.prime_factors()
[3, 7]

Finally, we have the greatest common divisor and least common multiple of a pair of integers. A common divisor of
two integers is any integer which is a divisor of each, whereas a common multiple is a number which both integers
divide.

The greatest common divisor (gcd), not too surprisingly, is the largest of all of these common divisors. The gcd()
command is used to calculate this divisor.

sage: gcd(14,63)
7
sage: gcd(15,19)
1

Notice that if two integers share no common divisors, then their gcd will be 1.

The least common multiple is the smallest integer which both integers divide. The lcm() command is used to
calculate the least common multiple.

sage: lcm(4,5)
20
sage: lcm(14,21)
42

Exercises:

1. Find the quotient and remainder when diving 98 into 956.

2.1. Arithmetic and Functions 15
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2. Use SageMath to verify that the quotient and remainder computed above are correct.

3. Use SageMath to determine if 3 divides 234878.

4. Compute the list of divisors for each of the integers 134, 491, 422 and 1002.

5. Which of the integers above are prime?

6. Calculate gcd(𝑎, 𝑏), lcm(𝑎, 𝑏) and 𝑎 · 𝑏 for the pairs of integers (2, 5) , (4, 10) and (18, 51). How do the gcd,
lcm and the product of the numbers relate?

2.1.3 Standard Functions and Constants

SageMath includes nearly all of the standard functions that one encounters when studying Mathematics. In this section,
we shall cover some of the most commonly used functions: the maximum, minimum, floor, ceiling, trigonometric,
exponential, and logarithm functions. We will also see many of the standard mathematical constants; such as Euler’s
constant (𝑒), 𝜋, and the golden ratio (𝜑).

The max() and min() commands return the largest and smallest of a set of numbers.

sage: max(1,5,8)
8
sage: min(1/2,1/3)
1/3

We may input any number of arguments into the max and min functions.

In SageMath we use the abs() command to compute the absolute value of a real number.

sage: abs(-10)
10
sage: abs(4)
4

The floor() command rounds a number down to the nearest integer, while ceil() rounds up.

sage: floor(2.1)
2
sage: ceil(2.1)
3

We need to be very careful while using floor() and ceil().

sage: floor(1/(2.1-2))
9

This is clearly not correct: ⌊1/(2.1− 2)⌋ = ⌊1/.1⌋ = ⌊10⌋ = 10. So what happened?

sage: 1/(2.1-2)
9.99999999999999

Computers store real numbers in binary, while we are accustomed to using the decimal representation. The 2.1 in
decimal notation is quite simple and short, but when converted to binary it is 10.00011 = 10.0001100110011 . . .

Since computers cannot store an infinite number of digits, this gets rounded off somewhere, resulting in the slight error
we saw. In SageMath, however, rational numbers (fractions) are exact, so we will never see this rounding error.

sage: floor(1/(21/10-2))
10

16 Chapter 2. SageMath as a Calculator
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Due to this, it is often a good idea to use rational numbers whenever possible instead of decimals, particularly if a high
level of precision is required.

The sqrt() command calculates the square root of a real number. As we have seen earlier with fractions, if we want
a decimal approximation we can get this by giving a decimal number as the input.

sage: sqrt(3)
sqrt(3)
sage: sqrt(3.0)
1.73205080756888

To compute other roots, we use a rational exponent. SageMath can compute any rational power. If either the exponent
or the base is a decimal then the output will be a decimal.

sage: 3^(1/2)
sqrt(3)
sage: (3.0)^(1/2)
1.73205080756888
sage: 8^(1/2)
2*sqrt(2)
sage: 8^(1/3)
2

SageMath also has available all of the standard trigonometric functions: for sine and cosine we use sin() and
cos().

sage: sin(1)
sin(1)
sage: sin(1.0)
0.841470984807897
sage: cos(3/2)
cos(3/2)
sage: cos(3/2.0)
0.0707372016677029

Again we see the same behavior that we saw with sqrt(), SageMath will give us an exact answer. You might think
that since there is no way to simplify sin(1), why bother? Well, some expressions involving sine can indeed be
simplified. For example, an important identity from geometry is sin(𝜋/3) =

√
3/2. SageMath has a built-in symbolic

𝜋, and understands this identity:

sage: pi
pi
sage: sin(pi/3)
1/2*sqrt(3)

When we type pi in SageMath we are dealing exactly with 𝜋, not some numerical approximation. However, we can
call for a numerical approximation using the n() method:

sage: pi.n()
3.14159265358979
sage: sin(pi)
0
sage: sin(pi.n())
1.22464679914735e-16

We see that when using the symbolic pi, SageMath returns the exact result. However, when we use the approximation
we get an approximation back. e-16 is a shorthand for 10−16 and the number 1.22464679914735e-16 should
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be zero, but there are errors introduced by the approximation. Here are a few examples of using the symbolic, precise
𝜋 vs the numerical approximation:

sage: sin(pi/6)
1/2
sage: sin(pi.n()/6)
0.500000000000000
sage: sin(pi/4)
1/2*sqrt(2)
sage: sin(pi.n()/4)
0.707106781186547

Continuing on with the theme, there are some lesser known special angles for which the value of sine or cosine can be
cleverly simplified.

sage: sin(pi/10)
1/4*sqrt(5) - 1/4
sage: cos(pi/5)
1/4*sqrt(5) + 1/4
sage: sin(5*pi/12)
1/12*(sqrt(3) + 3)*sqrt(6)

Other trigonometric functions, the inverse trigonometric functions and hyperbolic functions are also available.

sage: arctan(1.0)
0.785398163397448
sage: sinh(9.0)
4051.54190208279

Similar to pi SageMath has a built-in symbolic constant for the number 𝑒, the base of the natural logarithm.

sage: e
e
sage: e.n()
2.71828182845905

While some might be familiar with using ln(x) for natural log and log(x) to represent logarithm base 10, in
SageMath both represent logarithm base 𝑒. We may specify a different base as a second argument to the command: to
compute log𝑏(𝑥) in SageMath we use the command log(x,b).

sage: ln(e)
1
sage: log(e)
1
sage: log(e^2)
2
sage: log(10)
log(10)
sage: log(10.0)
2.30258509299405
sage: log(100,10)
2

Exponentiation base 𝑒 can done using both the exp() function and by raising the symbolic constant e to a specified
power.

sage: exp(2)
e^2
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sage: exp(2.0)
7.38905609893065
sage: exp(log(pi))
pi
sage: e^(log(2))
2

Exercises:

1. Compute the floor and ceiling of 2.75.

2. Compute the logarithm base 𝑒 of 1/1000000, compute the logarithm base 10 of 1/1000000, then compute the
ratio. What should the answer be?

3. Compute the logarithm base 2 of 64.

4. Compare 𝑒𝑖𝜋 with a numerical approximation of it using pi.n().

5. Compute sin(𝜋/2), cot(0) and csc(𝜋/16).

2.2 Solving Equations and Inequalities

2.2.1 Solving for x

You should be familiar with “Basic Arithmetic” and “Standard Functions and Constants”

In SageMath, equations and inequalities are defined using the operators ==, <=, and >= and will return either True,
False, or, if there is a variable, just the equation/inequality.

sage: 9 == 9
True
sage: 9 <= 10
True
sage: 3*x - 10 == 5
3*x - 10 == 5

To solve an equation or an inequality we use using the, aptly-named, solve() command. For the moment, we will
only solve for 𝑥. The section on variables below explains how to use other variables.

sage: solve(3*x - 2 == 5,x)
[x == (7/3)]
sage: solve( 2*x -5 == 1, x)
[x == 3]
sage: solve( 2*x - 5 >= 17,x)
[[x >= 11]]
sage: solve( 3*x -2 > 5, x)
[[x > (7/3)]]

Equations can have multiple solutions. SageMath returns all solutions found as a list.

sage: solve( x^2 + x == 6, x)
[x == -3, x == 2]
sage: solve(2*x^2 - x + 1 == 0, x)
[x == -1/4*I*sqrt(7) + 1/4, x == 1/4*I*sqrt(7) + 1/4]
sage: solve( exp(x) == -1, x)
[x == I*pi]
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The solution set of certain inequalities consists of the union and intersection of open intervals.

sage: solve( x^2 - 6 >= 3, x )
[[x <= -3], [x >= 3]]
sage: solve( x^2 - 6 <= 3, x )
[[x >= -3, x <= 3]]

The solve() command will attempt to express the solution of an equation without the use of floating point numbers.
If this cannot be done, it will return the solution in a symbolic form.

sage: solve( sin(x) == x, x)
[x == sin(x)]
sage: solve( exp(x) - x == 0 , x)
[x == e^x]
sage: solve( cos(x) - sin(x) == 0 , x)
[sin(x) == cos(x)]
sage: solve( cos(x) - exp(x) == 0 , x)
[cos(x) == e^x]

To find a numeric approximation of the solution we can use the find_root() command. Which requires both the
expression and a closed interval on which to search for a solution.

sage: find_root(sin(x) == x, -pi/2 , pi/2)
0.0
sage: find_root(sin(x) == cos(x), pi, 3*pi/2)
3.9269908169872414

This command will only return one solution on the specified interval, if one exists. It will not find the complete solution
set over the entire real numbers. To find a complete set of solutions, the reader must use find_root() repeatedly
over cleverly selected intervals. Sadly, at this point, SageMath cannot do all of the thinking for us. This feature is not
planned until SageMath 10.

2.2.2 Declaring Variables

In the previous section we only solved equations in one variable, and we always used 𝑥. When a session is started,
SageMath creates one symbolic variable, 𝑥, and it can be used to solve equations. If you want to use an additional
symbolic variable, you have to declare it using the var() command. The name of a symbolic variable can be a letter,
or a combination of letters and numbers:

sage: y,z,t = var("y z t")
sage: phi, theta, rho = var("phi theta rho")
sage: x1, x2 = var("x1 x2")

Note: Variable names cannot contain spaces, for example “square root” is not a valid variable name, whereas
“square_root” is.

Attempting to use a symbolic variable before it has been declared will result in a NameError.

sage: u
...
NameError: name 'u' is not defined
sage: solve (u^2-1,u)
NameError Traceback (most recent call last)
NameError: name 'u' is not defined

We can un-declare a symbolic variable, like the variable phi defined above, by using the restore() command.
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sage: restore('phi')
sage: phi
...
NameError: name 'phi' is not defined

2.2.3 Solving Equations with Several Variables

Small systems of linear equations can be also solved using solve(), provided that all the symbolic variables have
been declared. The equations must be input as a list, followed by the symbolic variables. The result may be either a
unique solution, infinitely many solutions, or no solutions at all.

sage: solve( [3*x - y == 2, -2*x -y == 1 ], x,y)
[[x == (1/5), y == (-7/5)]]
sage: solve( [ 2*x + y == -1 , -4*x - 2*y == 2],x,y)
[[x == -1/2*r1 - 1/2, y == r1]]
sage: solve( [ 2*x - y == -1 , 2*x - y == 2],x,y)
[]

In the second equation above, r1 signifies that there is a free variable which parametrizes the solution set. When there
is more than one free variable, SageMath enumerates them r1,r2,..., rk.

sage: solve([ 2*x + 3*y + 5*z == 1, 4*x + 6*y + 10*z == 2, 6*x + 9*y + 15*z == 3], x,
→˓y,z)
[[x == -5/2*r1 - 3/2*r2 + 1/2, y == r2, z == r1]]

solve() can be very slow for large systems of equations. For these systems, it is best to use the linear algebra
functions as they are quite efficient.

Solving inequalities in several variables can lead to complicated expressions, since the regions they define are compli-
cated. In the example below, SageMath’s solution is a list containing the point of interesection of the lines, then two
rays, then the region between the two rays.

sage: solve([ x-y >=2, x+y <=3], x,y)
[[x == (5/2), y == (1/2)], [x == -y + 3, y < (1/2)], [x == y + 2, y < (1/2)], [y + 2
→˓< x, x < -y + 3, y < (1/2)]]
sage: solve([ 2*x-y< 4, x+y>5, x-y<6], x,y)
[[-y + 5 < x, x < 1/2*y + 2, 2 < y]]

Exercises:

1. Find all of the solutions to the equation 𝑥3 − 𝑥 = 7𝑥2 − 7.

2. Find the complete solution set for the inequality |𝑡− 7| ≥ 3.

3. Find all 𝑥 and 𝑦 that satisfy both 2𝑥+ 𝑦 = 17 and 𝑥− 3𝑦 = −16.

4. Use find_root() to find a solution of the equation 𝑒𝑥 = cos(𝑥) on the interval [−𝜋/2, 0].

5. Change the command above so that find_root() finds the other solution in the same interval.

2.3 Calculus

You should be familiar with Basic Arithmetic, Standard Functions and Constants, and Declaring Vari-
ables
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SageMath has many commands that are useful for the study of differential and integral calculus. We will begin our
investigation of these command by defining a few functions that we will use throughout the chapter.

sage: f(x) = x*exp(x)
sage: f
x |--> x*e^x
sage: g(x) = (x^2)*cos(2*x)
sage: g
x |--> x^2*cos(2*x)
sage: h(x) = (x^2 + x - 2)/(x-4)
sage: h
x |--> (x^2 + x - 2)/(x-4)

SageMath uses x |--> to tell you that the expression returned is actually a function and not just a number or string.
This means that we can evaluate these expressions just like you would expect of any function.

sage: f(1)
e
sage: g(2*pi)
4*pi^2
sage: h(-1)
2/5

With these functions defined, we will look at how we can use SageMath to compute the limit of these functions.

2.3.1 Limits

The limit of 𝑓(𝑥) = 𝑥𝑒𝑥 as 𝑥 → 1 is computed in SageMath by entering the following command into SageMath:

sage: limit(f, x=1)
e

We can do the same with 𝑔(𝑥). To evaluate the limit of 𝑔(𝑥) = 𝑥2 cos(2𝑥) as 𝑥 → 2 we enter:

sage: limit(g, x=2)
4*cos(4)

The functions 𝑓(𝑥) and 𝑔(𝑥) aren’t all that exciting as far as limits are concerned since they are both continuous for
all real numbers. But ℎ(𝑥) has a discontinuity at 𝑥 = 4, so to investigate what is happening near this discontinuity we
will look at the limit of ℎ(𝑥) as 𝑥 → 4:

sage: limit(h, x = 4)
Infinity

Now this is an example of why we have to be a little careful when using computer algebra systems. The limit above is
not exactly correct. See the graph of ℎ(𝑥) near this discontinuity below.
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What we have when 𝑥 = 4 is a vertical asymptote with the function tending toward positive infinity if 𝑥 is larger than
4 and negative infinity from when 𝑥 less than 4. We can takes these directional limits using SageMath to confirm this
by supplying the extra dir argument.

sage: limit(h, x=4, dir="right")
+Infinity
sage: limit(h, x=4, dir="left")
-Infinity

2.3.2 Derivatives

The next thing we are going to do is use SageMath to compute the derivatives of the functions that we defined earlier.
For example, to compute 𝑓 ′(𝑥), 𝑔′(𝑥), and ℎ′(𝑥) we will use the derivative() command.

sage: fp = derivative(f,x)
sage: fp
x |--> x*e^x + e^x
sage: gp = derivative(g, x)
sage: gp
x |--> -2*x^2*sin(2*x) + 2*x*cos(2*x)
sage: hp = derivative(h,x)
sage: hp
x |--> (2*x + 1)/(x - 4) - (x^2 + x - 2)/(x - 4)^2

The first argument is the function which you would like to differentiate and the second argument is the variable with
which you would like to differentiate with respect to. For example, if I were to supply a different variable, SageMath
will hold 𝑥 constant and take the derivative with respect to that variable.

sage: y = var('y')
sage: derivative(f,y)
x |--> 0
sage: derivative(g,y)
x |--> 0
sage: derivative(h,y)
x |--> 0
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The derivative() command returns another function that can be evaluated like any other function.

sage: fp(10)
11*e^10
sage: gp(pi/2)
-pi
sage:
sage: hp(10)
1/2

With the derivative function computed, we can then find the critical points using the solve() command.

sage: solve( fp(x) == 0, x)
[x == -1, e^x == 0]
sage: solve( hp(x) == 0, x)
[x == -3*sqrt(2) + 4, x == 3*sqrt(2) + 4]
sage: solve( gp(x) == 0, x)
[x == 0, x == cos(2*x)/sin(2*x)]

Constructing the line tangent to our functions at the point (𝑥, 𝑓 (𝑥)) is an important computation which is easily done
in SageMath. For example, the following command will compute the line tangent to 𝑓(𝑥) at the point (0, 𝑓(0)).

sage: T_f = fp(0)*( x - 0 ) + f(0)
sage: T_f
x

The same can be done for 𝑔(𝑥) and ℎ(𝑥).

sage: T_g = gp(0)*( x - 0 ) + g(0)
sage: T_g
0
sage: T_h = hp(0)*( x - 0 ) + h(0)
sage: T_h
-1/8*x + 1/2

2.3.3 Integrals

SageMath has the facility to compute both definite and indefinite integral for many common functions. We will
begin by computing the indefinite integral, otherwise known as the anti-derivative, for each of the functions that we
defined earlier. This will be done by using the integral() command which has arguments that are similar to
derivative().

sage: integral(f,x)
x |--> (x - 1)*e^x
sage: integral(g, x)
x |--> 1/4*(2*x^2 - 1)*sin(2*x) + 1/2*x*cos(2*x)
sage: integral(h, x)
x |--> 1/2*x^2 + 5*x + 18*log(x - 4)

The function that is returned is only one of the many anti-derivatives that exist for each of these functions. The others
differ by a constant. We can verify that we have indeed computed the anti-derivative by taking the derivative of our
indefinite integrals.

sage: derivative(integral(f,x), x )
x |--> (x - 1)*e^x + e^x
sage: f
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x |--> x*e^x
sage: derivative(integral(g,x), x )
x |--> 1/2*(2*x^2 - 1)*cos(2*x) + 1/2*cos(2*x)
sage: derivative(integral(h,x), x )
x |--> x + 18/(x - 4) + 5

Wait, none of these look right. But a little algebra, and the use of a trig-identity or two in the case of 1/2*(2*x^2
- 1)*cos(2*x) + 1/2*cos(2*x), you will see that they are indeed the same.

It should also be noted that there are some functions which are continuous and yet there doesn’t exist a closed form
integral. A common example is 𝑒−𝑥2

which forms the basis for the normal distribution which is ubiquitous throughout
statistics. The antiderivative for 𝑒𝑟−𝑥2

is commonly called erf , otherwise known as the error function.

sage: y(x) = exp(-x^2)
sage: integral(y,x)
x |--> 1/2*sqrt(pi)*erf(x)

We can also compute the definite integral for the functions that we defined earlier. This is done by specifying the limits
of integration as addition arguments.

sage: integral(f, x,0,1)
x |--> 1
sage: integral(g,x,0,1)
x |--> 1/4*sin(2) + 1/2*cos(2)
sage: integral(h, x,0,1)
x |--> 18*log(3) - 18*log(4) + 11/2

In each case above, SageMath returns a function as its result. Each of these functions is a constant function, which
is what we would expect. As it was pointed out earlier, SageMath will return the expression that retains the most
precision and will not use decimals unless told to. A quick way to tell SageMath that an approximation is desired is
wrap the integrate() command with n(), the numerical approximation command.

sage: n(integral(f, x,0,1))
1.00000000000000
sage: n(integral(g, x,0,1))
0.0192509384328492
sage: n(integral(h, x,0,1))
0.321722695867944

2.3.4 Taylor Series Expansion

Another interesting feature of SageMath is the possibility of computing Taylor Series expansions around a point.
At first we show how to expand around 0, also called Mclaurin series. Let us give an example with the function
𝑔(𝑥) = cos(𝑥).

sage: g = cos(x); g
cos(x)
sage: g_taylor = g.taylor(x,0,3)
-1/2*x^2 + 1

The first argument in g.taylor() is the independent variable of our function, the second argument is the point around
which we are expanding, and the third argument is the order of accuracy of the expansion, i.e. where we truncate it.
The above case was a pretty simple one, but sometimes you might have to compute a much harder Taylor expansion.
For instance, let us try to expand the function 𝑓(𝑥) = exp(𝑥2) sin(𝑥− 5) around the point 𝑥 = 2 up to order 3.
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sage: f = exp(^x^3)*sin(x-5); f
e^(x^3)*sin(x - 5)
sage: f_taylor = f.taylor(x,2,3); f_taylor
1/6*(x - 2)^3*(467*cos(3) - 2130*sin(3))*e^8 + 1/2*(x - 2)^2*(24*cos(3) -
→˓155*sin(3))*e^8 + (x - 2)*(cos(3) - 12*sin(3))*e^8 - e^8*sin(3)

Now the outcome of this computation might be a bit convoluted to visualize, therefore, another interesting feature of
SageMath is the possibility of printing the outcome in Latex format, which is much nicer to the eye.

sage: print; show(f_taylor)

Exercises:

1. Use SageMath to compute the following limits:

(a) lim𝑥→2
𝑥2+2 𝑥−8

𝑥−2

(b) lim𝑥→(𝜋/2)+ sec(𝑥)

(c) lim𝑥→(𝜋/2)− sec(𝑥)

2. Use SageMath to compute the following derivatives with respect to the specified variables:

(a) 𝑑
𝑑𝑥

[︀
𝑥2𝑒3𝑥 cos(2𝑥)

]︀
(b) 𝑑

𝑑𝑡

[︁
𝑡2+1
𝑡−2

]︁
(remember to define ‘‘t‘‘)

(c) 𝑑
𝑑𝑦 [𝑥 cos(𝑥)]

3. Use SageMath to compute the following integrals:

(a)
∫︀

𝑥+1
𝑥2+2𝑥+1𝑑𝑥

(b)
∫︀ 𝜋/4

−𝜋/4
sec(𝑥)𝑑𝑥

(c)
∫︀
𝑥𝑒−𝑥2

𝑑𝑥

4. Use SageMath to compute the Taylor series expansion of the following functions:

(a) sin(𝑥) * cos(𝑥) around 𝑥 = 0, order 3

(b) (𝑥− 2) * ln(𝑥/2) around 𝑥 = 1, order 4

(c) tan(𝑥+ 5)− exp(𝑥2), around 𝑥 = 𝜋, order 5

2.4 Statistics

You should be familiar with Basic Arithmetic

In this section we will discuss the use of some of the basic descriptive statistic functions availble for use in SageMath.

To demonstrate their usage we will first generate a pseudo-random list of integers from 0 to 100 to describe. The
random() function generates a random number from [0, 1), so we will use a trick to generate integers in this specific
range. Note, by the nature of random number generation your list of numbers will be different.
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sage: data = [ int(random()*(100-0) + 0) for i in [ 1 .. 20 ] ]
sage: data
[78, 43, 6, 50, 47, 94, 37, 70, 66, 32, 1, 34, 93,
30, 99, 82, 22, 74, 18, 40]

We can compute the mean, median, mode, variance, and standard deviation of this data.

sage: mean(data)
254/5
sage: median(data)
45
sage: mode(data)
[32, 1, 66, 99, 82, 37, 6, 40, 74, 43,
34, 78, 47, 50, 30, 22, 18, 70, 93, 94]
sage: variance(data)
83326/95
sage: std(data)
sqrt(83326/95)

Note that both the standard deviation and variance are computed in their unbiased forms. It we want to bias these
measures then you can use the bias=True option.

We can also compute a rolling, or moving, average of the data with the moving_average().

sage: moving_average(data,4)
[177/4,73/2,197/4,57,62,267/4,205/4,169/4,
133/4,40,79/2,64,76,233/4,277/4,49,77/2]
sage: moving_average(data,10)
[523/10, 223/5,437/10,262/5,252/5, 278/5,
272/5,529/10,533/10,97/2,493/10]
sage: moving_average(data,20)
[254/5]

Exercises:

1. Use SageMath to generate a list of 20 random integers.

2. The heights of eight students, measured in inches, are 71, 73, 59, 62, 65, 61, 73, 61. Find the average, median
and mode of the heights of these students.

3. Using the same data, compute the standard deviation and variance of the sampled heights.

4. Find the range of the heights. (Hint: use the max() and min() commands)

2.5 Plotting

2.5.1 2D Graphics

You should be familiar with Standard Functions and Constants and Solving Equations and Inequalities

SageMath has many ways for us to visualize the mathematics that we are working with. In this section we will quickly
get you up to speed with some of the basic commands used when plotting functions and working with graphics.

To produce a basic plot of sin(𝑥) from 𝑥 = −𝜋
2 to 𝑥 = 𝜋

2 we will use the plot() command.

sage: f(x) = sin(x)
sage: p = plot(f(x), (x, -pi/2, pi/2))
sage: p.show()
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By default, the plot created will be quite plain. To add axis labels and make our plotted line purple, we can alter the
plot attribute by adding the axes_labels and color options.

sage: p = plot(f(x), (x,-pi/2, pi/2), axes_labels=['x','sin(x)'], color='purple')
sage: p.show()

The color option accepts string color designations ( ‘purple’, ‘green’, ‘red’, ‘black’, etc. . . ), an RGB triple such as
(.25,.10,1), or an HTML-style hex triple such as #ff00aa.

We can change the style of line, whether it is solid, dashed, and its thickness by using the linestyle and the
thickness options.

sage: p = plot(f(x), (x,-pi/2, pi/2), linestyle='--', thickness=3)
sage: p.show()
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We can display the graphs of two functions on the same axes by adding the plots together.

sage: f(x) = sin(x)
sage: g(x) = cos(x)
sage: p = plot(f(x),(x,-pi/2,pi/2), color='black')
sage: q = plot(g(x), (x,-pi/2, pi/2), color='red')
sage: r = p + q
sage: r.show()

To tie together our plotting commands with some material we have learned earlier, let’s use the find_root()
command to find the point where sin(𝑥) and cos(𝑥) intersect. We will then add this point to the graph and label it.

sage: find_root( sin(x) == cos(x),-pi/2, pi/2 )
0.78539816339744839
sage: P = point( [(0.78539816339744839, sin(0.78539816339744839))] )
sage: T = text("(0.79,0.71)", (0.78539816339744839, sin(0.78539816339744839) + .10))
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sage: s = P + r + T
sage: s.show()

SageMath handles many of the details of producing “nice” looking plots in a way that is transparent to the user.
However there are times in which SageMath will produce a plot which isn’t quite what we were expecting.

sage: f(x) = (x^3 + x^2 + x)/(x^2 - x -2 )
sage: p = plot(f(x), (x, -5,5))
sage: p.show()

The vertical asymptotes of this rational function cause SageMath to adjust the aspect ratio of the plot to display the
rather large 𝑦 values near 𝑥 = −1 and 𝑥 = 2. This obfuscates most of the features of this function in a way that we
may have not intended. To remedy this we can explicitly adjust the vertical and horizontal limits of our plot
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sage: p.show(xmin=-2, xmax=4, ymin=-20, ymax=20)

This, in the author’s opinion, displays the features of this particular function in a much more pleasing fashion.

SageMath can handle parametric plots with the parametric_plot() command. The following is a simple circle
of radius 3.

sage: t = var('t')
sage: p = parametric_plot( [3*cos(t), 3*sin(t)], (t, 0, 2*pi) )
sage: p.show()

The default choice of aspect ratio makes the plot above decidedly “un-circle like”. We can adjust this by using the
aspect_ratio option.

sage: p.show(aspect_ratio=1)
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The different plotting commands accept many of the same options as plot. The following generates the Lissajous
Curve 𝐿(3, 2) with a thick red dashed line.

sage: p = parametric_plot( [sin(3*t), sin(2*t)], (t, 0, 3*pi), thickness=2, color='red
→˓', linestyle="--")
sage: p.show()

Polar plots can be done using the polar_plot() command.

sage: theta = var("theta")
sage: r(theta) = sin(4*theta)
sage: p = polar_plot((r(theta)), (theta, 0, 2*pi) )
sage: p.show()
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And finally, SageMath can do the plots for functions that are implicitly defined. For example, to display all points
(𝑥, 𝑦) that satisfy the equation 4𝑥2𝑦 − 3𝑦 = 𝑥3 − 1, we enter the following:

sage: implicit_plot(4*x^2*y - 3*y == x^3 - 1, (x,-10,10),(y,-10,10))

As we transition from 2D-plotting to 3D-plotting, it is worthwhile to briefly mention countour lines. If you are familiar
with some basic notions of Multivariable Calculus, you know that a contour line is a curve where a function of two
variables holds constant value. Their plots are often useful to gather information about the function itself. Contour
lines find use in a variety of fields, from cartography to meteorology. Here we pick a trivial example for pedagogical
purposes: an hyperbola.

sage: x,y = var("x,y")
sage: f(x,y) = x^2-y^2
sage: contour = contour_plot(f, (x, -10,10), (y,-10,10))
sage: contour.show()

2.5. Plotting 33

https://en.wikipedia.org/wiki/Contour_line
https://gisgeography.com/contour-lines-topographic-map/
https://en.wikipedia.org/wiki/Contour_line#Meteorology


SDSU Sage Tutorial Documentation, Release 1.2

Now, the above picture is not really pleasant to the eye and not very informative either. Thankfully we can customize
our contour plot to make it look nicer and clearer.

sage: x,y = var("x,y")
sage: f(x,y) = x^2-y^2
sage: contour = contour_plot(f, (x, -10,10), (y,-10,10), cmap='cool', labels=True,
→˓fill=False)
sage: contour.show()

Now, we have printed the values of the function at each contour line and the plot is much clearer. You are free to check
for other custom colors here.

**Exercises:**

1. Plot the graph of 𝑦 = sin (𝜋𝑥− 𝜋) for −1 ≤ 𝑥 ≤ 1 using a thick red line.

2. Plot the graph of cos (𝜋𝑥− 𝜋) on the same interval using a thick blue line.
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3. Plot the two graphs above on the same set of axes.

4. Plot the graph of 𝑦 = 1/𝑥 for −1 ≤ 𝑥 ≤ 1 adjusting the range so that only −10 ≤ 𝑦 ≤ 10.

5. Use the commands in this section to produce the following image:

2.5.2 3D Graphics

Producing 3D plots can be done using the plot3d() command

sage: x,y = var("x y")
sage: f(x,y) = x^2 - y^2
sage: p = plot3d(f(x,y), (x,-10,10), (y,-10,10))
sage: p.show()
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SageMath handles 3d plotting a bit differently than what we have seen thus far. It uses a program named jmol to
generate interactive plots. So instead of just a static picture we will see either a window like pictured above or, if you
are using SageMath’s notebook interface, a java applet in your browser’s window.

One nice thing about the way that SageMath does this is that you can rotate your plot by just clicking on the surface
and dragging it in the direction in which you would like for it to rotate. Zooming in/out can also be done by using your
mouse’s wheel button (or two-finger vertical swipe on a mac). Once you have rotated and zoomed the plot to your
liking, you can save the plot as a file. Do this by right-clicking anywhere in the window/applet and selecting save, then
png-image as pictured below
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Note: If you are running SageMath on windows or on sagenb.org that your file will be saved either in your VMware
virtual machine or on sagenb.org.
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CHAPTER

THREE

PROGRAMMING IN SAGEMATH

This part of the tutorial covers the essential programming tools that you need to use in order to do more advanced
mathematics. The first chapter, on SageMath objects, is essential before moving on to study mathematical structures.
The second chapter is more specifically about programming: conditionals and iterative loops, creating your own
commands and saving your work. It is not necessary for basic computations with mathematical structures, but becomes
invaluable for doing in-depth work. The third chapter explains how to interact with some of the main mathematical
software packages included in SageMath. Finally there is a brief chapter on interactive use of SageMath.

3.1 SageMath Objects

3.1.1 Universes and Coercion

A key concept in SageMath is the universe of an object. The most effective way to gain a familiarity with universes
and the related concept, coercion, is to see a few examples. We begin with the most common universes: the integers,
and the rational, real and complex numbers.

In SageMath, ZZ indicates the universe where the Integers live, while QQ , RR and CC indicate the universes of the
Rationals, Real and Complex numbers, respectively.

sage: ZZ
Integer Ring
sage: QQ
Rational Field
sage: RR
Real Field with 53 bits of precision
sage: CC
Complex Field with 53 bits of precision

We can check if a given objects live in a universe using the in operator.

sage: 1 in ZZ
True
sage: 1/2 in ZZ
False
sage: 1/2 in QQ
True
sage: sqrt(2) in QQ
False
sage: sqrt(2) in RR
True

The letter I in SageMath is the square root of -1 (i also works).
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sage: i^2
-1
sage: i^3
-I
sage: I in RR
False
sage: I in CC
True

To directly check which universe a number is in, we use the parent() function. SageMath will choose the simplest
universe for each number.

sage: parent(1)
Integer Ring
sage: parent(1/2)
Rational Field
sage: parent(5.7)
Real Field with 53 bits of precision
sage: parent(pi.n())
Real Field with 53 bits of precision

Another important universe is the Symbolic Ring. You might think that
√
2 or 𝜋 would have parent RR, the real

numbers, while 𝐼 would be in CC. But RR and CC have finite precision, and these numbers satisfy formulas that make
them special, for example

√
2
2
= 2 and sin(𝜋) = 0. SageMath stores these numbers with special properties in the

so-called Symbolic Ring, whose variables are aptly-named symbolic variables, see “Variables”.

sage: parent(sqrt(2))
Symbolic Ring
sage: parent(I)
Symbolic Ring
sage: parent(pi)
Symbolic Ring

We often perform operations with elements from different universes as long as there is some sort of natural conversion
that can be done to both elements so that they live in the same universe. For instance, when we compute 1+1/2 = 3/2,
we implicitly convert 1 from the Integer universe to the universe of rational numbers, before performing the operation.
This conversion is often so natural that we don’t even think about it and, luckily for you, SageMath does many of these
conversions without you having to worry about them either.

sage: parent(1 + 2)
Integer Ring
sage: parent(1/2 + 2)
Rational Field
sage: parent(1/2 + 2.0)
Real Field with 53 bits of precision

SageMath’s treatment of symbolic constants like pi is worth-mentioning in its own right. For example, here’s what
happens when we mix pi with a decimal.

sage: exp(1.)*pi
2.71828182845905*pi
sage: parent(exp(1.)*pi)
Symbolic Ring

SageMath will always choose the universe which offers the most precision, and the same will be true for other symbolic
constants like e and i, as well for the polynomial indeterminate x.
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sage: parent(2 + i)
Symbolic Ring
sage: parent(2 + x)
Symbolic Ring
sage: parent(2 + 2.0*x)
Symbolic Ring
sage: parent(2*pi + 2.0*e)
Symbolic Ring

What if we want to convert a number from a universe to another? Luckily, we can easily accomplish that through a
process called coercion. We coerce a number into another universe, if it makes sense, by applying the parent structure
to the object like it was a function. For example:

sage: QQ(.5)
1/2
sage: parent(QQ(.5))
Rational Field
sage: RR(sqrt(2))
1.41421356237310
sage: parent(RR(sqrt(2)))
Real Field with 53 bits of precision

And in case we try to make some nonsensical conversions, SageMath will raise a TypeError.

sage: QQ(i)
ERROR: An unexpected error occurred while tokenizing input
The following traceback may be corrupted or invalid
The error message is: ('EOF in multi-line statement', (1170, 0))
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
... * a lot of noise *
TypeError: Unable to coerce I to a rational

Exercises:

1. What universe does x live in by default? When you declare a new variable y where does it live?

2. Find the universe of the following expressions:

(a) 1 + 1/2

(b) 1 + 1/2.0

(c) 1/2 + i

(d) e + pi

(e) e.n() + pi

(f) e.n() + pi.()

3. For which of the following does the coercion make sense?

(a) RR(1/2)

(b) QQ(1)

(c) ZZ(1/2)

(d) SR(1/2) (SR is the Symbolic Ring)

(e) CC(x)
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4. If I enter x=1/2 into SageMath, what universe does x live in?

3.1.2 Booleans

Another important universe is the Booleans. The Boolean universe is just known as bool in SageMath, and it contains
just two elements True and False.

sage: parent(True)
<type 'bool'>

There are several logical operations on Booleans (i.e. operations lke and, or on True and False, instead of the
operations like +, * on numbers). We negate a Boolean by using the not operator.

sage: not True
False
sage: not False
True

Suppose we want to combine two Booleans X and Y. To accomplish that, we will use and/or.

• (X and Y) is True if both X and Y are True. If either X or Y is False, then (X and Y) is False.

• (X or Y) is True if either X or Y is True.

The following example will show exactly that.

sage: True and False
False
sage: True and True
True
sage: True or False
True
sage: False or False
False

Above we have a list of truth statements. To control their order of evaluation, we can use parentheses.

sage: (True or False) and False
False
sage: True or (False and False)
True

In the first example (True or False) is evaluated to be True first, then True and False evaluates to be False. In the
second example, (False and False) evaluates to be False, but True or False is True.

Another important operator on Booleans is the exclusive or operator, represented by ^^ in SageMath. (X ^^ Y) is
True if exactly one between X and Y is True, and the other is False; otherwise it is False.

sage: True ^^ True # xor (exclusive or) operator
False
sage: True ^^ False
True
sage: False ^^ False
False

To check if two objects are equal we use the == operator. The result is a Boolean:
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sage: 1 == 1
True
sage: 1 == 0
False
sage: not(True or False) == True and False
True

Please notice that we used two equal signs, not one! To check if two things are not equal, we have two options: The
!= operator and the <> operator.

sage: 1 != 1
False
sage: 1 != 0
True
sage: 1 <> 0
True

If two objects belong to a universe that has an ordering, then we may compare two elements of the universe using <
and > and get a Boolean output. Additionally, we use >= for greater-than-or-equal-to and <= for less-than-or-equal-to.

sage: 1 > 2
False
sage: 2 > 1
True
sage: 4.1 < 5.7
True
sage: 6 < 5
False
sage: 1 >= .99999
True
sage: 1 <= 35
True

Exercises:

1. Test to see if the following expressions are True, False, or not defined:

(a) not (True or False) == (False and True)

(b) 1 >= 1

(c) 1 + i >= 2 - i

(d) ((3/2) > 1) or (2/3 < 1)

(e) ((3/2) > 1) ^^ (2/3 < 1)

(f) x > 1/2

2. What is the parent of x > 1/2? Why do you think that SageMath treats this expression differently from the
rest?

3. Use SageMath to find out if 𝑒 is greater than 𝜋? (Hint: Remember that both ‘‘e‘‘ and ‘‘pi‘‘ are symbolic
variables by default.)

3.1.3 Variables

You should be familiar with “Declaring Variables”
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The term ‘variable’, can hold different meanings. For instance, in computer programming, a ‘variable’ is a space in
memory used to store and retrieve a certain piece of information. In mathematics, a variable such as 𝑥 is a quantity with
indeterminate value: a symbol that we can manipulate with the same rules of arithmetic that are applied to numbers.

In SageMath, both usages are present. We will use the term variable for the computer programming variable and
symbolic variable for the mathematical variable.

SageMath initializes the Symbolic Ring to have one symbolic variable, x. It obeys the arithmetical rules that we
expect.

sage: 3*x - x
2*x
sage: e*e^x
e^(x + 1)

If we need another symbolic variable, we have to declare it, using the var() command.

sage: e^x*e^y
---------------------------------------------------------------------------
NameError Traceback (most recent call last)

/Users/mosullivan/<ipython console> in <module>()

NameError: name 'y' is not defined
sage: var("y")
y
sage: e^x*e^y
e^(x + y)
sage:

Now, let’s look at variables, which are used to store a particular number.

sage: m=2^19-1
sage: m
524287
sage: (m+1).factor()
2^19

We use an = to assign the value on the right to the variable on the left. Having declared a variable, we can reference it
by using its name, as seen above.

SageMath allows us to re-assign a different value to a variable.

sage: s=12
sage: s
12
sage: s=34
sage: s
34

The order of operations in SageMath allows us to reference a variable while assigning it a new value. For instance, we
can increment the variable t by doing the following:

sage: t=7
sage: t=t+1
sage: t
8

SageMath also offers us a convenient way to assign values to multiple variables at once.
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sage: a,b=1,2
sage: a
1
sage: b
2

Additionally, we can display a sequence of variables using commas.

sage: c,d,e=2,3,5
sage: c,d,e
(2, 3, 5)

If we are assigning several variables at a time, and for some reason we wish to skip a value on the right-hand side, we
may use an underscore on the left hand side. For example,

sage: a,_,c=1,2,3
sage: a
1
sage: c
3
sage: _,r = divmod(19,5)
sage: r
4

There is also a quick way to initialize two variables with the same value. We do this by just chaining together the
assignment.

sage: a = b = 1
sage: a
1
sage: b
1

When you define either a variable or a symbolic variable, it will stay in memory until you quit your session. Sometimes
we would like to restore a variable back to its default value. We do this with the restore() command.

sage: x = 1
sage: a = 2
sage: restore('x')
sage: restore('a')
sage: x
x
sage: a
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
/home/ayeq/sage/local/lib/python2.6/site-packages/sage/all_cmdline.pyc in <module>()
NameError: name 'a' is not defined

You can reset the entire environment to its defaults by running the reset() command.

sage: a = 1
sage: b = 2
sage: c = 5
sage: x = 56
sage: reset()
sage: a
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
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/home/ayeq/sage/local/lib/python2.6/site-packages/sage/all_cmdline.pyc in <module>()

NameError: name 'a' is not defined
sage: x
x

And finally if you really want the variable obliterated, you can use the sledgehammer of memory management, the
del() command.

sage: a = [2, 3,4 ,5 ]
sage: del a
sage: a
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
/home/ayeq/sage/local/lib/python2.6/site-packages/sage/all_cmdline.pyc in <module>()

NameError: name 'a' is not defined

Exercises:

1. If you enter the following into SageMath:

sage: a = 1
sage: b = a
sage: b = 2

What do you expect the value of a to be?

2. If you enter the following into SageMath:

sage: f = x^2 + x + 1
sage: f
x^2 + x + 1
sage: x = 3

What do you expect the value of f to be?

3.1.4 Lists

A list is an ordered collection of objects. The elements of a list are indexed by the integers, starting with 0. Here is a
quick example of how to construct a list and access its elements.

sage: [6,28,496,8128]
[6, 28, 496, 8128]
sage: L = [2,3,5,7,11,13,17,2]
sage: L[0]
2
sage: L[1]
3
sage: L[5]
13
sage: L[6]
17

Notice how we access the elements: though 2 is the first element of the list L, it is accessed by the index 0.

The len() command returns the length of a list.
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sage: len(L)
8
sage: len([2,3,5,7,11])
5

Note that a list of length 5 is indexed from 0 to 4.

Lists can contain numbers from any universe, or even “Strings”.

sage: M = [ 'apple', 'pear']
sage: len(M)
2
parent(M[1])
<type 'str'>

We can even have lists of lists!

sage: M = [[1,2],[1,3],[1,4]]
sage: M[2]
[1, 4]
sage: len(M)
3

To access a particular element within our list of lists we chain their indices. For example, to access the 4 within that
list we issue the following command:

sage: M[2][1]
4

Where we read M[2][1] as “Access the element at index 1 within the list with index 2” in M. Note that M[2,1]
does not work (check it yourself).

Slicing and Indexing

Probably the nicest feature of lists in Python, and thus SageMath, is the slice notation. Let’s suppose you have the
following list:

sage: M = [1, 2, 0, 3, 4, 0, 4, 5]
sage: M
[1, 2, 0, 3, 4, 0, 4, 5]

and you would like to access the sub-list [0,3,4]. Using the slice notation you can do that in the following way:

sage: M[2:5]
[0, 3, 4]

We use M[2:5] since the sub-list that we desire begins with the element with index 2 and ends before the element
with index 5.

By leaving the last index blank, the slice will extend to the end of the list. Similarly, when the first index is left blank
the slice will start at the beginning of the list.

sage: M[2:]
[0, 3, 4, 0, 4, 5]
sage: M[:5]
[1, 2, 0, 3, 4]
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By leaving both indices blank, we get a copy of the entire list.

sage: M[:]
[1, 2, 0, 3, 4, 0, 4, 5]

Slices also can use negative indices. When a negative number is used the position is measured relative to the end (or
beginning) of the list. For example:

sage: M[:-2]
[1, 2, 0, 3, 4, 0]
sage: M[-2:]
[4,5]

The first ends the slice two elements before the end of the list, while the second begins the slice at this same position.
And like expected, we can use two negative indices to take slices relative to the last element of a list.

sage: M[-4:-2]
[4, 0]
sage: M[-2:-2]
[]

You should note that the last slice is empty since the beginning of the list is the same position as the end.

If we wish to know the index of an element, we use the index() function. It returns the index for the first occurrence
of the value given.

sage: M = [2,3,3,3,2,1,8,6,3]
sage: M.index(2)
0
sage: M.index(3)
1
sage: M.index(14)
...
ValueError: list.index(x): x not in list

We can also count the number of times that an element occurs in a list.

sage: M.count(3)
4

Creating

Since they are used rather frequently, SageMath offers a convenient way to create lists of consecutive integers.

sage: [1..7]
[1, 2, 3, 4, 5, 6, 7]
sage: [4..9]
[4, 5, 6, 7, 8, 9]
sage: [2,4..10]
[2, 4, 6, 8, 10]

In the first two examples it is quite clear what is happening. In the last example above, however, it is a bit trickier.
If we input [a,b..c] for integers a,b and c with 𝑎 < 𝑏 ≤ 𝑐, we get back the list [a,a+d,...,a+k*d] where
𝑑 = 𝑏 − 𝑎 and 𝑘 is the largest integer such that 𝑎 + 𝑘𝑑 ≤ 𝑐. If this is a bit overwhelming, hopefully the following
examples will clear things up.
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sage: [1,4..13]
[1, 4, 7, 10, 13]
sage: [1,11..31]
[1, 11, 21, 31]
sage: [1,11..35]
[1, 11, 21, 31]

Additionally, we can use this construction method with some of SageMath’s symbolic constants such as pi.

sage: [pi,4*pi..32]
[pi, 4*pi, 7*pi, 10*pi]

Modifying lists

Sorting the list M can be done using the sort() method.

sage: M = [2,3,3,3,2,1,8,6,3]
sage: M.sort(); y
[1, 2, 2, 3, 3, 3, 3, 6, 8]
sage: M.index(2)
1

The sort() method alters the list in place, actually changing the ordering of the elements. If we would like to keep
the list the same, we should sort a copy of the list and not the list itself.

sage: M = [2,3,3,3,2,1,8,6,3]
sage: M
[2, 3, 3, 3, 2, 1, 8, 6, 3]
sage: N = M[:]
sage: N.sort()
sage: N
[1, 2, 2, 3, 3, 3, 3, 6, 8]
sage: M
[2, 3, 3, 3, 2, 1, 8, 6, 3]

We may alter the elements of a list as follows:

sage: L = [1,2,3,4]
sage: L[0]=-1
sage: L
[-1, 2, 3, 4]

In “programming vernacular”, data-types that can be changed in place are called mutable. Lists are mutable, but some
data types in SageMath are not.

To add an element to the end of a list, we use the append() method.

sage: L = [1,2,3]
sage: L.append(4)
sage: L
[1, 2, 3, 4]

Similarly, we may use the extend() method to concatenate lists, that is, to append a list to the end of another list.

sage: L=[1,2]
sage: L.extend([10,11,12])
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sage: L
[1, 2, 10, 11, 12]

It is, perhaps, simpler to use the + operator to concatenate lists. Since the order of the list is significant, the concate-
nation L + M is not usually the same as M + L, though they do contain the same elements.

sage: [1,3,5]+[2,4,6]+[100]
[1, 3, 5, 2, 4, 6, 100]
sage: [2,4,6]+[1,3,5]+[100]
[2, 4, 6, 1, 3, 5, 100]

If we wish to remove an element from a list, we use the meth:.remove method.

sage: L = [3,5,11,13,17,19,29,31]
sage: L.remove(11)
sage: L
[3, 5, 13, 17, 19, 29, 31]

Note that a list may contain the same element more than once; remove() removes only the first instance of the given
element.

sage: M = [1,2,3,0,3,4,4,0,4,5]
sage: M.remove(3)
sage: M
[1, 2, 0, 3, 4, 4, 0, 4, 5]
sage: M.remove(4)
sage: M
[1, 2, 0, 3, 4, 0, 4, 5]

3.1.5 Operations on a List

If your lists contain elements where it makes sense, the sum() and prod() commands accept a list as argument.

sum() returns the sum of its argument:

sage: sum([1,2,3])
6
sage: sum([1..100])
5050

where prod() returns the product.

sage: prod([1..4])
24

The sum and product commands are defined on lists where the arithmetic make sense and will complain rather loudly
when it doesn’t.

sage: sum( [1,2,3,"cat",])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last
... (Lengthy error message)
TypeError: unsupported operand parent(s) for '+': 'Integer Ring' and '<type 'str'>'

Concatenation isn’t the only way which we can join together the elements of two lists. One useful tool is the zip()
command, which joins the elements of two lists by pairing them together in order.
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sage: zip([1,2,3,4],['a','b','c','d'] )
[(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]

When the lists aren’t of the same length, zip() joins the elements up to the items in the shorter list and ignores the
rest.

sage: zip([1,2,3,4],['a','b','c'] )
[(1, 'a'), (2, 'b'), (3, 'c')]
sage: zip([1],['a','b','c'] )
[(1, 'a')]

Another useful command when dealing with lists is map(). This command accepts two arguments, a function f and
a list [a0,...,an-1] and returns that function applied to each member of that list, [f(a0),...,f(an-1)]

sage: map( cos, [0, pi/4, pi/2, 3*pi/4, pi] )
[1, 1/2*sqrt(2), 0, -1/2*sqrt(2), -1]
sage: map(factorial,[1,2,3,4,5])
[1, 2, 6, 24, 120]
sage: sum(map(exp,[1,2,3,4,5]))
e + e^2 + e^3 + e^4 + e^5

map() is often used in functional programming. For more on this style of programming with python see the Python
Documentation.

See also:

An informal introduction to Python: Lists

Exercises:

1. Consider the lists L = [1, -2, 10, 13] and M = [4, 3, 5, -7]. Append L onto the end of M. Do
the same beginning with M.

2. Consider the list L = [1, 3, 4, [1,5,6], 8, -9]. At what index is the element [1,5,6]? Remove
this element from L.

3. Let L = [3,4,18,17,2,'a'] and M = [ 14, 23, 'b', 'c']. With SageMath, do the following:

(a) Append the elements of the list M to the end of L without changing L.

(b) Do the same but this time altering L in place.

(c) Insert M as an element at the end of L, altering L in place.

(d) Remove the M that you just inserted.

(e) Explain the differences between the extend() and the append() methods.

4. Let L = [1,2,5, 14, 17, 20]. What are the sub-lists are accessed using the following slices.

(a) L[:-1]

(b) L[-1:]

(c) L[3:]

(d) L[0:3]

(e) L[-4:-1]

5. Using the same L as the previous problem. Find a slice that will extract the following sub-lists from L: (Do this
in two different ways)

(a) [5,14,17].

3.1. SageMath Objects 51

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#map
http://docs.python.org/howto/functional.html
http://docs.python.org/howto/functional.html
http://docs.python.org/tutorial/introduction.html#lists


SDSU Sage Tutorial Documentation, Release 1.2

(b) [1,2,5].

(c) [1]

(d) [20]

6. Consider L = ['a', 9, 10, 17, 'a', 'b', 10]. Remove all letters from L.

3.1.6 Sets

A Set in SageMath is a data type which behaves a lot like a mathematical set and it differs from a list in a few key
ways:

• Elements of a Set have no order. So you cannot access elements by an index.

• An element in a Set only appears once.

To see an example of that last point, we will construct a Set by converting a list into a set.

sage: y = [2,3,3,3,2,1,8,6,3]
sage: A = Set(y)
sage: A
{8, 1, 2, 3, 6}

To find the size of a Set we will use the cardinality() method.

sage: A.cardinality()
5

Testing for membership can be done easily by using the in operator.

sage: 8 in A
True
sage: 10 in A
False

All of the usual set operations: union(), intersection(), difference() and
symmetric_difference() are implemented. For example:

sage: B = Set([8,6,17,-4,20, -2 ])
sage: B
{17, 20, 6, 8, -4, -2}
sage: A.union(B)
{1, 2, 3, 6, 8, 17, 20, -4, -2}
sage: A.intersection(B)
{8, 6}
sage: A.difference(B)
{1, 2, 3}
sage: B.difference(A)
{17, 20, -4, -2}
sage: A.symmetric_difference(B)
{17, 2, 3, 20, 1, -4, -2}

Use the subsets() method to construct the subsets of a set, or to construct the subsets with a specified number of
elements. Notice that the subsets() method produces a list of subsets.

sage: A = Set([1,2,3]); A
{1, 2, 3}
sage: powA = A.subsets(); powA
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Subsets of {1, 2, 3}
sage: pairsA = A.subsets(2); pairsA
Subsets of {1, 2, 3} of size 2
sage: powA.list()
[{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}]
sage: pairsA.list()
[{1, 2}, {1, 3}, {2, 3}]

Exercises:

1. Consider the sets 𝐴 = {1,−4, 2} and 𝐵 = {3, 2, 1}. Compute the following set operations using SageMath:

(a) 𝐴 ∪𝐵

(b) 𝐴 ∩𝐵

(c) 𝐴 ∖𝐵

(d) 𝐵 ∖𝐴

(e) (𝐴 ∖𝐵) ∪ (𝐵 ∖𝐴)

See also:

SageMath Tutorial: Sets

3.1.7 Strings

To construct a string in SageMath we may use single or double quotes.

sage: s='I am a string'
sage: s
'I am a string'
sage: print s
I am a string

Note the difference between asking for the value of a and asking SageMath to print a. Like lists, we can access
the elements of a string through their indices.

sage: a='mathematics'
sage: a[0]
'm'
sage: a[4]
'e'

You can find the length of a string using the len() command.

sage: b='Gauss'
sage: len(b)
5

Just like with lists, we can concatenate strings just by adding them together.

sage: b + " is " + a
'Gauss is mathematics'

and we can separate a list by using the split() method,
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sage: s.split()
['I', 'am', 'a', 'string']

which divides the string into a list of words. We can divide a list using different characters as separators. For example
we can get a list from the following comma separated values.

sage: vals = "18,spam,eggs,28,70,287,cats"
sage: vals.split(',')
['18', 'spam', 'eggs', '28', '70', '287', 'cats']

We can use the map() and split() commands to convert a string of integers into something that we can use in
sage. This is particularly useful when you must read data from a file.

sage: map(Integer, data.split(','))
[17, 18, 20, 19, 18, 20]

You should note how the output above differs from what we get when we use only the split() method.

sage: data.split(',')
['17', '18', '20', '19', '18', '20']

The list directly above contains strings which represent numbers. We must convert those strings into what we need in
order to actually use them.

The opposite of splitting up a string into a list is the joining of elements of a list. We do this with the join()
command.

sage: L = ['Learning', 'SageMath', 'is', 'easy.']
sage: join(L)
'Learning SageMath is easy.'

Just like when I split a sting, I can join a list using a different separating value than just a space. I do so by supplying
an optional second argument to the join() command.

sage: join(L,',')
'Learning,SageMath,is,easy.'

Exercises:

1. Consider the string s = 'This is a string!. What is the output of the following commands:

(a) s[:-1] + ‘.’

(b) s[0:7] + ” not ” + s[8:]

2. Consider the string s = 'This is a sentence. This is another sentence.'. Split s into a
list of two sentences.

3. Consider the list of strings L = ['This is', 'a', 'string']. Join the elements of the list to form
the string 'This is a string'.

4. We can use the map() and Integer() commands to take a string of integers and convert them into SageMath
integers.

3.2 Programming Tools

SageMath syntax is based on the widely-used language Python, and thereby inherits Python’s compact and very
readable style. In this chapter we cover the syntax for the essentials of programming in Python. For more complex
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issues we provide links to other resources.

3.2.1 Conditionals

You should be familiar with Solving Equations and Inequalities, Boolean operations, and Variables

A conditional statement is what we use when we want our code to make decisions. For example, suppose we want to
divide a number by 2 only if it is even. We can do this in SageMath by using an if statement.

sage: n=44
sage: if n%2 == 0:
....: print n/2
....:
22
sage: n=37
sage: if n%2 == 0:
....: print n/2
....:
sage:

For n=44, the condition is met and the print() command is executed. Conversely, for n=37, nothing will happen
since the condition has not been met. Most of what programming is is the skillful application of simple statements like
this.

Unlike some other languages, SageMath is picky about indentation, a practice it inherits from Python. Instead of using
some kind of punctuation to denote the beginning and ending of a block of code, SageMath uses indentation (notice
though that we do need a colon after the condition is written). All of the code to be run under a certain condition must
be at the same level of indentation. This might take some time to get used to, but it produces neat, organized code that
is often easier to read.

At times, we may wish to check whether our expression satisfies more than one condition. To do so, use the elif
statement, which is short for else if.

sage: m=31
sage: if m%3==0:
....: print m/3
....: elif m%3==1:
....: print (m-1)/3
....:
10

Notice that we return to the same level of indentation for elif as was used for if. We may use as many elifs as we
desire. The tests are evaluated in order and once the first one is met, the associated code is executed and SageMath
will leave the entire conditional. For a simple example, consider the following:

sage: r=55
sage: if 11.divides(r):
....: print 11
....: elif r==55:
....: print 55
....:
11

Here both conditions are met, but only the code associated with the first condition is actually executed. Understanding
how conditionals are executed is important to controlling the flow of your program.

There is also a subtle shortcut that we used in the previous example. 11.divides(r) already returns either
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True or False, hence we did not need to use an equality here. We could have used the more verbose 11.
divides(r)==True but it is not necessary.

Often we wish to execute some code if none of our conditions above are met. For this we use the else operator.

sage: n=2*3*5+1
sage: if 2.divides(n):
....: print 2
....: elif 3.divides(n):

....: print 3

....: else:

....: print n

....:
31

Since none of the conditions were met, our code defaulted to printing the number 31.

3.2.2 While loops

You should be familiar with Variables and Boolean operations

While loops are one of the most useful techniques in programming. Essentially, a while loop runs a block of code
while a condition is still satisfied. Let’s see a simple example:

sage: i=0
sage: while i < 5:
....: print i^2
....: i=i+1
....:
0
1
4
9
16

Once the condition i<5 is False, SageMath exits the loop structure; the variable i still exists, though.

3.2.3 For Loops

You should be familiar with Variables, Boolean operations, and Lists

A for loop repeatedly runs a block of code a fixed number of times. In SageMath, for loops iterate over a fixed list.

sage: for i in [0..4]:
....: print i^2
....:
0
1
4
9
16

We may iterate over any list, it need not be consecutive integers. Here are a few more (really silly) examples.
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sage: for str in ["apple","banana","coconut","dates"]:
....: print str.capitalize()
....:
Apple
Banana
Coconut
Dates
sage: for char in "Leonhard Euler":
....: print char.swapcase()
....:
l
E
O
N
H
A
R
D

e
U
L
E
R

3.2.4 List Comprehensions (Loops in Lists)

You should be familiar with Lists and For Loops

A particularly useful technique in Python (and SageMath by extension) is the construction of lists using list compre-
hensions. This feature is very similar to the set builder notation we often use in mathematics. For example, the set of
even integers can be written as:

{2 · 𝑘 | 𝑘 ∈ Z}

Where we do not explicitly list the elements of the set but rather give a rule which can be used to construct the set. We
can do something very similar in python by placing a for inside of a list, like in the following example. Here is how
we would construct the list of even integers from 0 to 20.

sage: [ 2*k for k in [0..10] ]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

This concept may seem a bit intimidating at first, but it is extremely concise way to write some powerful code.

We can use list comprehension to apply a function to each number of a given list, much like we did before with the
map() command.

sage: [pi/4,pi/2..2*pi]
[1/4*pi, 1/2*pi, 3/4*pi, pi, 5/4*pi, 3/2*pi, 7/4*pi, 2*pi]
sage: [ cos(x) for x in [pi/4, pi/2..2*pi]]
[1/2*sqrt(2), 0, -1/2*sqrt(2), -1, -1/2*sqrt(2), 0, 1/2*sqrt(2), 1]

We can also use the list comprehension filter (or reduce) the results by adding a conditional to our list comprehension.
For example, to construct the list of all natural numbers that are less than 20 which are relatively prime to 20 we do
the following:
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sage: [ k for k in [1..19] if gcd(k,20) == 1 ]
[1, 3, 7, 9, 11, 13, 17, 19]

Notice that the syntax for the construction is nearly identical to the mathematical way that we would write the same
set of numbers:

{𝑘 ∈ N | 𝑘 < 20 and gcd(𝑘, 20) = 1}

In mathematics we often construct the Cartesian Product of two sets:

𝐴×𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

We can do something similar by using multiple for’s in the list comprehension. For example, to construct the list of
all pairs of elements in the list constructed earlier we do the following:

sage: U = [ k for k in [1..19] if gcd(k,20) == 1]
sage: [ (a,b) for a in U for b in U ]
[(1, 1), (1, 3), (1, 7), (1, 9), (1, 11), (1, 13), (1, 17), (1, 19), (3, 1), (3, 3),
→˓(3, 7), (3, 9), (3, 11), (3, 13), (3, 17), (3, 19), (7, 1), (7, 3), (7, 7), (7, 9),
→˓(7, 11), (7, 13), (7, 17), (7, 19), (9, 1), (9, 3), (9, 7), (9, 9), (9, 11), (9,
→˓13), (9, 17), (9, 19), (11, 1), (11, 3), (11, 7), (11, 9), (11, 11), (11, 13), (11,
→˓17), (11, 19), (13, 1), (13, 3), (13, 7), (13, 9), (13, 11), (13, 13), (13, 17),
→˓(13, 19), (17, 1), (17, 3), (17, 7), (17, 9), (17, 11), (17, 13), (17, 17), (17,
→˓19), (19, 1), (19, 3), (19, 7), (19, 9), (19, 11), (19, 13), (19, 17), (19, 19)]

It should be noted that you don’t have to form tuples of the pairs of elements. For instance, you can also find the their
product or their sum. Any valid expression involving a and b will be fine.

sage: [ a*b for a in U for b in U ]
[1, 3, 7, 9, 11, 13, 17, 19, 3, 9, 21, 27, 33, 39, 51, 57, 7, 21, 49, 63, 77, 91, 119,
→˓ 133, 9, 27, 63, 81, 99, 117, 153, 171, 11, 33, 77, 99, 121, 143, 187, 209, 13, 39,
→˓91, 117, 143, 169, 221, 247, 17, 51, 119, 153, 187, 221, 289, 323, 19, 57, 133, 171,
→˓ 209, 247, 323, 361]
sage: [ a + b for a in U for b in U ]
[2, 4, 8, 10, 12, 14, 18, 20, 4, 6, 10, 12, 14, 16, 20, 22, 8, 10, 14, 16, 18, 20, 24,
→˓ 26, 10, 12, 16, 18, 20, 22, 26, 28, 12, 14, 18, 20, 22, 24, 28, 30, 14, 16, 20, 22,
→˓ 24, 26, 30, 32, 18, 20, 24, 26, 28, 30, 34, 36, 20, 22, 26, 28, 30, 32, 36, 38]
sage: [ gcd(a,b) for a in U for b in U ]
[1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 3, 1, 9,
→˓1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 17,
→˓1, 1, 1, 1, 1, 1, 1, 1, 19]

Similar constructions work for more than 2 sets; just add more for statements.

Since list comprehensions allow for us to put any valid expression, we can add another conditional which affects the
output of our list. For example, let take the list of integers which were relatively prime to 20 and test if they are prime
numbers or not.

sage: U
[1, 3, 7, 9, 11, 13, 17, 19]
sage: [ 'prime' if x.is_prime() else 'not prime' for x in U]
['not prime', 'prime', 'prime', 'not prime', 'prime', 'prime', 'prime', 'prime']

See also:

More on list comprehensions

Exercises:

58 Chapter 3. Programming in SageMath

http://docs.python.org/tutorial/datastructures.html#list-comprehensions


SDSU Sage Tutorial Documentation, Release 1.2

1. Use a list comprehension to generate lists which have the same members as the following sets:

(a) The set of all odd integers greater than −10 and less than 30.

(b) The set of all integers which are divisible by 3, less than or equal to 100 and greater than −20.

(c) The set of all prime numbers less than 100.

2. Use a list comprehension to compute the tan(𝑥) for all 𝑥 ∈ {0, 𝜋/4, 𝜋/2, 3𝜋/4, 𝜋}

3.2.5 Defining your own commands

Once your computations get complicated enough you may want to hide some of this complexity by creating your own
command that can be easily re-used like SageMath’s built-in commands. These user-defined commands are commonly
called functions, though they differ from mathematical functions.

For example, suppose that we wanted to compute the greatest common divisor of 75 and 21. We can use the euclidean
algorithm and SageMath to do this. Here is how that would look:

sage: def euclid(a,b):
....: r = a%b
....: while r != 0:
....: a=b; b=r
....: r = a%b
....: return b

a and b are called the arguments of the command and the expression following the return keyword is called the
return value. The arguments are in the input of the command whereas the return value is the output.

Those of you who have previous programming experience may notice the absence of end or block delimiters, such as
; or end. SageMath, like Python, uses indentation to denote where a block of code begins and ends. This syntax rule
forces the programmer to write visually-separated blocks of code, thus making it more readable.

Once the command euclid has been defined, the code can easily be re-used with different arguments, just like a
built-in command.

sage: euclid(75,21)
3
sage: euclid(455,67)
1
sage: euclid(754,99)
1
sage: euclid(756,9)
9

User-defined commands may have any number of arguments, including none at all.

sage: def g(x,y):
....: return x*y
....:
sage: g(2,3)
6
sage: g(sqrt(2),sqrt(2))
2
sage: def h():
....: return 1/2
....:
sage: h()
1/2
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Defining a return value is also optional, but all commands in SageMath return something. If we do not specify a return
value, then SageMath returns the empty object None.

sage: def lazy(x):
....: print x^2
....:
sage: lazy(sqrt(3))
3
sage: a = lazy(sqrt(3))
3
sage: a
None

What the above is showing is that while the command displays the number 3, the return value is actually None.
While this is valid code, it is good practice to have your commands actually return the value that you are interested in
computing.

By separating the values with commas, your command can have multiple return values.

sage: def s(x):
....: return x^2,x^3
....:
sage: s(1)
(1, 1)
sage: s(2)
(4, 8)
sage: a,b=s(3)
sage: a
9
sage: b
27

Defining your own commands in SAGE is easy. However, elegantly encapsulating your code is an art which requires
a lot of practice and thought. For a more thorough introduction to functions (commands), this chapter on Python
functions is a good place to start.

3.2.6 External Files and Sessions

In practice, especially when using SageMath for research and projects, it is convenient to being able to load external
files. One such instance is when we have a block of code which we wish to run for several different cases. It would be
quite tedious to retype all of the code; instead we read it from an external file.

Suppose we have a file in the same directory from which we started SageMath called pythag.sage with the fol-
lowing content.

# Begin pythag.sage
a=3
b=4
c=sqrt(a^2+b^2)
print c
# End

Note that all characters after a # of a SageMath file are ignored when loaded. We may now load the file in SageMath
using the load() command.

sage: load pythag.sage
5
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After having loaded the file, all of the variables initialized now exist in our SageMath session.

sage: a,b,c
(3, 4, 5)

SageMath allows us to save a session to pick up where we left off. That is, suppose we have done various calculations
and have several variables stored. We may call the save_session function to store our session into a file in our working
directory (typically sage_session.sobj). Following, we may exit SageMath, power off our computer, or what have you.
At any later time, we may load the file by opening SageMath from the directory containing the save file and using the
load_session function.

Here is an example:

sage: a=101
sage: b=103
sage: save_session()
sage: exit
Exiting SAGE (CPU time 0m0.06s, Wall time 0m31.27s).

Now start SageMath from the same folder as the save file.

sage: load_session()
sage: a
101
sage: b
103

We may specify the name of a save session, if we so desire.

sage: T=1729
sage: save_session('ramanujan')
sage: exit
Exiting SAGE (CPU time 0m0.06s, Wall time 0m16.57s).

And again we load our session ramanujan with load_session().

sage: load_session('ramanujan')
sage: T
1729

3.3 Packages within SageMath

There are many open-source software packages available for doing specialized mathematics. One of the objectives of
SageMath developers is to create a single clean interface from which these packages may all be accessed. For many
computations in advanced mathematics SageMath uses the functionality in one of these packages. A SageMath user
can also explicitly call a function from one of the packages. This chapter briefly describes how to do so.

3.3.1 GAP

For this portion of the tutorial we are going to show how to use GAP from within a SageMath session. The commands
here follow closely with the Groups and Homomorphisms section of the GAP tutorial. A reader who is interested in
learning more about the capabilities of this system shoud consult the Gap Project’s main website.

You can pass a command to GAP by using gap() with the command as a string. The following example constructs
the symmetric group on eight points using GAP.
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sage: s8 = gap('Group( (1,2), (1,2,3,4,5,6,7,8) )')
sage: s8
Group( [ (1,2), (1,2,3,4,5,6,7,8) ] )

s8 has GAP as a parent.

sage: parent(s8)
Gap

The interface to the GAP system translates the commands in GAP to methods in SageMath. For example, to compute
the Derived Subgroup of 𝑆8 you use the DerivedSubgroup() method.

sage: a8 = s8.DerivedSubgroup(); a8
Group( [ (1,2,3), (2,3,4), (2,4)(3,5), (2,6,4), (2,4)(5,7), (2,8,6,4)(3,5) ] )
sage: a8.Size(); a8.IsAbelian(); a8.IsPerfect()
20160
false
true

The output of s8.DerivedSubgroup() is identical to the output of the GAP command DerivedSubgroup(s8) and this is
the common convention when the command has one argument. When it requires two, say the group and an additional
parameter, the additional parameter is given as an argument to the method. For example, the GAP command Sylow-
Subgroup(a8,2) computes the maximal 2-subgroup of 𝐴8. The following SageMath code does the same, then uses
GAP to compute its size.

sage: sy12 = a8.SylowSubgroup(2); sy12.Size()
64

In the same vein, we can use GAP to compute the normalizer’s and centralizers of these groups.

sage: a8.Normalizer(sy12)
Group( [ (1,6)(2,4), (1,6)(5,8), (2,4)(3,7), (2,8)(4,5), (1,7)(2,8)(3,6)(4,5),

(1,8)(2,7)(3,4)(5,6) ] )
sage: a8.Normalizer(sy12) == sy12
True
sage: cent = a8.Centralizer(sy12.Centre());
sage: cent
Group( [ ( 1, 6)( 2, 4)( 3, 7)( 5, 8), (3,5)(7,8), (3,7)(5,8), (2,3)(4,7),

(1,2)(4,6) ] )
sage: cent.Size()
192

Gap itself has commands which can maniputale lists of objects. In this example we first compute the derived series of
cent and then compute the size of each of these subgroups using GAP’s List() command.

sage: cent.DerivedSeries(); cent.DerivedSeries().List('Size')
[ Group( [ ( 1, 6)( 2, 4)( 3, 7)( 5, 8), (3,5)(7,8), (3,7)(5,8), (2,3)(4,7),

(1,2)(4,6) ] ),
Group( [ (2,4)(3,7), ( 1, 3)( 2, 8)( 4, 5)( 6, 7), ( 1, 7, 4)( 2, 6, 3) ] ),
Group( [ ( 1, 6)( 2, 4)( 3, 7)( 5, 8), ( 1, 6)( 3, 7),

( 1, 4)( 2, 6)( 3, 5)( 7, 8), ( 1, 7)( 2, 5)( 3, 6)( 4, 8),
( 1, 4, 6, 2)( 3, 8, 7, 5) ] ),

Group( [ ( 1, 6)( 2, 4)( 3, 7)( 5, 8) ] ), Group( () ) ]
[ 192, 96, 32, 2, 1 ]

Since the GAP command constructs a full-fledged SageMath object we can so the same in a more SageMath-y manner
by using a list comprehension.

62 Chapter 3. Programming in SageMath



SDSU Sage Tutorial Documentation, Release 1.2

sage: [ g.Size() for g in cent.DerivedSeries() ]
[192, 96, 32, 2, 1]

To convert a GAP group to a native SageMath one we first extract a list of generators. Then feed that list to the usual
group constructor.

sage: gens = s8.GeneratorsOfGroup(); gens
[ (1,2), (1,2,3,4,5,6,7,8) ]
sage: SG = PermutationGroup(gens); SG
Permutation Group with generators [(1,2), (1,2,3,4,5,6,7,8)]
sage: parent(SG)
<class 'sage.groups.perm_gps.permgroup.PermutationGroup_generic_with_category'>

Going from a SageMath group to a GAP one is even easier.

sage: gap(SG)
Group( [ (1,2), (1,2,3,4,5,6,7,8) ] )
sage: parent(gap(SG))
Gap

From time to time you will want to just use GAP directly without using the interface. When working from the
command line, the gap_console() command does just this.

sage: gap_console()
GAP4, Version: 4.4.12 of 17-Dec-2008, x86_64-unknown-linux-gnu-gcc
gap>

From which we can exit by typing quit; at the gap prompt.

gap> quit;
sage:

If the reader is using the notebook then using GAP directly is even easier. It is done by just selecting GAP from a drop
down menu (highlighted in yellow in the picture below).
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Now the SageMath notebook acts as a web interface to the GAP system.

See also:

http://www.gap-system.org/Manuals/doc/htm/index.htm

3.3.2 Singular

As with the GAP interface, the SageMath interface to Singular substitutes the language commands with methods in
SageMath. For example, the following code in Singular:

> ring R = 0,(x,y,z),lp;
> R;
// characteristic : 0
// number of vars : 3
// block 1 : ordering lp
// : names x y z
// block 2 : ordering C

Constructs a polynomial ring in three variables; x,y and z over the field of characteristic 0 using the lexicographic term
ordering. To do the same within SageMath we use the ring() method of the singular object.
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sage: R = singular.ring('0','(x,y,z)','lp')
sage: R
// characteristic : 0
// number of vars : 3
// block 1 : ordering lp
// : names x y z
// block 2 : ordering C

Since much of the language that Singular uses is not valid in SageMath the quotations around the arguments are
important.

Polynomials are constructed in this ring by using the poly() method.

sage: p = singular.poly('x^2 * y^2 - 1')
sage: q = singular.poly('x^2 * y^2 - z')
sage: singular.ideal([p,q])
x^2*y^2-1,
x^2*y^2-z

To construct the ideal (in R) generated by those polynomials and a Groebner basis it you enter the following.

sage: I = singular.ideal([p,q])
sage: I.groebner()
z-1,
x^2*y^2-z

Reduction modulo this ideal is accomplished using the reduce() method.

sage: r = singular.poly('x^3 - x^2 * y^2 - x^2 * z + x')
sage: singular.reduce(p,I)
z-1
sage: singular.reduce(q,I)
0
sage: singular.reduce(r,I)
x^3-x^2*z+x-z

and if you would like this reduction done using a Groebner basis, we just combine the methods discussed previously.

sage: singular.reduce(q,I.groebner())
0
sage: singular.reduce(p,I.groebner())
0
sage: singular.reduce(r,I.groebner())
x^3-x^2+x-1

The quotations are not necessary when passing a Singular object as in the last few examples as there is no ambiguity.

Finally a task that Singular excels at is the factorization of multivariate polynomials. This is done using the
factorize() method.

sage: p.factorize()
[1]:

_[1]=1
_[2]=x*y-1
_[3]=x*y+1

[2]:
1,1,1

sage: q.factorize()
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[1]:
_[1]=1
_[2]=x^2*y^2-z

[2]:
1,1

sage: r.factorize()
[1]:

_[1]=-1
_[2]=x
_[3]=-x^2+x*y^2+x*z-1

[2]:
1,1,1

See also:

http://www.singular.uni-kl.de

3.3.3 Using Python packages in SageMath

3.4 Interactive Demonstrations in the Notebook

In this section we will discuss the creation of interactive “applets” in the SageMath notebook. These are done using
the @interact decorator and are often called interacts. A decorator is a just a fancy piece of python which allows
for you to create new functions out of old in a quick and concise fashion. You don’t have to fully understand decorators
to be able to follow this material but If you are interested you can read a very nice blog post about decorators by Bruce
Eckel of Thinking in Python Fame.

We will begin with the most simple applet. One that creates a single input box and then displays the results.
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Notice how changing the text in the input box changes the output. Every time something within the interact changes
the “applet” is refreshed and will display those changes. This is the heart of the interactivity.
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Next we will add another control to the applet. This time we will add a slider. This control has a handle which the
user can slide horizontally, and by sliding change a number in pre-defined increments. For this example, the slider has
0 as its smallest number and 10 as its largest and moves in increments of 1 unit.
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Next we will add a selection control. This control allows the user to select one of a finite number of different options.
In this case, the user can select any color, as long as that color is red, blue, green, or black.
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While this initial example shows the use of a couple of common interactive controls, it still does not do anything very
interesting. The next example will combine both the use of sliding and selection controls toward creating an applet
which plots the trigonometric functions and there standard transformations.
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The example here only scratches the surface of what is possible with SageMath interacts. For a, growing, list of
examples of interacts see this page on the sage wiki.
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CHAPTER

FOUR

MATHEMATICAL STRUCTURES

The individual chapters in this part of the tutorial are relatively independent of one another. You should be familiar
with the chapter sage_objects before reading material here. The section List Comprehensions (Loops in Lists) is also
useful. Eventually, when you are ready for some real experimentation, you will want to read much of the chapter
Programming Tools. Many sections in this part are incomplete, and we welcome contributions and additions!

4.1 Integers and Modular Arithmetic

4.1.1 Integers Modulo 𝑛

You should be familiar with Universes and Coercion and Variables

In this section we cover how to construct Z𝑛, the ring of integers modulo 𝑛, and do some basic computations.

To construct Z𝑛 you use the Integers command.

sage: Integers(7)
Ring of integers modulo 7
sage: Integers(100)
Ring of integers modulo 100

We could do computations modulo an integer by repeatedly using the % operator in all of our expressions, but by
constructing the ring explicitly we have access to a more natural method for doing arithmetic.

sage: R=Integers(13)
sage: a=R(6)
sage: b=R(5)
sage: a + b
11
sage: a*b
4

And by explicitly coercing our numbers into the ring Z𝑛 we can compute some of the mathematical properties of the
elements. Like their order, both multiplicative and additive, and whether or not the element is a unit.

sage: a.additive_order()
13
sage: a.multiplicative_order()
12
sage: a.is_unit()
True
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The additive inverse of 𝑎 is computed using -a and, if 𝑎 is a unit, the multiplicative inverse is computed using a^(-1)
or 1/a.

sage: (-a)
7
sage: (a^(-1))
11

These inverses can be checked easily.

sage: a + (-a)
0
sage: a*(a^(-1))
1

Recall that division in Z𝑛 is really multiplication by an inverse.

sage: R=Integers(24)
sage: R(4)/R(5)
20
sage: R(4)*R(5)^-1
20
sage: R(4/5)
20

Not all elements have an inverse, of course. If we try an invalid division, SageMath will complain

sage: R(5/4)
...
ZeroDivisionError: Inverse does not exist.

We have to be a little bit careful when we are doing this since we are asking SageMath to coerce a rational number
into the Z24 This may cause some unexpected consequences since some reduction is done on rational numbers before
the coercion. For an example, consider the following:

sage: R(20).is_unit()
False
sage: R(16/20)
20

In Z24, 20 is not a unit, yet at first glance it would seem we divided by it. However, note the order of operations. First
sage reduces 16/20 to 4/5, and then coerces 4/5 into Z24. Since 5 is a unit in Z24, everything works out ok.

We can also compute some properties of the ring itself.

sage: R
Ring of integers modulo 24
sage: R.order()
24
sage: R.is_ring()
True
sage: R.is_integral_domain()
False
sage: R.is_field()
False

Since this ring is finite then we can have SageMath list all of its elements.
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sage: R = Integers(13)
sage: R.list()
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

R in this example is a field, since 13 is a prime number. If our ring is not a field then the units in Z𝑛 form a group under
multiplication. SageMath can compute a list of generators of the group of units using its unit_gens() method.

sage: R = Integers(12)
sage: R.uni
R.unit_gens R.unit_group_order
R.unit_group_exponent R.unit_ideal
sage: R.unit_gens()
[7, 5]

We can also compute the order of this subgroup.

sage: R.unit_group_order()
4

Unfortunately, SageMath doesn’t seem to have a function which directly returns the units in Z𝑛 as a group. We can
list the elements in a couple of different ways using the information above.

sage: (a,b) = R.unit_gens()
sage: a
7
sage: b
5
sage: [ (a^i)*(b^j) for i in range(2) for j in range(2) ]
[1, 5, 7, 11]

We can also compute the list of units by using a list comprehension.

sage: [ x for x in R if x.is_unit()]
[1, 5, 7, 11]

Exercises:

1. Construct the ring of integers modulo 16 and answer the following:

(a) Compute the multiplicative orders of 2, 4, 5, 6, 13 and 15?

(b) Which of the elements listed above is a unit?

(c) What are the generators for the group of units?

(d) Compute a list of all of the elements in the group of units.

2. Do all of the steps above again, but with the ring of integers modulo 17.

3. Use an exhaustive search method to write a function which determines if a is a unit modulo n.

4. For 𝑛 = 13, 15 and 21 determine which of 3, 4 and 5 are units in Z𝑛. When you find a unit, determine its inverse
and compare this to the output of 𝑥𝑔𝑐𝑑(𝑎, 𝑛). Try to explain this relationship.

5. Use SageMath to determine whether the following Rings are fields. For each example, describe the unit group
using generators and relations.

(a) Z1091

(b) Z1047

(c) Z1037
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(d) Z1087

4.1.2 Solving Congruences

You should be familiar with Integers Modulo and List Comprehensions (Loops in Lists)

A linear congruence is an equation of the form 𝑎𝑥 = 𝑏 in Z𝑛. One way to see if there is a solution to such a problem
is an exhaustive search. For example, to determine if there exists a solution to 9𝑥 = 6 we can do the following:

sage: R=Integers(21)
sage: a=R(9)
sage: 6 in [ a*x for x in R ]
True

Notice that the above tells us only that there exists at least one solution to the equation 9𝑥 = 6 in Z21. We can construct
the list of these solutions by using the following list comprehension.

sage: [ x for x in R if R(9)*x == R(6)]
[3, 10, 17]

We can determine when a solution does not exist in a similar fashion.

sage: [ x for x in R if R(9)*x == R(2) ]
[]

We can also use the solve_mod() function to compute the same results.

sage: solve_mod( 9*x == 6, 21)
[(3,), (10,), (17,)]
sage: solve_mod( 9*x == 2, 21)
[]

solve_mod() can handle linear congruences of more than one variable.

sage: solve_mod( 9*x + 7*y == 2, 21)
[(15, 14), (15, 8), (15, 2), (15, 17), (15, 11), (15, 5), (15, 20), (1, 14), (1, 8),
→˓(1, 2), (1, 17), (1, 11), (1, 5), (1, 20), (8, 14), (8, 8), (8, 2), (8, 17), (8,
→˓11), (8, 5), (8, 20)]

The solutions are in the form (𝑥, 𝑦), where the variables are listed in the order in which they appear in the equations.

solve_mod() can solve systems of linear congruences.

sage: solve_mod( [9*x + 2*y == 2, 3*x + 2*y == 11 ], 21)
[(9, 13), (16, 13), (2, 13)]

As with the solve() command, computations can be slow when working with systems that have a lot of variables
and/or equations. For these systems the linear algebra capabilities are recommended.

We can also compute the solutions for non-linear congruences using solve_mod().

sage: solve_mod(x^2 + y^2 == 1, 7)
[(0, 1), (0, 6), (1, 0), (2, 2), (2, 5), (5, 2), (5, 5), (6, 0)]
sage: solve_mod([x^2 + y^2 == 1, x^2 - y == 2], 7)
[(2, 2), (5, 2)]

Finally, SageMath can compute the simulatenous solution of linear congruences with different modulii under certain
circumstances. This is done using the Chineses Remainder Theorem, and is implemented in the crt() command.
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For example, the following computes the smallest nonnegative integer, 𝑥 that is congruent to 3 mod 8, 4 mod 9, and
5 mod 25.

sage: crt([3,4,5],[8,9,25])
355

We can check the validity of this solution using the mod() command.

sage: mod(355,8)
3
sage: mod(355,9)
4
sage: mod(355,25)
5

The set of all integer solutions is those integers congruent to 355 modulo 8 * 9 * 25 = 1800.

Exercises:

1. Find all solutions to the following congruences over Z42.

(a) 41𝑥 = 2

(b) 5𝑥 = 13

(c) 6𝑥 = 0

(d) 6𝑥 = 12

(e) 6𝑥 = 18

(f) 37𝑥 = 21

2. Above you computed the solution sets for the congruences 6𝑥 = 0, 6𝑥 = 12 and 6𝑥 = 18. What are the
similarities? What are the differences? Can you use these results to say something in general about the structure
of the set {6𝑥 | 𝑥 ∈ Z42} ?

3. Use the solve_mod() command find all of the solutions to the following congruences modulo 36.

(a) 3𝑥 = 21

(b) 7𝑥 = 13

(c) 23𝑥 = 32

(d) 8𝑥 = 14

4.1.3 Mini-Topic: Euclidean Algorithm

You should be familiar with Integer Division and Factoring, Variables, External Files and Sessions, and
While loops

Recall that for 𝑎, 𝑏 ∈ Z with 𝑏 ̸= 0, there always exists unique 𝑞, 𝑟 ∈ Z such that 𝑎 = 𝑏𝑞 + 𝑟 with 0 ≤ 𝑟 < 𝑏. With
that in mind, we will use SageMath to calculate the gcd of two integers using the Euclidean Algorithm. The following
code is an implementation of the Euclidean Algorithm in SageMath.

# Begin euclid.sage
r=a%b
print (a,b,r)
while r != 0:

a=b; b=r
r=a%b
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print (a,b,r)
# End euclid.sage

If you create a file euclid.sage containing the text above, then the output after loading the file is:

sage: a=15; b=4
sage: load euclid.sage
(15, 4, 3) (4, 3, 1) (3, 1, 0)
sage: a=15; b=5
sage: load euclid.sage
(15, 5, 0)

In the first case, we see that the gcd was 1, while in the second the gcd was 5.

Exercises:

1. Revise the loop in the euclid.sage so that only the gcd and the total number of divisions (i.e. the number
of steps through the algorithm) are printed. Compare the speed of this version of the algorithm with the built-in
SageMath function gcd() by using both functions on large integers.

2. Write your own Extended Euclidean Algorithm by revising the loop in euclid.sage.

4.2 Groups

There are three major types of groups implemented in sage, PermutationGroup(), MatrixGroup() and
AbelianGroup(). We will work with permutation groups first and cover most of the methods that are applied
to them. Many of these methods are applicable to arbitrary groups, so the other sections will be somewhat briefer and
will focus on methods particular to those structures.

See also:

Group Theory and SageMath: A Primer by Rob Beezer

4.2.1 Symmetric Groups

The Symmetric Group 𝑆𝑛 is the group of all permutations on 𝑛 elements. First we will construct the symmetric group
on {1, 2, 3, 4, 5} which is done by using the SymmetricGroup command.

sage: S5 = SymmetricGroup(5)
S5 Symmetric group of order 5! as a permutation group

Once the group has been constructed we can check the number of elements, which is 5!, and list them all.

sage: S5.cardinality()
120

sage: S5.list()
[(), (4,5), (3,4), (3,4,5), (3,5,4), (3,5), (2,3), (2,3)(4,5), (2,3,4), (2,3,4,5),
→˓(2,3,5,4), (2,3,5), (2,4,3), (2,4,5,3), (2,4), (2,4,5), (2,4)(3,5), (2,4,3,5), (2,5,
→˓4,3), (2,5,3), (2,5,4), (2,5), (2,5,3,4), (2,5)(3,4), (1,2), (1,2)(4,5), (1,2)(3,4),
→˓ (1,2)(3,4,5), (1,2)(3,5,4), (1,2)(3,5), (1,2,3), (1,2,3)(4,5), (1,2,3,4), (1,2,3,4,
→˓5), (1,2,3,5,4), (1,2,3,5), (1,2,4,3), (1,2,4,5,3), (1,2,4), (1,2,4,5), (1,2,4)(3,
→˓5), (1,2,4,3,5), (1,2,5,4,3), (1,2,5,3), (1,2,5,4), (1,2,5), (1,2,5,3,4), (1,2,5)(3,
→˓4), (1,3,2), (1,3,2)(4,5), (1,3,4,2), (1,3,4,5,2), (1,3,5,4,2), (1,3,5,2), (1,3),
→˓(1,3)(4,5), (1,3,4), (1,3,4,5), (1,3,5,4), (1,3,5), (1,3)(2,4), (1,3)(2,4,5), (1,3,
→˓2,4), (1,3,2,4,5), (1,3,5,2,4), (1,3,5)(2,4), (1,3)(2,5,4), (1,3)(2,5), (1,3,2,5,4),
→˓ (1,3,2,5), (1,3,4)(2,5), (1,3,4,2,5), (1,4,3,2), (1,4,5,3,2), (1,4,2), (1,4,5,2),
→˓(1,4,2)(3,5), (1,4,3,5,2), (1,4,3), (1,4,5,3), (1,4), (1,4,5), (1,4)(3,5), (1,4,3,
→˓5), (1,4,2,3), (1,4,5,2,3), (1,4)(2,3), (1,4,5)(2,3), (1,4)(2,3,5), (1,4,2,3,5), (1,
→˓4,2,5,3), (1,4,3)(2,5), (1,4)(2,5,3), (1,4,3,2,5), (1,4)(2,5), (1,4,2,5), (1,5,4,3,
→˓2), (1,5,3,2), (1,5,4,2), (1,5,2), (1,5,3,4,2), (1,5,2)(3,4), (1,5,4,3), (1,5,3),
→˓(1,5,4), (1,5), (1,5,3,4), (1,5)(3,4), (1,5,4,2,3), (1,5,2,3), (1,5,4)(2,3), (1,
→˓5)(2,3), (1,5,2,3,4), (1,5)(2,3,4), (1,5,3)(2,4), (1,5,2,4,3), (1,5,3,2,4), (1,5)(2,
→˓4,3), (1,5,2,4), (1,5)(2,4)]
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As you can see from the list, in SageMath a permutation is written in cycle notation. Note that the empty parenthesis
() is used to represent the identity permutation. We create the identity permutation and a randomly chosen element as
follows.

sage: id = S5.identity()
()
sage: S5.random_element()
(1,2)(3,4)
sage: r= S5.random_element(), r
(1,3,4)(2,5)

As you can see, subsequent calls for a random element give a new element each time. We can also express the element
𝑟 as a function by listing the images of 1, 2, 3, 4, 5 in order.

sage: r.list()
[3,5,4,1,2]

We can construct a specific element in 𝑆5 by coercing a permutation, written in cycle notation, into 𝑆5. We must
enclose the product of cycles in quotations for SageMath to parse the input correctly.

sage: r = S5('(1,3)(2,4)'); r
(1,3)(2,4)
sage: s = S5('(1,4,3,2)'); s
(1,4,3,2)

We may also construct an element 𝑡 using the list of images that it has as a function.

sage: t = S5([1,5,4,3,2]); t
(2,5)(3,4)

The product of cycles is taken from left-to-right and is, of course, not commutative.

sage: s*t
(1,4,2,3)
sage: t*s
(1,2,4,3)
sage: id*s

Let’s compute the order of an element by using the object’s order() method and check this directly.

sage: r.order()
2
sage: r*r
()
sage: s.order()
4
sage: s*s
(1,3)(2,4)
sage: s*s*s*s
()

The exponent of a group is the least common multiple of the orders of the elements.

sage: S5.exponent()
60
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The sign() method is used to compute the sign of a permutation, indicating whether it can be written as the product
of an even or an odd number of permutations.

sage: S5('(2,3,4)').sign()
1
sage: S5('(4,5)').sign()
-1

Each symmetric group 𝑆𝑛 is a subgroup of 𝑆𝑛+1.

sage: S4 = SymmetricGroup(4)
sage: S4.is_subgroup(S5)
True

You can construct the subgroup generated by a list of elements by using the subgroup() method.

sage: H = S5.subgroup([r,s])
sage: H
Subgroup of SymmetricGroup(5) generated by [(1,3)(2,4), (1,4,3,2)]
sage: H.list()
[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]

We can test to see if the subgroup that we have just created has certain properties by using the appropriate methods.
typing H.is() <tab> will give a list of several properties to test.

sage: H.is_abelian()
True
sage: H.is_cyclic()
True

The elements originally used to generate a subgroup are obtained with the gens()method. SageMath can’t guarantee
a minimal generating set, but gens_small() makes an attempt.

sage: H.gens()
[(1,3)(2,4), (1,4,3,2)]
sage: H.gens_small()
[(1,4,3,2)]

A useful tool for examining the structure of a group is the multiplication table, often called the Cayley Table. Invoke
the group’s cayley_table() method (also called multiplication_table()). The default uses letters to
represent the group elements (in the order they appear using list()).

sage: S3 = SymmetricGroup(3)
sage: S3.cayley_table()

* a b c d e f
+-----------
a| a b c d e f
b| b a d c f e
c| c e a f b d
d| d f b e a c
e| e c f a d b
f| f d e b c a
sage: S3.list()
[(), (2,3), (1,2), (1,2,3), (1,3,2), (1,3)]

We can also use the elements themselves, or give them names. Here we assign name based on the symmetries of a
triangle: u_i() for reflections through the axis containing vertex i() and r^1, r^2() for the rotations.

80 Chapter 4. Mathematical Structures



SDSU Sage Tutorial Documentation, Release 1.2

sage: S3.cayley_table(names='elements')

* | () (2,3) (1,2) (1,2,3) (1,3,2) (1,3)
-------------------------------------------------
() | () (2,3) (1,2) (1,2,3) (1,3,2) (1,3)
(2,3) | (2,3) () (1,2,3) (1,2) (1,3) (1,3,2)
(1,2) | (1,2) (1,3,2) () (1,3) (2,3) (1,2,3)
(1,2,3) | (1,2,3) (1,3) (2,3) (1,3,2) () (1,2)
(1,3,2) | (1,3,2) (1,2) (1,3) () (1,2,3) (2,3)
(1,3) | (1,3) (1,2,3) (1,3,2) (2,3) (1,2) ()

sage: S3.cayley_table(names=['id','u1','u3','r1','r2','u2'])

* id u1 u3 r1 r2 u2
+------------------
id| id u1 u3 r1 r2 u2
u1| u1 id r1 u3 u2 r2
u3| u3 r2 id u2 u1 r1
r1| r1 u2 u1 r2 id u3
r2| r2 u3 u2 id r1 u1
u2| u2 r1 r2 u1 u3 id

General Permutation Groups

A permutation group is a subgroup of some symmetric group. We can construct a permutation group directly, without
constructing the whole symmetric group, by giving a list of permutations to the PermutationGroup command.

sage: r = '(1,3)(2,4)(5)'
sage: s = '(1,3,2)'
sage: K = PermutationGroup([r,s])
sage: K
Permutation Group with generators [(1,3,2), (1,3)(2,4)]
sage: K.order()
12

Several important permutation groups can also be constructed directly. Here are the simplest.

sage: K= KleinFourGroup(); K
The Klein 4 group of order 4, as a permutation group
sage: K.list()
[(), (3,4), (1,2), (1,2)(3,4)]
sage: Q= QuaternionGroup(); Q.list()
[(), (1,2,3,4)(5,6,7,8), (1,3)(2,4)(5,7)(6,8),
(1,4,3,2)(5,8,7,6), (1,5,3,7)(2,8,4,6), (1,6,3,8)(2,5,4,7),
(1,7,3,5)(2,6,4,8), (1,8,3,6)(2,7,4,5)]
sage: [x.order() for x in Q]
[1, 4, 2, 4, 4, 4, 4, 4]

There are several families of permutation groups. The CyclicPermutationGroup in 𝑆𝑛 is generated by the
cycle (1, 2, . . . , 𝑛). The DihedralGroup is 𝑆𝑛 is the symmetries of a regular 𝑛 -gon with the vertices enumerated
clockwise from 1 to 𝑛. It is generated by the rotation (1, 2, . . . , 𝑛) and a reflection. Use the gens() to see which
reflection is used. The collection of all even permutations—permutations with positive sign—is a subgroup of 𝑆5

obtained by the command AlternatingGroup.

sage: C = CyclicPermutationGroup(4); C
Cyclic group of order 4 as a permutation group
sage: C.list()
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[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]
sage: D = DihedralGroup(4); D
Dihedral group of order 8 as a permutation group
sage: D.list()
[(), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2),
(1,4)(2,3)]
sage: D.gens()
[(1,2,3,4), (1,4)(2,3)]
sage: A = AlternatingGroup(4); A
Alternating group of order 4!/2 as a permutation group
sage: A.cardinality()
12

Another builtin group is the DiCyclicGroup (see the Group Properties article). Let’s check that the 𝐴4 is not
isomorphic to the dicyclic group with the same number of elements.

sage: B = DiCyclicGroup(3); B
Diyclic group of order 12 as a permutation group
sage: B.list()
[(), (5,6,7), (5,7,6), (1,2)(3,4), (1,2)(3,4)(5,6,7), (1,2)(3,4)(5,7,6), (1,3,2,4)(6,
→˓7), (1,3,2,4)(5,6), (1,3,2,4)(5,7), (1,4,2,3)(6,7), (1,4,2,3)(5,6), (1,4,2,3)(5,7)]
sage: A.is_isomorphic(B)
False

With any permutation group we may compute its cardinality, list its elements, compute the order of elements, etc. By
using python’s list comprehensions (see Lists) we can create a list of elements with certain properties. In this case we
can construct the list of all elements or order 2.

sage: S5 = SymmetricGroup(5)
sage: T = [s for s in S5 if s.order() == 2 ]; T
[(4,5), (3,4), (3,5), (2,3), (2,3)(4,5), (2,4), (2,4)(3,5), (2,5), (2,5)(3,4), (1,2),
→˓ (1,2)(4,5), (1,2)(3,4), (1,2)(3,5), (1,3), (1,3)(4,5), (1,3)(2,4), (1,3)(2,5), (1,
→˓4), (1,4)(3,5), (1,4)(2,3), (1,4)(2,5), (1,5), (1,5)(3,4), (1,5)(2,3), (1,5)(2,4)]

Next we will construct a permutation group 𝐻 and list its members. This group 𝐻 has different elements from
DihedralGroup(5), but is isomorphic to it.

sage: H= PermutationGroup(['(1,5),(3,4)', '(1,2,5,4,3)']); H
Subgroup of SymmetricGroup(5) generated by [(1,2,5,4,3), (1,5)(3,4)]
sage: H.list()
[(), (2,3)(4,5), (1,2)(3,5), (1,2,5,4,3), (1,3,4,5,2), (1,3)(2,4), (1,4,2,3,5), (1,
→˓4)(2,5), (1,5)(3,4), (1,5,3,2,4)]
sage: H.order()
10
sage: D = DihedralGroup(5)
sage: D
Dihedral group of order 10 as a permutation group
sage: D.list()
[(), (2,5)(3,4), (1,2)(3,5), (1,2,3,4,5), (1,3)(4,5), (1,3,5,2,4), (1,4)(2,3), (1,4,2,
→˓5,3), (1,5,4,3,2), (1,5)(2,4)]
sage: H == D
False
sage: H.is_isomorphic(D)
True

As with the symmetric group, we can pass a list of group elements to the method subgroup() to create a subgroup
of any permutation group.
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The list of all subgroups of a permutation group is obtained by the subgroups() method. It returns a list whose 0th
element is the trivial subgroup.

sage: D = DihedralGroup(4)
sage: L = D.subgroups(); L
[Permutation Group with generators [()], Permutation Group with generators [(1,3)(2,
→˓4)], Permutation Group with generators [(2,4)], Permutation Group with generators
→˓[(1,3)], Permutation Group with generators [(1,2)(3,4)], Permutation Group with
→˓generators [(1,4)(2,3)], Permutation Group with generators [(2,4), (1,3)(2,4)],
→˓Permutation Group with generators [(1,2,3,4), (1,3)(2,4)], Permutation Group with
→˓generators [(1,2)(3,4), (1,3)(2,4)], Permutation Group with generators [(2,4), (1,2,
→˓3,4), (1,3)(2,4)]]

The join of two subgroups 𝐶 and 𝐾, is the group generated by the union of the two subgroups. We get the union of 𝐶
and 𝐾 by “adding” the respective lists. In the example below, we see that the cyclic permutation group generated by
(1, 2, 3, 4, 5) and the Klein four group generate the whole symmetric group 𝑆5. Notice that the Klein four group is a
subgroup of 𝑆4, which itself is a subgroup of 𝑆5.

sage: K = KleinFourGroup(); K.list()
[(), (3,4), (1,2), (1,2)(3,4)]
sage: C = CyclicPermutationGroup(5)
sage: CjK = PermutationGroup(C.list()+K.list() )
Permutation Group with generators [(), (3,4), (1,2), (1,2)(3,4), (1,2,3,4,5), (1,3,5,
→˓2,4), (1,4,2,5,3), (1,5,4,3,2)]
sage: CjK.gens_small(); CjK.cardinality()
[(1,2)(3,5,4), (1,4,5,3)]
120
sage: CjK == SymmetricGroup(5)
True

The centralizer of an element 𝑎 (the subgroup of elements that commute with 𝑎) and the center of a group are con-
structed in the way you’d expect.

sage: D.center()
Subgroup of (Dihedral group of order 8 as a permutation group) generated by [(1,3)(2,
→˓4)]
sage: D.centralizer(D('(1,3)(2,4)'))
Subgroup of (Dihedral group of order 8 as a permutation group) generated by [(1,2,3,
→˓4), (1,4)(2,3)]

Quotients of Permutation Groups

In this section we explore normal subgroups and the quotient of a group by a normal subgroup. First we consider
cosets and conjugation.

The alternating group 𝐴4 has a subgroup isomorphic to the Klein four group that is normal.

sage: A4 = AlternatingGroup(4)
sage: g1 = A4('(1,4)(3,2)') ; g2 = A4('(2,4)(1,3)')
sage: H = A4.subgroup([g1,g2]);
sage: H.is_normal(A4); H.is_isomorphic(KleinFourGroup())
True
True

Let’s compare the right and left cosets of 𝐻 in 𝐴4.
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sage: Hr = A4.cosets(H, side = 'right')
sage: Hl = A4.cosets(H, side = 'left')
sage: Hr; Hl
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)], [(2,3,4), (1,3,2), (1,4,3), (1,2,4)], [(2,
→˓4,3), (1,4,2), (1,2,3), (1,3,4)]]
[[(), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)], [(2,3,4), (1,2,4), (1,3,2), (1,4,3)], [(2,
→˓4,3), (1,2,3), (1,3,4), (1,4,2)]]
sage: Hr == Hl
False

We can see they are equal, but sage is comparing each coset as lists, and notes that the elements of the last two
cosets are not listed in the same order. To rectify this, use sorted() to remind sage to order each coset. We are
fortunate with this example that the cosets themselves are listed in the same order. Otherwise we would have to apply
sorted() to the two lists of cosets.

sage: Hr_sorted = [sorted(S) for S in Hr]
sage: Hl_sorted = [sorted(S) for S in Hl]
sage: Hr_sorted == Hl_sorted
True

The conjugate by 𝑎 of an element 𝑔 is the element 𝑎−1𝑔𝑎. The set of all conjugates of 𝑔 as 𝑎 varies is the conjugacy
class of 𝑔. Below, we create a 3-cycle and compute its conjugacy class in 𝑆4 and then in 𝐴4. This shows that two
elements may be conjugate in 𝑆4 but not in 𝐴4.

sage: S4 = SymmetricGroup(4)
sage: A4 = AlternatingGroup(4)
sage: g = S4('(1,3,4)')
sage: Set([a^(-1)*g*a for a in A4])
{(1,3,4), (1,4,2), (1,2,3), (2,4,3)}
sage: Set([a^(-1)*g*a for a in S4])
{(1,2,3), (1,3,4), (2,3,4), (2,4,3), (1,4,3), (1,2,4), (1,3,2), (1,4,2)}

The method conjugacy_class_representatives() chooses one element from each conjugacy class. Notice
that there are two classes for 3-cycles in 𝐴4, but only one in 𝑆4.

sage: S4.conjugacy_classes_representatives()
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)]
sage: A4.conjugacy_classes_representatives()
[(), (1,2)(3,4), (1,2,3), (1,2,4)]

The conjugate by 𝑎 of a subgroup 𝐻 is the group 𝑎−1𝐻𝑎 (recall that multiplication is left-to right). The group
encompassing 𝑎 and 𝐻 need not be specified; sage just considers them inside the symmetric group containing all the
integers that appear.

sage: H = CyclicPermutationGroup(4)
sage: K = H.conjugate(PermutationGroupElement('(3,5)')); K
Permutation Group with generators [(1,2,5,4)]

The normalizer of 𝐻 in 𝑆4 is the subgroup of elements of 𝑎 ∈ 𝑆4 such that 𝑎−1𝐻𝑎 = 𝐻 .

sage: S4.normalizer(H)
Permutation Group with generators [(2,4), (1,2,3,4), (1,3)(2,4)]
sage: H1 = H.conjugate(PermutationGroupElement('(2,4)')); H1
Permutation Group with generators [(1,4,3,2)]
sage: H1 ==H
True
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SageMath can compute all normal subgroups of a group 𝐺. Let’s verify that 𝑆4 has 2 non-trivial normal subgroups,
the alternating group, and a group isomorphic to the Klein four group (but not equal to sage’s standard Klein four
group).

sage: S4 = SymmetricGroup(4)
sage: S4norms = S4.normal_subgroups(); S4norms
[Permutation Group with generators [()], Permutation Group with generators [(1,3)(2,
→˓4), (1,4)(2,3)], Permutation Group with generators [(2,4,3), (1,3)(2,4), (1,4)(2,
→˓3)], Permutation Group with generators [(1,2), (1,2,3,4)]]
sage: K = S4norms[1]; K==KleiFourGroup()
False
sage: K.is_isomorphic(KleinFourGroup())
True
sage: A = S4norms[2]; A == AlternatingGroup(4)
True

We may now compute the quotient of 𝐺 by the normal subgroups 𝐾 and 𝐴 in the previous example. As expected 𝐺/𝐴
is isomorphic to 𝑆2. Since 𝐺 has 24 elements and 𝐾 has 4 elements, the quotient has 6 elements. We can check that
it is isomorphic to 𝑆3.

sage: G.quotient(A)
Permutation Group with generators [(1,2)]
sage: H = G.quotient(K); H
Permutation Group with generators [(1,2)(3,6)(4,5), (1,3,5)(2,4,6)]
sage: H.is_isomorphic(SymmetricGroup(3))
True

SageMath can also compute the normalizer of a subgroup 𝐻 of 𝐺, which is the largest subgroup of 𝐺 containing 𝐻 in
which 𝐻 is normal. Here we compute the normalizer of the cyclic permutation group 𝐻 created above inside of 𝑆4.
We get the dihedral group 𝐷4. If we had used a different 4-cycle the resulting group may have been isomorphic to 𝐷4

but not equal to it.

sage: G.normalizer(H).cardinality()
8
sage: HK.normalizer(H)== DihedralGroup(4)
True

For some groups the list of all subgroups may be large. To better understand the subgroups of 𝐺 we may
compute one group from each conjugacy class. The following computations show that there are 30 subgroups
of 𝑆4 but only 11 up to conjugacy. Every other subgroup is not only isomorphic to one of the 11, given by
conjugacy_classes_subgroups(), but is also isomorphic via conjugation by some element of 𝐺.

sage: G
Symmetric group of order 4! as a permutation group
sage: G.subgroups()
[Permutation Group with generators [()], Permutation Group with generators [(1,2)(3,
→˓4)], Permutation Group with generators [(1,3)(2,4)], Permutation Group with
→˓generators [(1,4)(2,3)], Permutation Group with generators [(3,4)], Permutation
→˓Group with generators [(2,3)], Permutation Group with generators [(2,4)],
→˓Permutation Group with generators [(1,2)], Permutation Group with generators [(1,
→˓3)], Permutation Group with generators [(1,4)], Permutation Group with generators
→˓[(2,4,3)], Permutation Group with generators [(1,2,3)], Permutation Group with
→˓generators [(1,4,2)], Permutation Group with generators [(1,3,4)], Permutation
→˓Group with generators [(1,4)(2,3), (1,3)(2,4)], Permutation Group with generators
→˓[(1,2)(3,4), (3,4)], Permutation Group with generators [(1,4)(2,3), (2,3)],
→˓Permutation Group with generators [(1,3)(2,4), (2,4)], Permutation Group with
→˓generators [(1,2)(3,4), (1,3,2,4)], Permutation Group with generators [(1,3)(2,4),
→˓(1,4,3,2)], Permutation Group with generators [(1,4)(2,3), (1,2,4,3)], Permutation
→˓Group with generators [(3,4), (2,4,3)], Permutation Group with generators [(3,4),
→˓(1,3,4)], Permutation Group with generators [(1,2), (1,2,3)], Permutation Group
→˓with generators [(1,2), (1,4,2)], Permutation Group with generators [(1,3)(2,4), (1,
→˓4)(2,3), (1,2)], Permutation Group with generators [(1,2)(3,4), (1,3)(2,4), (1,4)],
→˓Permutation Group with generators [(1,4)(2,3), (1,2)(3,4), (1,3)], Permutation
→˓Group with generators [(1,3)(2,4), (1,4)(2,3), (2,4,3)], Permutation Group with
→˓generators [(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2)]]
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sage: len(G.subgroups())
30
sage: G.conjugacy_classes_subgroups()
[Permutation Group with generators [()], Permutation Group with generators [(1,3)(2,
→˓4)], Permutation Group with generators [(3,4)], Permutation Group with generators
→˓[(2,4,3)], Permutation Group with generators [(1,4)(2,3), (1,3)(2,4)], Permutation
→˓Group with generators [(1,2)(3,4), (3,4)], Permutation Group with generators [(1,
→˓2)(3,4), (1,3,2,4)], Permutation Group with generators [(3,4), (2,4,3)],
→˓Permutation Group with generators [(1,3)(2,4), (1,4)(2,3), (1,2)], Permutation
→˓Group with generators [(1,3)(2,4), (1,4)(2,3), (2,4,3)], Permutation Group with
→˓generators [(1,3)(2,4), (1,4)(2,3), (2,4,3), (1,2)]]
sage: len(G.conjugacy_classes_subgroups())
11

Exercises:

1. Find two subgroups of 𝐴4 that are conjugate in 𝑆4 but are not conjugate in 𝐴4.

Permutation Group Homomorphisms

To construct a homomorphism between two permutation groups we use the PermutationGroupMorphism()
command. For an example let us use the two isomorphic groups that we constructed earlier.

sage: G = SymmetricGroup(5)
sage: r = G('(1,2,5,4,3)')
sage: s = G('(1,5),(3,4)')
sage: H = G.subgroup([r,s])
sage: H
Subgroup of SymmetricGroup(5) generated by [(1,2,5,4,3), (1,5)(3,4)]
sage: D = DihedralGroup(5)
sage: D
Dihedral group of order 10 as a permutation group

A homomorphism between these is constructed by listing an association between the generators of one group to the
generators of the other. To see these we will use the gens() method provided by our groups

sage: H.gens()
[(1,2,5,4,3), (1,5)(3,4)]
sage: D.gens()
[(1,2,3,4,5), (1,5)(2,4)]

We construct the homomorphism 𝜑 : 𝐻 → 𝐷 that sends (1, 2, 5, 4, 3) → (1, 2, 3, 4, 5) and (1, 5)(3, 4) → (1, 5)(2, 4)
as follows:

sage: phi = PermutationGroupMorphism(H,D,H.gens(), D.gens())
sage: phi
Homomorphism : Permutation Group with generators [(1,2,5,4,3), (1,5)(3,4)] -->
→˓Dihedral group of order 10 as a permutation group

We can apply this homomorphism as we would any function, by calling it.

sage: phi( '(2,3)(4,5)')
(1,3)(4,5)
sage: phi( '(1,5,3,2,4)')
(1,3,5,2,4)
sage: phi('(1,5)')
---------------------------------------------------------------------------
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AttributeError Traceback (most recent call last)
...
AttributeError: 'str' object has no attribute '_gap_init_'

Note that we get an AttributeError because the permutation (1, 5) is not in the domain of phi().

The homomorphism also comes equipped with a few useful methods, the most useful is the kernel()method, which
yields the kernel of the homomorphism. Since this homomorphism is an injection, the kernel is just the trivial group.

sage: phi.kernel()
Permutation Group with generators [()]

The direct product of two PermutationGroups produces another PermutationGroup, but in a larger symmetric group.
The output is a list of length five consisting of the direct product followed by four homomorphisms. The first two
homomorphism are the natural ones from each factor into the product. The second two homomorphisms are the
natural projections from the product on to each factor.

sage: C4 = CyclicPermutationGroup(4)
sage: C3 = CyclicPermutationGroup(3)
sage: C4xC3 = C4.direct_product(C3); C4xC3
(Permutation Group with generators [(5,6,7), (1,2,3,4)], Permutation group morphism:
From: Cyclic group of order 4 as a permutation group
To: Permutation Group with generators [(5,6,7), (1,2,3,4)]
Defn: Embedding( Group( [ (1,2,3,4), (5,6,7) ] ), 1 ), Permutation group morphism:
From: Cyclic group of order 3 as a permutation group
To: Permutation Group with generators [(5,6,7), (1,2,3,4)]
Defn: Embedding( Group( [ (1,2,3,4), (5,6,7) ] ), 2 ), Permutation group morphism:
From: Permutation Group with generators [(5,6,7), (1,2,3,4)]
To: Cyclic group of order 4 as a permutation group
Defn: Projection( Group( [ (1,2,3,4), (5,6,7) ] ), 1 ), Permutation group morphism:
From: Permutation Group with generators [(5,6,7), (1,2,3,4)]
To: Cyclic group of order 3 as a permutation group
Defn: Projection( Group( [ (1,2,3,4), (5,6,7) ] ), 2 ))

If we just want the direct product group, we must select the 0th element of the direct product.

sage: C4xC3[0]
Permutation Group with generators [(1,2,3,4), (5,6,7)]

Exercises:

1. There is a homomorphism from the dicyclic group of index 𝑛 to the dihedral group of index 𝑛 . Construct it and
find the kernel.

4.2.2 Matrix Groups

Please contribute!

4.2.3 Abelian Groups

Please contribute!
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4.3 Linear Algebra

4.3.1 Vectors and Matrices

To create a vector, use the vector() command with a list of entries. Scalar multiples and the dot product are
straightforward to compute. As with lists, vectors are indexed starting from 0.

sage: v= vector([1,2,3,4])
sage: v[0]
1
sage: v[4]
ERROR: An unexpected error occurred while tokenizing input

Arithmetic on vectors is what one would expect. SageMath will produce an error message if you add two vectors of
different lengths.

sage: 7*v
(7, 14, 21, 28)
sage: v + vector([2,1,4,5])
(3, 3, 7, 9)
sage: v*v
sage: v + vector([2,1,4])
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)

/Users/mosullivan/Work/SageMath/Tutorial/sdsu-sage-tutorial/<ipython console> in
→˓<module>()

/Applications/sage/local/lib/python2.6/site-packages/sage/structure/element.so in
→˓sage.structure.element.ModuleElement.__add__ (sage/structure/element.c:7627)()

/Applications/sage/local/lib/python2.6/site-packages/sage/structure/coerce.so in sage.
→˓structure.coerce.CoercionModel_cache_maps.bin_op (sage/structure/coerce.c:6995)()

TypeError: unsupported operand parent(s) for '+': 'Ambient free module of rank 4 over
→˓the principal ideal domain Integer Ring' and 'Ambient free module of rank 3 over
→˓the principal ideal domain Integer Ring'

We use the matrix() command to construct a matrix with a list of the rows of the matrix as the argument.

sage: matrix([[1,2],[3,4]])
[1 2]
[3 4]

We can also construct a matrix by specifying all of the coordinates in a single matrix while specifying the dimensions
of the matrix. The following command creates a matrix with 4 rows and 2 columns.

sage: matrix(4,2, [1,2,3,4,5,6,7,8])
[1 2]
[3 4]
[5 6]
[7 8]

If the matrix that we want to construct is square we can omit the number of columns from the argument.
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sage: matrix(2,[1,2,3,4])
[1 2]
[3 4]

By default, SageMath constructs the matrix over the smallest universe which contains the coordinates.

sage: parent(matrix(2,[1,2,3,4]))
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: parent(matrix(2,[1,2/1,3,4]))
Full MatrixSpace of 2 by 2 dense matrices over Rational Field
sage: parent(matrix(2,[x,x^2,x-1,x^3])
Full MatrixSpace of 2 by 2 dense matrices over Symbolic Ring

We can specify the universe for the coordinates of a matrix or vector by giving it as an optional argument.

sage: matrix(QQ,2,[1.1,1.2,1.3,1.4])
[11/10 6/5]
[13/10 7/5]

There are shortcuts in SageMath to construct some of the more commonly used matrices. To construct the identity
matrix we use the identity_matrix() function.

sage: identity_matrix(3)
[1 0 0]
[0 1 0]
[0 0 1]

To construct the zero matrix we may use zero_matrix() or the regular matrix function with no list input.

sage: zero_matrix(2,2)
[0 0]
[0 0]
sage: matrix(2)
[0 0]
[0 0]
sage: matrix(2,3)
[0 0 0]
[0 0 0]

Note that if we use zero_matrix() we must input two integers.

Exercises:

1. Use SageMath to construct the vector 𝑣 = (4, 10, 17, 28, 2)

2. Construct the following matrix over the rational numbers in SageMath.⎛⎝ 5 3 2
4 7 10
2 11 1

⎞⎠
3. Construct a 10x10 identity matrix.

4. Construct a 20x10 zero matrix.

4.3.2 Matrix Arithmetic

You should be familiar with Vectors and Matrices.
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We may use +, -, * and ^ for matrix addition, subtraction, multiplication and exponents.

sage: A=matrix(2,[1,1,0,1])
sage: B=matrix(2,[1,0,1,1])
sage: A+B
[2 1]
[1 2]
sage: A*B
[2 1]
[1 1]
sage: B*A
[1 1]
[1 2]
sage: A-B
[ 0 1]
[-1 0]
sage: A^3
[1 3]
[0 1]

We can compute the inverse of a matrix by raising it to the −1 -th power.

sage: A^-1
[ 1 -1]
[ 0 1]

If the matrix is not invertible SageMath will complain about a ZeroDivisionError.

sage: A = matrix([[4,2],[8,4]])
sage: A^-1
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
... (Long error message)
ZeroDivisionError: input matrix must be nonsingular

When multiplying vectors and matrices; vectors can be considered both as rows or as columns, so you can multiply a
3-vector by a 3×n matrix on the right, or by a n×3 matrix on the left.

sage: x = vector([12,3,3])
sage: x
(12, 3, 3)
sage: A
[1 2 3]
[4 5 6]
sage: A*x
(27, 81)
sage: B = transpose(A)
sage: B
[1 4]
[2 5]
[3 6]
sage: x*B
(27, 81)

We use the det() method to calculate the determinant of a square matrix.

sage: A = matrix([[-1/2,0,-1],[0,-2,2],[1,0,-1/2]]); A
[-1/2 0 -1]
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[ 0 -2 2]
[ 1 0 -1/2]
sage: A.det()
-5/2

We use the trace() method to compute the *trace*of a square (or any) matrix.

sage: A = matrix([[-1/2,0,-1],[0,-2,2],[1,0,-1/2]]); A.trace()
-3

This was a trivial case that could have been easily done by hand, but there will be circumstances when knowing the
trace() method will turn out to be useful.

To check if a matrix is invertible we use the is_invertible() method.

sage: A=matrix(2,[1,1,0,1])
sage: A.is_invertible()
True
sage: A.det()
1

The invertibility of a matrix depends on the ring or field it is defined over. For example:

sage: B=matrix(2,[1,2,3,4])
sage: B.is_invertible()
False

In this example, SageMath assumes that the matrix B is defined over the integers and not the rationals, where it does
not have an inverse. But if we define B as a matrix over the rationals, we obtain different results.

sage: B = matrix(QQ, 2,[1,2,3,4])
sage: B
[1 2]
[3 4]
sage: B.is_invertible()
True

If we ask SageMath to compute the inverse of a matrix over the integers it will automatically coerce B into a matrix
over the rationals if necessary.

sage: B = matrix(2,[1,2,3,4])
sage: parent(B)
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: B^-1
[ -2 1]
[ 3/2 -1/2]
sage: parent(B^-1)
Full MatrixSpace of 2 by 2 dense matrices over Rational Field

Exercises:

1. Consider the matrices:

𝐴 =

(︂
1 3
7 8

)︂
and 𝐵 =

(︂
4 8
9 15

)︂
𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑡ℎ𝑒𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 :

𝑎) : 𝑚𝑎𝑡ℎ : ‘𝐴+𝐵‘𝑏) : 𝑚𝑎𝑡ℎ : ‘𝐴𝐵‘𝑐) : 𝑚𝑎𝑡ℎ : ‘𝐵−1‘𝑑) : 𝑚𝑎𝑡ℎ : ‘𝐵−1𝐴𝐵‘
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2. Which of the following matrices is invertable over Z? What about Q?

𝐴 =

(︂
2 8
4 16

)︂
𝐵 =

(︂
2 7
13 24

)︂
𝐶 =

(︂
1 4
2 7

)︂
𝐷 =

(︂
4 6
8 −2

)︂

4.3.3 Matrix Manipulation

You should be familiar with Vectors and Matrices and Matrix Arithmetic.

In this section we will cover some of the commands that we can use to manipulate matrices. Let’s begin by defining a
matrix over the rational numbers.

sage: M = matrix(QQ, [[1,2,3],[4,5,6],[7,8,9]]); M
[1 2 3]
[4 5 6]
[7 8 9]

To get a list of row and column vectors, we use the rows() and columns() methods.

sage: M.rows()
[(1, 2, 3), (4, 5, 6), (7, 8, 9)]
sage: M.columns()
[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

The following examples show how to get a particular row or column vector. Remember that SageMath follows
Python’s convention that all of the indexes begin with zero.

sage: M.row(0)
(1, 2, 3)
sage: M.row(2)
(7, 8, 9)
sage: M.column(1)
(2, 5, 8)
sage: M.column(2)
(3, 6, 9)

You can even get a list of the diagonal entries, by calling the diagonal() method.

sage: M.diagonal()
[1, 5, 9]

SageMath also allows us to construct new matrices from the row and/or column vectors.

sage: M.matrix_from_columns([0,2])
[1 3]
[4 6]
[7 9]
sage: M.matrix_from_rows([0,2])
[1 2 3]
[7 8 9]
sage: M.matrix_from_rows_and_columns([0,2],[0,2])
[1 3]
[7 9]

It should be noted that the matrix_from_rows_and_columns() returns the intersection of the rows and
columns specified. In the above example we are selecting the matrix that consists of the four ‘corners’ of our 3 × 3
matrix.
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Next we will discuss some of the elementary row operations. To multiply a row or column by a number we use the
rescale_row() or rescale_column() methods. Note that these commands change the matrix itself.

sage: M.rescale_row(1,-1/4); M
[ 1 2 3]
[ -1 -5/4 -3/2]
[ 7 8 9]
sage: M.rescale_col(2,-1/3); M
[ 1 2 -1]
[ -1 -5/4 1/2]
[ 7 8 -3]
sage: M.rescale_row(1,-4); M
[ 1 2 -1]
[ 4 5 -2]
[ 7 8 -3]

We can add a multiple of a row or column to another row or column by using the add_multiple_of_row()
method. The first command takes −4 times the row 0 and adds it to row 1.

sage: M.add_multiple_of_row(1,0,-4); M
[ 1 2 -1]
[ 0 -3 2]
[ 7 8 -3]
sage: M.add_multiple_of_row(2,0,-7); M
[ 1 2 -1]
[ 0 -3 2]
[ 0 -6 4]

The same can be done with the column vectors, which are also zero indexed.

sage: M.add_multiple_of_column(1,0,-2);M
[ 1 0 -1]
[ 0 -3 2]
[ 0 -6 4]
sage: M.add_multiple_of_column(2,0,1);M
[ 1 0 0]
[ 0 -3 2]
[ 0 -6 4]

If we don’t like the ordering of our rows or columns we can swap them in place.

sage: M.swap_rows(1,0); M
[ 0 -3 2]
[ 1 0 0]
[ 0 -6 4]
sage: M.swap_columns(0,2); M
[ 2 -3 0]
[ 0 0 1]
[ 4 -6 0]

If we want to change a row or column of M then we use the set_column() or set_row() methods.

sage: M.set_column(0,[1,2,3]);M
[ 1 -3 0]
[ 2 0 1]
[ 3 -6 0]
sage: M.set_row(0,[1,2,5]);M
[ 1 2 5]
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[ 2 0 1]
[ 3 -6 0]

And finally if we want to change a whole “block” of a matrix, we use the set_block() method with the coordinates
of where we want the upper left corner of the block to begin.

sage: B = matrix(QQ,[ [1,0 ],[0,1]]); B
[1 0]
[0 1]
sage: M.set_block(1,1,B); M
[1 2 5]
[2 1 0]
[3 0 1]

Of course, if all we want is the echelon form of the matrix we can use either the echelon_form() or
echelonize() methods. The difference between the two is the former returns a copy of the matrix in echelon
form without changing the original matrix and the latter alters the matrix itself.

sage: M.echelon_form()
[1 0 0]
[0 1 0]
[0 0 1]

sage: M.echelonize(); M
[ 1 0 0]
[ 0 1 0]
[ 0 0 1]

Next we use the augmented matrix and the echelon form to solve a 3× 4 system of the form 𝑀𝑥 = 𝑏. First we define
the matrix M and the vector b

sage: M = matrix(QQ, [[2,4,6,2,4],[1,2,3,1,1],[2,4,8,0,0],[3,6,7,5,9]]); M
[2 4 6 2 4]
[1 2 3 1 1]
[2 4 8 0 0]
[3 6 7 5 9]
sage: b = vector(QQ, [56, 23, 34, 101])

Then we construct the augmented matrix (𝑀 |𝑏), store it in the variable M_aug and compute its echelon form.

sage: M_aug = M.augment(b); M_aug
[ 2 4 6 2 4 56]
[ 1 2 3 1 1 23]
[ 2 4 8 0 0 34]
[ 3 6 7 5 9 101]
sage: M_aug.echelon_form()
[ 1 2 0 4 0 21]
[ 0 0 1 -1 0 -1]
[ 0 0 0 0 1 5]
[ 0 0 0 0 0 0]

This tells us that we have a one dimensional solution space that consists of vectors of the form
𝑣 = 𝑐 (−2, 1, 0, 0, 0) + (21, 0, 1, 0, 5).

sage: M*vector([21,0,-1,0,5])
(56, 23, 34, 101)
sage M*vector([-2,1,0,0,0])
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(0, 0, 0, 0)

If all we need is a single solution to this system, we can use the solve_right() method.

sage: M.solve_right(b)
(21, 0, -1, 0, 5)

Exercises:

1. Consider the matrix.

𝐴 =

⎛⎝ 4 17 23
1/32 2 17
16 −23 27

⎞⎠
Use only the elementary row operations discussed to put 𝐴 into echelon form.

2. Using the commands discussed in this section, transform the matrix on the left into the matrix on
the right.

1. ⎛⎜⎜⎜⎜⎝
−7 −1 1 4 0
−8 −2 4 2 6
1 1 −3 3 0
0 8 13 −2 0
1 4 0 −1 4

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

−7 −8 1 0 1
−1 −2 1 8 4
1 4 −3 13 0
4 2 3 −2 −1
0 6 0 0 4

⎞⎟⎟⎟⎟⎠
2. ⎛⎜⎜⎝

−1 −2 1 −13
−3 −1 1 1
1 1 −1 1

−2 −1 −9 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 100
0 1 0 12
0 0 1 111
0 0 0 202

⎞⎟⎟⎠
3. ⎛⎝ 0 −1 1

−2 1 −1
1 0 1

⎞⎠ ⎛⎝ 0 −1 1 −4
−2 1 −1 −1
1 0 1 1

⎞⎠

4.3.4 Vector and Matrix Spaces

It is sometimes useful to create the space of all matrices of particular dimension, for which we use the
MatrixSpace() function. We must specify the field (or indeed any ring) where the entries live.

sage: MatrixSpace(QQ,2,3)
Full MatrixSpace of 2 by 3 dense matrices over Rational Field

If we input a ring 𝑅 and an integer 𝑛 we get the matrix ring of 𝑛 × 𝑛 matrices over 𝑅. Coercion can be used to
construct the zero matrix, the indentity matrix, or a matrix with specified entries as shown.

sage: Mat = MatrixSpace(ZZ,2); Mat
Full MatrixSpace of 2 by 2 dense matrices over Integer Ring
sage: Mat(1)
[1 0]
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[0 1]
sage: Mat(0)
[0 0]
[0 0]
sage: Mat([1,2,3,4])
[1 2]
[3 4]

We may compute various spaces associated to a matrix.

sage: Mat = MatrixSpace(QQ, 3,4)
sage: A = Mat([[1,2,3,4], [1,3,4,4],[2,5,7,8]])
sage: A
[1 2 3 4]
[1 3 4 4]
[2 5 7 8]
sage: A.rank()
2
sage: A.right_kernel()
Vector space of degree 4 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 0 -1/4]
[ 0 1 -1 1/4]
sage: A.left_kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 1 -1]
sage: A.row_space()
Vector space of degree 4 and dimension 2 over Rational Field
Basis matrix:
[1 0 1 4]
[0 1 1 0]

Exercises:

1. For the following 5x3 matrix: ⎛⎜⎜⎜⎜⎝
1 −1 −1
0 1 −3
1 1 1
0 −6 −20
0 0 0

⎞⎟⎟⎟⎟⎠
Use SageMath to compute the bases for the following spaces:

(a) The right and left kernel.

(b) The row space.

(c) The column space.

4.3.5 Mini-Topic: The Jordan Canonical Form

For every linear transformation T : R𝑛 −→ R𝑛 there is a basis of R𝑛 such that the matrix [𝑚]ℬ is in an almost
diagonal form. This unique matrix is called the Jordan Canonical Form of T. For more information on this please
refer to this article on Wikipedia. To demonstrate some common tools that we use in SageMath we will compute this
basis for the linear transformation

T (𝑥, 𝑦, 𝑧, 𝑡) = (2𝑥+ 𝑦, 2𝑦 + 1, 3𝑧, 𝑦 − 𝑧 + 3𝑡) .
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We will begin by defining T in SageMath.

sage: T(x,y,z,t) = (2*x+y, 2*y+1, 3*z, y - z + 3*t)

Now, let’s use the standard ordered basis of R3 to find the matrix form of T.

sage: T(1,0,0,0), T(0,1,0,0), T(0,0,1,0), T(0,0,0,1)
((2, 1, 0, 0), (1, 3, 0, 1), (0, 1, 3, -1), (0, 1, 0, 3))

Note that since SageMath uses rows to construct a matrix we must use the transpose() function to get the matrix
we expect.

sage: M = transpose(matrix([[2,1,0,0],[0,2,1,0], [0,0,3,0],[0,1,-1,3]])); M
[ 2 1 0 0]
[ 0 2 1 0]
[ 0 0 3 0]
[ 0 1 -1 3]

Once we have the matrix we will compute its characteristic polynomial and then factor it in order to fine its eigenvalues.

sage: f = M.characteristic_polynomial(); f
x^4 - 10*x^3 + 37*x^2 - 60*x + 36
sage: f.factor()
(x - 3)^2 * (x - 2)^2

Alternatively, you can compute the eigenvalues directly.

sage: eval_M = M.eigenvalues(); eval_M;
[3, 3, 2, 2]

Above we have two eigenvalues 𝜆1 = 3 and 𝜆2 = 2 and both are of algebraic multiplicity 2. Now we need to look at
the associated eigenvectors. To do so we will use the eigenvectors_right() method.

sage: evec_M = M.eigenvectors_right(); evec_M
[(3, [
(1, 1, 1, 0),
(0, 0, 0, 1)
], 2), (2, [
(1, 0, 0, 0)
], 2)]
sage: evec_M[1][1][0]
(1, 0, 0, 0)

What is returned is a list() of ordered triples. Each triple is consists of an eigenvalue followed by a list with a basis
for the associated eigenspace followed by the dimension of the associated eigenspace. Note that the eigenvalue 2 has
algebraic multiplicity of 2 but geometric multiplicity only 1. This means that we will have to compute a generalized
eigenvector for this eigenvalue. We will do this by solving the system (𝑀 − 2I) 𝑣 = 𝑥, where 𝑥 is the eigenvector
(1, 0, 0, 0). We will use the echelon_form() of the augmented matrix to solve the system.

sage: (M - 2*identity_matrix(4)).augment(evec_M[1][1][0])
[ 0 1 0 0 1]
[ 0 0 1 0 0]
[ 0 0 1 0 0]
[ 0 1 -1 1 0]
sage: _.echelon_form()
[ 0 1 0 0 1]
[ 0 0 1 0 0]
[ 0 0 0 1 -1]
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[ 0 0 0 0 0]
sage: gv = vector([1,1,0,-1]); gv
(1, 1, 0, -1)

With the generalized eigenvector gv, we now have the right number of linearly independent vectors to form a basis for
our Jordan Form matrix. We will next form the change of basis matrix that consists of these vectors as columns.

sage: S = transpose( matrix( [[1,1,1,0],[0,0,0,1],[1,0,0,0],gv])); S
[ 1 0 1 1]
[ 1 0 0 1]
[ 1 0 0 0]
[ 0 1 0 -1]

Now we will compute the matrix representation of T with respect to this basis.

sage: S.inverse()*M*S
[3 0 0 0]
[0 3 0 0]
[0 0 2 1]
[0 0 0 2]

And there it is, the Jordan Canonical Form of the linear transformation T. Of course we could have just used Sage-
Math’s built in jordan_form() method to compute this directly.

sage: M.jordan_form()
[3|0|0 0]
[-+-+---]
[0|3|0 0]
[-+-+---]
[0|0|2 1]
[0|0|0 2]

But that wouldn’t be any fun!

Exercises:

1. Compute a jordan basis for the following matrix using the steps outlined in this section.⎛⎜⎜⎝
1 2 0 2
0 2 0 0

−1 2 − 1
2 −2

0 2 0 2

⎞⎟⎟⎠

4.4 Rings

4.4.1 Polynomial Rings

Constructing polynomial rings in SageMath is fairly straightforward. We just specify the name of the “indeterminate”
variable as well as the coefficient ring.

sage: R.<x>=PolynomialRing(ZZ)
sage: R
Univariate Polynomial Ring in x over Integer Ring

Once the polynomial ring has been defined we can construct a polynomial without any special coercions.
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sage: p = 2*x^2 + (1/2)*x + (3/5)
sage: parent(p)
Univariate Polynomial Ring in x over Rational Field

Though 𝑥 is the most common choice for a variable, we could have chosen any letter for the indeterminate.

sage: R.<Y>=PolynomialRing(QQ)
sage: R
Univariate Polynomial Ring in Y over Rational Field

Polynomials with rational coefficients in Y are now valid objects in SageMath.

sage: q = Y^4 + (1/2)*Y^3 + (1/3)*Y + (1/4)
sage: q
Y^4 + 1/2*Y^3 + 1/3*Y + 1/4
sage: parent(q)
Univariate Polynomial Ring in Y over Rational Field

We can define polynomial rings over any ring or field.

sage: Z7=Integers(7)
sage: R.<x>=PolynomialRing(Z7); R
Univariate Polynomial Ring in x over Ring of integers modulo 7

When entering a polynomial into SageMath the coefficients are automatically coerced into the ring or field specified.

sage: p = 18*x^2 + 7*x + 16; p
4*x^2 + 2
sage: parent(p)
Univariate Polynomial Ring in x over Ring of integers modulo 7

Of course this coercion has to be well defined.

sage: q = x^4 + (1/2)*x^3 + (1/3)*x^2 + (1/4)*x + (1/5)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last) ...
TypeError: unsupported operand parent(s) for '*': 'Rational Field' and 'Univariate
→˓Polynomial Ring in x over Ring of integers modulo 7'

When prudent, SageMath will extend the universe of definition to fit the polynomial entered. For example, if we ask
for a rational coefficient in a polynomial ring over Z, SageMath will naturally coerce this polynomial into a ring over
Q

sage: S.<y>=PolynomialRing(ZZ)
sage: 1/2*y
1/2*y
sage: parent(1/2*y)
Univariate Polynomial Ring in y over Rational Field

It should be noted that the ring S hasn’t been changed at all. Nor is (1/2)*y` in the universe ``S. This
can be easily verified.

sage: S
Univariate Polynomial Ring in y over Integer Ring
sage: (1/2)*y in S
False
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Once constructed, the basic arithmetic with polynomials is straightforward.

sage: R.<x>=PolynomialRing(QQ)
sage: f=x+1
sage: g=x^2+x-1
sage: h=1/2*x+3/4
sage: f+g
x^2 + 2*x
sage: g-h
x^2 + 1/2*x - 7/4
sage: f*g
x^3 + 2*x^2 - 1
sage: h^3
1/8*x^3 + 9/16*x^2 + 27/32*x + 27/64

We can also divide elements of the polynomial ring, but this changes the parent.

sage: f/g
(x + 1)/(x^2 + x - 1)
sage: parent(f/g)
Fraction Field of Univariate Polynomial Ring in x over Rational Field

A fundamental attribute of a polynomial is its degree. We use the degree() method to calculate this.

sage: R.<x>=PolynomialRing(QQ)
sage: (x^3+3).degree()
3
sage: R(0).degree()
-1

Notice that by convention SageMath sets the degree of 0 to be -1.

The polynomial ring over a field has a division algorithm. As with the integers, we may use the // operator to
determine the quotient and the % operator to determine the remainder of a division.

sage: R.<x>=PolynomialRing(Integers(7))
sage: f=x^6+x^2+1
sage: g=x^3+x+1
sage: f // g
x^3 + 6*x + 6
sage: f % g
2*x^2 + 2*x + 2

Additionally, if the coefficients of the polynomial are in Z or Q, we may use the divmod() command to compute
both at the same time.

sage: S.<y>=PolynomialRing(QQ)
sage: a=(y+1)*(y^2+1)
sage: b=(y+1)*(y+5)
sage: a // b
y - 5
sage: a % b
26*y + 26
sage: divmod(a,b)
(y - 5, 26*y + 26)

For a field 𝐹 , the polynomial ring 𝐹 [𝑥] has a division algorithm, so we have a unique greatest common divisor (gcd)
of polynomials. This can be computed using the gcd() command.

100 Chapter 4. Mathematical Structures

https://docs.python.org/3/library/functions.html#divmod


SDSU Sage Tutorial Documentation, Release 1.2

sage: R.<x> = PolynomialRing(QQ)
sage: p = x^4 + 2*x^3 + 2*x^2 + 2*x + 1
sage: q = x^4 - 1
sage: gcd(p,q)
x^3 + x^2 + x + 1

The greatest common divisor of two integers can be represented as a linear combination of the two integers, and
the extended Euclidean algorithm is used to determine one such linear combination. Similarly, the greatest common
divisor of polynomials 𝑎(𝑥) and 𝑏(𝑥) may be written in the form 𝑎(𝑥)𝑓(𝑥) + 𝑏(𝑥)𝑔(𝑥) for some polynomials 𝑓(𝑥)
and 𝑔(𝑥). We may use the xgcd() function to compute the multipliers 𝑓(𝑥) and 𝑔(𝑥).

sage: R.<x>=PolynomialRing(ZZ)
sage: a=x^4-1
sage: b=(x+1)*x
sage: xgcd(a,b)
(x + 1, -1, x^2 - x + 1)
sage: d,u,v=xgcd(a,b)
sage: a*u+b*v
x + 1

To check whether a polynomial is irreducible, we use its is_irreducible() method.

sage: R.<x>=PolynomialRing(Integers(5))
sage: (x^3+x+1).is_irreducible()
True
sage: (x^3+1).is_irreducible()
False

This method is only suitable for polynomial rings that are defined over a field, as polynomials defined more generally
may not posses a unique factorization.

To compute the factorization of a polynomial, where defined, we use the factor() command.

sage: R.<x>=PolynomialRing(Integers(5))
sage: factor(x^3+x+1)
x^3 + x + 1
sage: factor(x^3+1)
(x + 1) * (x^2 + 4*x + 1)

In the example above, we see a confirmation that 𝑥3 + 𝑥+ 1 is irreducible in Z5[𝑥] whereas 𝑥3 + 1 may be factored,
hence is reducible.

We can also consider polynomials in 𝑅[𝑥] as functions from 𝑅 to 𝑅 by evaluation, that is by substituting the indeter-
minate variable with a member of the coefficient ring. Evaluation of polynomials in SageMath works as expected, by
calling the polynomial like a function.

sage: R.<x>=PolynomialRing(Integers(3))
sage: f=2*x+1
sage: f(0)
1
sage: f(1)
0
sage: f(2)
2

Calculating the roots, or zeros, of a polynomial can be done by using the roots() method.
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sage: ((x-1)^2*(x-2)*x^3).roots()
[(2, 1), (1, 2), (0, 3)]

SageMath returns a list of pairs (𝑟,𝑚) where r is the root and m is its multiplicity. Of course, a polynomial need not
have any roots and in this case the empty list is returned.

sage: (x^2+1).roots()
[]

Multivariate Polynomial Rings

Defining a polynomial ring with more that one variable can be done easily by supplying an extra argument to
PolynomialRing() which specifies the number of variables desired.

sage: R.<x,y,z> = PolynomialRing(QQ, 3)
sage: p = -1/2*x - y*z - y + 8*z^2; p
-y*z + 8*z^2 - 1/2*x - y

Unlike with univariate polynomials, there is not a single way that we can order the terms of a polynomial. So to specify
things like the degree and the leading term of a polynomial we must first fix a rule for deciding when one term is larger
than another. If no argument is specified, SageMath defaults to the graded reverse lexicographic ordering, sometimes
referred to as grevlex, to make these decisions. To read more about Monomial Orderings, see this page on Wikipedia.

To access a list of the monomials with nonzero coefficients in 𝑝, you use the monomials() method.

sage: p.monomials()
[y*z, z^2, x, y]

These monomials are listed in descending order using the term ordering specified when the ring was constructed.

To access a list of coefficients we use the coefficients() method.

sage: p.coefficients()
[-1, 8, -1/2, -1]

The list of coefficients is provided in the same order as the monomial listing computed earlier. This means that we can
create a list of terms of our polynomial by zip()-ing up the two lists.

sage: [ a*b for a,b in zip(p.coefficients(),p.monomials())]
[-y*z, 8*z^2, -1/2*x, -y]

Often you want to compute information pertaining to the largest, or leading, term. We can compute the lead coefficient,
leading monomial, and the lead term as follows:

sage: p.lc()
-1
sage:
sage: p.lm()
y*z
sage: p.lt()
-y*z

We can also compute the polynomial’s total degree using the total_degree() method.

sage: p.total_degree()
2
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The exponents of each variable in each term, once again specified in descending order, is computed using the
exponents() method.

sage: p.exponents()
[(0, 1, 1), (0, 0, 2), (1, 0, 0), (0, 1, 0)]

and the exponent of the lead term is computed by chaining together two of the methods just presented.

sage: p.lm().exponents()
[(0, 1, 1)]

To change the term ordering we must reconstruct both the ring itself and all of the polynomials with which we were
working. The following code constructs a multivariate polynomial ring in 𝑥, 𝑦, and 𝑧 using the lexicographic monomial
ordering.

sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: p = -1/2*x - y*z - y + 8*z^2; p
-1/2*x - y*z - y + 8*z^2

Once the term order changes, all of the methods discussed earlier, even how SageMath displays the polynomial, take
this into account.

sage: p.lm()
x
sage: p.lc()
-1/2
sage: p.lt()
-1/2*x
sage: p.monomials()
[x, y*z, y, z^2]

Note that the order in which the indeterminates are listed affects the monomial ordering. In the example above we
have the lexicographic ordering, with 𝑥 > 𝑦 > 𝑧. We may redefine the ring to use the lexicographic order 𝑧 > 𝑦 > 𝑥.

sage: R.<z,y,x> = PolynomialRing(QQ,3,order='lex')
sage: p = -1/2*x - y*z - y + 8*z^2
sage: p
8*z^2 - z*y - y - 1/2*x
sage: p.lm()
z^2
sage: p.lc()
8
sage: p.lt()
8*z^2

Note again how all of the methods automatically take the new ordering into account.

Finally we can reduce a polynomial modulo a list of polynomials using the mod() method.

sage: r = -x^2 + 1/58*x*y - y + 1/2*z^2
sage: r.mod([p,q])
-238657765/29696*y^2 + 83193/14848*y*z^2 + 68345/14848*y - 1/1024*z^4 + 255/512*z^2 -
→˓1/1024

Exercises:

1. Use SageMath to find out which of the following polynomials with rational coefficients are irreducible.

(a) 3𝑦4 − 1
2𝑦

2 − 1
2𝑦 −

1
2
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(b) 2𝑦4 − 𝑦2 − 𝑦

(c) 1
5𝑦

5 − 1
3𝑦

4 + 𝑦3 − 17
2 𝑦2 − 21𝑦

(d) 𝑦3 + 1
4𝑦

2 − 6𝑦 + 1
8

(e) 3𝑦7 + 𝑦6 + 9
2𝑦

4 − 𝑦3 + 𝑦2 − 1
2𝑦

2. Factor all of the polynomials over Z[𝑥].

(a) −𝑥10 + 4𝑥9 − 𝑥8 + 𝑥7 − 𝑥6 + 2𝑥3 + 𝑥2 − 1

(b) 𝑥5 + 2𝑥4 + 𝑥3 + 3𝑥2 − 3

(c) 𝑥4 + 𝑥3 − 𝑥2 − 𝑥

(d) 2𝑥8 − 5𝑥7 − 3𝑥6 + 15𝑥5 − 3𝑥4 − 15𝑥3 + 7𝑥2 + 5𝑥− 3

(e) 6𝑥6 − 𝑥5 − 8𝑥4 − 𝑥3 + 3𝑥2 + 𝑥

3. Compute all of the roots and of the following polynomials defined over Z7. Compare this list to their factoriza-
tions.

(a) 2𝑥7 + 3𝑥6 + 6𝑥5 + 4𝑥4 + 𝑥3 + 5𝑥2 + 2𝑥+ 5

(b) 3𝑥3 + 𝑥2 + 2𝑥+ 1

(c) 3𝑥8 + 5𝑥7 + 5𝑥5 + 𝑥3 + 2𝑥2 + 6𝑥

(d) 𝑥5 + 2𝑥4 + 𝑥3 + 2𝑥2 + 2𝑥+ 1

(e) 2𝑥10 + 2𝑥8 + 5𝑥6 + 𝑥5 + 3𝑥4 + 5𝑥3 + 2𝑥2 + 6𝑥+ 5

4.4.2 Ideals and Quotients

In this section we will construct and do common computations with ideals and quotient rings.

Ideals

Once a ring is constructed and a list of generating elements have been selected, the ideal generated by this list is
constructed by using the * operator.

sage: R.<x> = PolynomialRing(QQ)
sage: I = [2*x^2 + 8*x - 10, 10*x - 10]*R; I
Principal ideal (x - 1) of Univariate Polynomial Ring in x over Rational Field
sage: J = [ x^2 + 1, x^3 + x ]*R; J
Principal ideal (x^2 + 1) of Univariate Polynomial Ring in x over Rational Field
sage: K = [ x^2 + 1, x - 2]*R; K
Principal ideal (1) of Univariate Polynomial Ring in x over Rational Field

SageMath automatically reduces the set of generators. This can be seen by using the gens() method which returns
the list of the ideal’s generating elements.

sage: I.gens()
(x - 1,)
sage: J.gens()
(x^2 + 1,)
sage: K.gens()
(1,)

Ideal membership can be determined by using the in conditional.
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sage: R(x-1) in I
True
sage: R(x) in I
False
sage: R(2) in J
False
sage: R(2) in K
True

You can determine some properties of the ideal by using the corresponding is_ methods. For example, to determine
weather the ideals are prime, principal, or idempotent we enter the following:

sage: J.is_prime()
True
sage: K.is_prime()
False
sage: I.is_idempotent()
False
sage: K.is_principal()
True

Ideals in Multivarate Polynomial Rings

To construct an ideal within a multivariate polynomial ring, we must first construct the Polynomial ring with a term
ordering and a collection of polynomials that will generate the ideal.

sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: p = -1/2*x - y*z - y + 8*z^2
sage: q = -32*x + 2869*y - z^2 - 1

The ideal is constructed in the same manner as before.

sage: I = [p,q]*R
sage: I
Ideal (-1/2*x - y*z - y + 8*z^2, -32*x + 2869*y - z^2 - 1) of Multivariate Polynomial
→˓Ring in x, y, z over Rational Field

When the ring is a multivariate polynomial, we can compute a special list of generators for I, called a groebner_basis.

sage: I.groebner_basis()
[x - 2869/32*y + 1/32*z^2 + 1/32, y*z + 2933/64*y - 513/64*z^2 - 1/64]

There are different algorithms for computing a Groebner basis. We can change the algorithm by supplying an optional
argument to the groebner_basis() command. The following commands compute a Groebner basis using the
Buchberger algorithm while showing the intermediate results. Very useful for teaching!

sage: set_verbose(3)
sage: I.groebner_basis('toy:buchberger')
(-32*x + 2869*y - z^2 - 1, -1/2*x - y*z - y + 8*z^2) => -2*y*z - 2933/32*y + 513/32*z^
→˓2 + 1/32
G: set([-2*y*z - 2933/32*y + 513/32*z^2 + 1/32, -1/2*x - y*z - y + 8*z^2, -32*x +
→˓2869*y - z^2 - 1])
(-1/2*x - y*z - y + 8*z^2, -32*x + 2869*y - z^2 - 1) => 0
G: set([-2*y*z - 2933/32*y + 513/32*z^2 + 1/32, -1/2*x - y*z - y + 8*z^2, -32*x +
→˓2869*y - z^2 - 1])
(-1/2*x - y*z - y + 8*z^2, -2*y*z - 2933/32*y + 513/32*z^2 + 1/32) => 0
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G: set([-2*y*z - 2933/32*y + 513/32*z^2 + 1/32, -1/2*x - y*z - y + 8*z^2, -32*x +
→˓2869*y - z^2 - 1])
(-32*x + 2869*y - z^2 - 1, -2*y*z - 2933/32*y + 513/32*z^2 + 1/32) => 0
G: set([-2*y*z - 2933/32*y + 513/32*z^2 + 1/32, -1/2*x - y*z - y + 8*z^2, -32*x +
→˓2869*y - z^2 - 1])
3 reductions to zero.
[x + 2*y*z + 2*y - 16*z^2, x - 2869/32*y + 1/32*z^2 + 1/32, y*z + 2933/64*y - 513/
→˓64*z^2 - 1/64]

We can compute the various elimination ideals by using the elimination_ideal() method.

sage: I.elimination_ideal([x])
Ideal (64*y*z + 2933*y - 513*z^2 - 1) of Multivariate Polynomial Ring in x, y, z over
→˓Rational Field
sage: I.elimination_ideal([x,y])
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: I.elimination_ideal([x,z])
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: I.elimination_ideal([x])
Ideal (64*y*z + 2933*y - 513*z^2 - 1) of Multivariate Polynomial Ring in x, y, z over
→˓Rational Field
sage: I.elimination_ideal([y])
Ideal (64*x*z + 2933*x + 2*z^3 - 45902*z^2 + 2*z + 2) of Multivariate Polynomial Ring
→˓in x, y, z over Rational Field
sage: I.elimination_ideal([z])
Ideal (263169*x^2 + 128*x*y^2 - 47095452*x*y + 16416*x - 11476*y^3 + 2106993608*y^2 -
→˓1468864*y + 256) of Multivariate Polynomial Ring in x, y, z over Rational Field
sage: I.elimination_ideal([x,y])
Ideal (0) of Multivariate Polynomial Ring in x, y, z over Rational Field

4.4.3 Quotient Rings

To construct the quotient ring of a ring with an ideal we use the quotient() method.

sage: R = ZZ
sage: I = R*[5]
sage: I
Principal ideal (5) of Integer Ring
sage: Q = R.quotient(I)
sage: Q
Ring of integers modulo 5

To preform arithmetic in the quotient ring, we must first coerce elements into this universe. For more on why we do
this see Universes and Coercion.

sage: Q(10)
0
sage: Q(12)
2
sage: Q(10) + Q(12)
2
sage: Q(10 + 12)
2

When working with quotients of polynomial rings it is a good idea to give the indeterminate a new name.
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sage: R.<x> = PolynomialRing(ZZ)
sage: parent(x)
Univariate Polynomial Ring in x over Integer Ring
sage: I = R.ideal(x^2 + 1)
sage: Q.<a> = R.quotient(I)
sage: parent(a)
Univariate Quotient Polynomial Ring in a over Integer Ring with modulus x^2 + 1
sage: a^2
-1
sage: x^2
x^2

Then we can do arithmetic in this quotient ring without having to explicitly coerce all of our elements.

sage: 15*a^2 + 20*a + 1
20*a - 14
sage: (15 + a)*(14 - a)
-a + 211

4.4.4 Properties of Rings

You can check some of the properties of the rings which have been constructed. For example, to check whether a ring
is an integral domain or a field we use the is_integral_domain() or is_field() methods.

sage: QQ.is_field()
True
sage: ZZ.is_integral_domain()
True
sage: ZZ.is_field()
False
sage: R=Integers(15)
sage: R.is_integral_domain()
False
sage: S=Integers(17)
sage: S.is_field()
True

These properties are often determined instantaneously since they are built into the definitions of the rings and not
calculated on the fly.

For a complete listing of properties that are built into a ring, you can use SageMath’s built in tab-completion. For
example, to see all of the properties which can be determined for the rational numbers we type QQ.is then the tab
key. What we get is a list of all of the properties that we can compute.

sage: QQ.is[TAB]
QQ.is_absolute QQ.is_finite QQ.is_ring
QQ.is_atomic_repr QQ.is_integral_domain QQ.is_subring
QQ.is_commutative QQ.is_integrally_closed QQ.is_zero
QQ.is_exact QQ.is_noetherian
QQ.is_field QQ.is_prime_field

The characteristic of the ring can be computed using the ring’s characteristic() method.

sage: QQ.characteristic()
0
sage: R=Integers(43)
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sage: R.characteristic()
43
sage: F.<a> = FiniteField(9)
sage: F.characteristic()
3
sage: ZZ.characteristic()
0

4.4.5 Mini-Topic: Multivariate Polynomial Division Algorithm

In this section we will use SageMath to construct a division algorithm for multivariate polynomials. Specifically, for a
given polynomial 𝑓 (the dividend) and a sequence of polynomials 𝑓1, 𝑓2, . . . , 𝑓𝑘 (the divisors) we want to compute a
sequence of quotients 𝑎1, 𝑎2, . . . , 𝑎𝑘 and a remainder polynomial 𝑟 so that

𝑓 =

𝑖=𝑘∑︁
𝑖=1

𝑎𝑖 · 𝑓𝑖 + 𝑟

where no terms of 𝑟 are divisible by any of the leading terms of 𝑓𝑖.

The first thing that we will do is to construct the base field for the polynomial ring and determine how many variables
we want for the polynomial ring. In this case, lets define a two variable polynomial ring over the finite field F2.

sage: K = GF(2)
sage: n = 2

Next we will construct the polynomial ring.

sage: P.<x,y> = PolynomialRing(F,2,order="lex")

Since we are working with more than one variable we must tell SageMath how to order the terms, in this case we
selected a lexicographic ordering. The default term ordering is degree reverse lexicographic, where the total degree
is used first to determine the order of the monomials, then a reverse lexicographic order is used to break ties. Other
options for monomial orderings are deglex (degree lexicographic) or you can define a block ordering by using the
TermOrder() command. You can read more on monomial orderings on-line on Wikipedia and on MathWorld, or
the book [Cox2007] .

Now we will begin our division algorithm. The first thing we will do is define a function which determines whether
two monomial divide each other.

def does_divide(m1,m2):
for c in (vector(ZZ, m1.degrees()) - vector(ZZ,m2.degrees())):

if c < 0:
return False

return True

Then we will define a sequence of polynomials which we will use to reduce our dividend.

sage: F = [x^2 + x, y^2 + y]

Next we will define the polynomial which will be reduced.

sage: f = x^3* y^2

Now we will define the list of quotients and the remainder and initialize them to 0.
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sage: A = [P(0) for i in range(0,len(F)) ]
sage: r = P(0)

Now because we alter f through the algorithm we will create a copy of it so that we can keep the value of 𝑓 for later to
verify the algorithm.

sage: p = f

Now we are ready to define the main loop of our algorithm.

while p != P(0):
i = 0
div_occurred = False
while (i < len(F) and div_occurred == False):

print A,p,r
if does_divide(p.lm(), F[i]):

q = P(p.lm()/F[i].lm())
A[i] = A[i] + q
p = p - q*F[i]
div_occurred = True

else:
i = i + 1

if div_occurred == False:
r = r + p.lm()
p = p - p.lm()

print A, p, r

4.5 Fields

4.5.1 Number Fields

We create a number field by specifying an irreducible polynomial and a name for the root of that polynomial. We may
use the indeterminate 𝑥, which is already defined in sage. We can also create a polynomial ring over the rationals and
use the indeterminate for that polynomial ring.

sage: P.<t> = PolynomialRing(QQ)
sage: K.<a> = NumberField(t^3-2)
sage: K
Number Field in a with defining polynomial t^3 - 2
sage: K.polynomial()
t^3 - 2

A “random element” may be constructed producing an element with degree at most 2 (one less than the degree of
the defining polynomial). The options num_bound() or dem_bound() may be used to bound the numerator or
denominator.

sage: K.random_element()
-5/14*a^2 + a - 3
sage: K.random_element()
-2*a
sage: K.random_element(num_bound= 2)
-a^2 + 1
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Every irrational element will have a minimal polynomial of degree 3.

sage: a.minpoly()
x^3 - 2
sage: (a^2-3*a).minpoly()
x^3 + 18*x + 50

We can test isomorphism of fields.

sage: K.<a>= NumberField(t^3-2)
sage: L.<b> = NumberField(t^3-6*t-6)
sage: K.is_isomorphic(L)
True

The number of real embeddings and the number of pairs of complex embeddings are given by the signature of the
field. The embeddings into the real field, RR() , or complex field CC() may also be constructed.

sage: K.signature()
(1, 1)
sage: K.real_embeddings()
[
Ring morphism:

From: Number Field in a with defining polynomial t^3 - 2
To: Real Field with 53 bits of precision
Defn: a |--> 1.25992104989487

]
sage: K.complex_embeddings()
[
Ring morphism:

From: Number Field in a with defining polynomial t^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.629960524947437 - 1.09112363597172*I,

Ring morphism:
From: Number Field in a with defining polynomial t^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> -0.629960524947437 + 1.09112363597172*I,

Ring morphism:
From: Number Field in a with defining polynomial t^3 - 2
To: Complex Field with 53 bits of precision
Defn: a |--> 1.25992104989487

]
sage: phi1, phi2, phi3 = K.complex_embeddings()
sage: phi1(a)
-0.629960524947437 - 1.09112363597172*I
sage: phi2(a)
-0.629960524947437 + 1.09112363597172*I
sage: phi3(a^2+3*a+5)
10.3671642016528

The Galois group() method computes the Galois group of the Galois closure, not of the field itself. When the
Galois group is not cyclic, as in the second example, you need to name one of the generators. The generators may also
be accessed as shown below.

sage: G = L.galois_group()
sage: G.gens()
[(1,2,3)]
sage: H.<g>= K.galois_group()
sage: H.gens()
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[(1,2)(3,4)(5,6), (1,4,6)(2,5,3)]
sage: H.0
(1,2)(3,4)(5,6)
sage: H.1
(1,4,6)(2,5,3)

The Galois closure of K.

sage: L.<b> = K.galois_closure()
sage: L
Number Field in b with defining polynomial t^6 + 40*t^3 + 1372

Field Extensions

Now let’s construct field extensions, which may be done in a few different ways. The methods absolute_() refer to
the prime field Q, while the methods relative_() refer to a field extension as constructed, which may be relative
to some intermediate field.

sage: P.<t> = PolynomialRing(QQ)
sage: K.<a> = NumberField(t^3-2)
sage: L.<b> = NumberField(t^3-a)
sage: L.relative_degree(); L.relative_polynomial()
3
t^3 - a
sage: L.base_field()
Number Field in a with defining polynomial t^3 - 2
sage: L.absolute_degree(); L.absolute_polynomial()
9
x^9 - 2
sage: L.gens()
(b, a)

We may also create the compositum of several fields defined by a list of polynomials over the rationals. We must
specify a root for each polynomial. SageMath creates a sequence of 3 fields in the following example, starting at the
far right in the list.

sage: M.<a,b,c> = NumberField([t^3-2, t^2-3, t^3-5])
sage: M
Number Field in a with defining polynomial t^3 - 2 over its base field
sage: M.relative_degree()
3
sage: M.absolute_degree()
18
sage: d = M.absolute_generator(); d
a - b + c
sage: d.minpoly()
x^3 + (3*b - 3*c)*x^2 + (-6*c*b + 3*c^2 + 9)*x + (3*c^2 + 3)*b - 9*c - 7
sage: d.absolute_minpoly()
x^18 - 27*x^16 - 42*x^15 + 324*x^14 + 378*x^13 - 2073*x^12 + 1134*x^11 - 6588*x^10 -
→˓23870*x^9 + 88695*x^8 + 79002*x^7 - 147369*x^6 - 1454922*x^5 + 431190*x^4 +
→˓164892*x^3 + 2486700*x^2 - 1271592*x + 579268

The next example computes the Galois closure of K() and asks for the roots of unity. The generator for L() is
something that sage computes, so it may have a complicated minimum polynomial, as we see. We know that L()
contains cube roots of unity, so let’s verify it.
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sage: K.<a> = NumberField(t^3-2)
sage: L.<b> = K.galois_closure()
sage: b.minpoly()
x^6 + 40*x^3 + 1372
sage: units= L.roots_of_unity(); units
[1/36*b^3 + 19/18, 1/36*b^3 + 1/18, -1, -1/36*b^3 - 19/18, -1/36*b^3 - 1/18, 1]
sage: len(units)
6
sage: [u^3 for u in units]
[-1, 1, -1, 1, -1, 1]

Special Number Fields

There are two classes of number fields with special properties that you can construct directly. For a quadratic field
extension simply specify a square free integer.

sage: F.<a> = QuadraticField(17)
sage: a^2
17
sage: (7*a-3).minpoly()
x^2 + 6*x - 824

A cyclotomic field is created by indentifying its primitive root of unity.

CyclotomicField()

QuadraticField()

4.5.2 Finite Fields

In a prior section we constructed rings of integers modulo 𝑛. We know that when 𝑛 is a prime number the ring Z𝑛 is
actually a field. SageMath will allow us to construct this same object as either a ring or a field.

sage: R = Integers(7)
sage: F7 = GF(7)
sage: R, F7
(Ring of integers modulo 7, Finite Field of size 7)

To take advantage of the extra stucture it is best to use the command GF() (or equivalently, FiniteField()) to
construct this object. As with modular rings we have to coerece integers into the field in order to do arithemetic in the
field.

sage: F7(4 + 3)
0
sage: F7(2*3)
6
sage: F7(3*7)
0
sage: F7(3/2)
5

We can use SageMath to construct any finite field. Recall that a finite field is always of order 𝑛 = 𝑝𝑘 where 𝑝 is a
prime number. To construct the field of order 25 = 52 we input the following command.
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sage: F25.<a> = GF(25)

Recall that the finite field of order 52 can be thought of a an extension of Z5 using a root of a polynomial of degree
2. The a that you specified is a root of this polynomial. There are different polynomials that can be used to construct
this extension and SageMath chooses one for you. You can see the polynomial chosen by using the, aptly named,
polynomial() method.

sage: p = F25.polynomial();
sage: p
a^2 + 4*a + 2

We can verify that a satisfies this polynomial.

sage: a^2 + 4*a + 2
0

It should be noted that a already lives in the field and no special coercion is necessary to do arithmetic using a.

sage: parent(a)
Finite Field in a of size 5^2
sage: a^2
a + 3
sage: a*(a^2 + 1)
3

But if we are using only integers we must coerce the arithmetic into the field.

sage: 3+4
7
sage: parent(3+4)
Integer Ring
sage: F25(3 + 4)
2
sage: parent(F25(3+4))
Finite Field in a of size 5^2

Sometimes we would like to specify the polynomial used to construct out extension. to do so we just need to add the
modulus option to our field constructor.

sage: F25.<a> = GF(25, modulus=x^2 + x + 1)
sage: a^2 + a + 1
0
sage: a^2
4*a + 4

Remember that the modulus must be a polynomial which is irreducible over F5[𝑥]. Many times we would like for
the modulus to not just be irreducible, but to be primitive. Next we will construct all of the primitive polynomials of
degree 2. The following example uses Polynomial Rings and List Comprehensions (Loops in Lists). First thing that we
will do is construct a list of all monic polynomials over GF(5)

sage: F5 = GF(5)
sage: P.<x> = PolynomialRing(F, 'x')
sage: AP = [ a0 + a1*x + a2*x^2 for (a0,a1) in F^3]
sage: AP
[x^2, x^2 + 1, x^2 + 2, x^2 + 3, x^2 + 4, x^2 + x, x^2 + x + 1, x^2 + x + 2, x^2 + x
→˓+ 3, x^2 + x + 4, x^2 + 2*x, x^2 + 2*x + 1, x^2 + 2*x + 2, x^2 + 2*x + 3, x^2 + 2*x
→˓+ 4, x^2 + 3*x, x^2 + 3*x + 1, x^2 + 3*x + 2, x^2 + 3*x + 3, x^2 + 3*x + 4, x^2 +
→˓4*x, x^2 + 4*x + 1, x^2 + 4*x + 2, x^2 + 4*x + 3, x^2 + 4*x + 4]
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Next we will filter out the primitive polynomials out of this list.

sage: PR = [ p for p in AP if p.is_primitive() ]
sage: PR
[x^2 + x + 2, x^2 + 2*x + 3, x^2 + 3*x + 3, x^2 + 4*x + 2]

If we wanted all of the irreducible polynomials we would only change the last command slightly.

sage: IR = [ p for p in AP if p.is_irreducible() ]
sage: IR
[x^2 + 2, x^2 + 3, x^2 + x + 1, x^2 + x + 2, x^2 + 2*x + 3, x^2 + 2*x + 4, x^2 + 3*x
→˓+ 3, x^2 + 3*x + 4, x^2 + 4*x + 1, x^2 + 4*x + 2]

It should be noted that the above code will only work if the polynomials are over finite rings or fields.

Exercises:

1. Compute the list of all primitive polynomials of degree 3 over 𝐺𝐹 (5).

2. Compute the number of primitive elements in 𝐺𝐹 (125).

3. Explain the relationship between the number of primitive polynomials and the number of primitive elemens in
the previous exercises.

4.5.3 Function Fields

4.6 Coding Theory

4.6.1 Linear Codes

A linear code is just a finite-dimensional vector space commonly defined over a finite field. To construct a linear code
in SageMath we first define a finite field and a matrix over this field whose range will define this vector space.

sage: F = GF(2)
sage: G = matrix(F, [(0,1,0,1,0),(0,1,1,1,0),(0,0,1,0,1),(0,1,0,0,1)]); G
[0 1 0 1 0]
[0 1 1 1 0]
[0 0 1 0 1]
[0 1 0 0 1]

The code itself is constructed by the LinearCode() command.

sage: C = LinearCode(G); C
Linear code of length 5, dimension 4 over Finite Field of size 2

While the length and dimension of the code are displayed in the object’s description, you can also obtain these prop-
erties at anytime using the code’s length() and dimension() methods.

sage: C.length()
5
sage: C.dimension()
4

Given two code words, we can compute their Hamming Weight and Distance both by using the hamming_weight()
function.
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sage: w1 = vector(F, (0,1,0,1,0)); w1
(0, 1, 0, 1, 0)
sage: hamming_weight(w1)
2
sage: w2 = vector(F, (0,1,1,0,1)); w2
(0, 1, 1, 0, 1)
sage: hamming_weight(w2)
3
sage: hamming_weight(w1 - w2)
3

The minimum distance of C can be computed by using the minimum_distance() method.

sage: C.minimum_distance()
1

SageMath can also compute the distribution of weights for the code.

sage: C.weight_distribution()
[1, 4, 6, 4, 1, 0]

Where the value listed at index i of the list, starting with zero and ending with the length of the code, is the number
of codewords with that weight.

Related to the weight distribution is the weight enumerator polynomial, which you compute using the code’s
weight_enumerator() method.

sage: C.weight_enumerator()
x^5 + 4*x^4*y + 6*x^3*y^2 + 4*x^2*y^3 + x*y^4

The generating and check matrices are computed using the gen_mat() and check_mat() methods.

sage: C.gen_mat()
[0 1 0 1 0]
[0 1 1 1 0]
[0 0 1 0 1]
[0 1 0 0 1]
sage: C.check_mat()
[1 0 0 0 0]

The systematic form of the generating matrix is computed using gen_mat_systematic().

sage: C.gen_mat_systematic()
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

SageMath can both extend and puncture our code. The extended code is computed as follows:

sage: Cx = C.extended_code(); Cx
Linear code of length 6, dimension 4 over Finite Field of size 2
sage: Cx.gen_mat()
[0 1 0 1 0 0]
[0 1 1 1 0 1]
[0 0 1 0 1 0]
[0 1 0 0 1 0]
sage: Cx.check_mat()
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[1 0 0 0 0 0]
[0 1 1 1 1 1]

The punctured code is computed by supplying the code’s punctured() method a list of coordinates in which to
delete. The following commands construct the code that results when the 1st and 3rd coordinate from every code word
in C are deleted. Note that unlike vectors, lists and matrices the 1st column is indexed by 1 and not 0 when puncturing
a code.

sage: Cp = C.punctured([1,3]); Cp
Linear code of length 3, dimension 2 over Finite Field of size 2
sage: Cp.gen_mat()
[0 1 0]
[0 0 1]
sage: Cp.check_mat()
[1 0 0]

SageMath can also compute the dual of C.

sage: Cd = C.dual_code(); Cd
Linear code of length 5, dimension 1 over Finite Field of size 2
sage: Cd.gen_mat()
[1 0 0 0 0]
sage: Cd.check_mat()
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

And finally SageMath can decode a received vector. The following simulates a communications channel; We begin
with a code word, introduce an error and then correct this error by decoding the received message.

sage: wrd = vector(F,(0,0,0,0,1))
sage: err = vector(F,(0,0,1,0,0))
sage: msg = wrd + err; msg
(0, 0, 1, 0, 1)
sage: C.decode(msg)
(0, 0, 0, 0, 1)
sage: C.decode(msg) == wrd
True

It should be noted that since the above code has a minimum distance of only 1 that decoding will not always produce
the code word that you may have expected.

These are only some of the commands that SageMath offers for computing and working with linear codes. There is
much more information on the following web sites:

See also:

1. http://www.sagemath.org/doc/constructions/linear_codes.html

2. http://www.sagemath.org/doc/reference/sage/coding/linear_code.html

4.6.2 Cyclic Codes

To construct a cyclic code of length 3 over F2 we first need a generating polynomial, which can be any irreducible
factor of 𝑥3 − 1. A list of irreducible factors is computed using the factor() command.
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sage: P.<x> = PolynomialRing(GF(2),'x')
sage: factor(x^3 -1 )
(x + 1) * (x^2 + x + 1)

The output above tells you that there are 2 choices for non-trivial generating polynomials. The following commands
will construct the code generated by 𝑔(𝑥) = 𝑥+ 1.

sage: g = x + 1
sage: C = CyclicCode(3,g)
sage: C.list()
[(0, 0, 0), (1, 0, 1), (0, 1, 1), (1, 1, 0)]

Cyclic codes are a special type of linear code. So the commands that you worked with in the prior section all work in
the same way. For example, the generating matrix is computed, in the usual and systematic forms, as follows:

sage: G = C.gen_mat(); G
[1 1 0]
[0 1 1]
sage: Gs = C.gen_mat_systematic(); Gs
[1 0 1]
[0 1 1]

Just to verify that this is the generating matrix, and to practice working with matrices and vectors, we will see if the
image of 𝐺 spans the code.

sage: vector(GF(2),[0,0])*G
(0,0,0)
sage: vector(GF(2),[1,0])*G
(1, 1, 0)
sage: vector(GF(2),[1,1])*G
(1, 0, 1)
sage: vector(GF(2),[0,1])*G
(0, 1, 1)

SageMath can also compute a parity check matrix of 𝐶 using the code’s check_mat() method.

sage: H = C.check_mat()
[1 1 1]

Verifying that H is a check matrix for 𝐶 is straightforward.

sage: H*vector(GF(2),[0,1,1])
(0)
sage: H*vector(GF(2),[1,0,1])
(0)
sage: H*vector(GF(2),[1,0,0])
(1)

You can also compute the dual code and its generating and parity check matrices.

sage: Cp = C.dual_code()
sage: Cp.gen_mat()
[1 1 1]
sage: Cp.check_mat()
[1 0 1]
[0 1 1]
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4.6.3 Mini-Topic: Factoring 𝑥𝑛 − 1

The smallest field containing F𝑞 and containing the roots of 𝑥𝑛 − 1 is 𝐺𝐹 (𝑞𝑡) where 𝑡 is the order of 𝑞 in Z mod 𝑛.

The factors of 𝑥𝑛 − 1 over F𝑞 must all have degree dividing 𝑡.

Let us begin by first defining 𝑛 and 𝑞 and constructing the ambient rings.

sage: n = 19
sage: q = 2
sage: F = GF(2)
sage: P.<x> = PolynomialRing(F, 'x')

Remembering that since we are constructing a finite field that 𝑞 has to either be prime or a prime power. Now let us
compute all of the irreducable factors of 𝑥𝑛 − 1 over F𝑞 .

sage: A = factor(x^n-1); A

Now to verify the facts about the degrees of the factors computed that was stated ealier. Compare the list above with
the order of 2 in Z𝑛.

sage: Integers(19)(2).multiplicative_order()

Remembering that since Z𝑛 is a ring, we have to specify which type of order we want to compute, either additive or
multiplicative.

Now let us repeat what we just did, but this time letting 𝑞 = 22. Changing q alone will not change the base field nor
the polynomial ring. So we will have to re-construct everything using our new parameter.

sage: q = 4
sage: F.<a> = GF(4,'a')
sage: P.<x> = PolynomialRing(F,'x')

Now let us factor 𝑥𝑛 − 1 again. This time over a non-prime field.

sage: A = factor(x^n-1); A
(x + 1) * (x^9 + a*x^8 + a*x^6 + a*x^5 + (a + 1)*x^4 + (a + 1)*x^3 + (a + 1)*x + 1) *
→˓(x^9 + (a + 1)*x^8 + (a + 1)*x^6 + (a + 1)*x^5 + a*x^4 + a*x^3 + a*x + 1)

Exercises:

1. Try repeating the above for 𝐹 = F8.

2. Compute the order of 2, 4, 8 mod 19. What are your observations?

3. Try other values of n and other fields.

4.6.4 Mini-Topic: Idempotent Polynomials

We’ll find the idempotent which is 1 modulo the ith factor of 𝑥𝑛 − 1. Continuing with F4.

sage: F.<a> = GF(4, 'a')
sage: P.<x> = PolynomialRing(F, 'x')

Then we will create the quotient ring.

sage: R.<y> = P.quotient(x^19 - 1)
sage: A = factor(x^19 - 1); A
(x + 1) * (x^9 + a*x^8 + a*x^6 + a*x^5 + (a + 1)*x^4 + (a + 1)*x^3 + (a + 1)*x + 1) *
→˓(x^9 + (a + 1)*x^8 + (a + 1)*x^6 + (a + 1)*x^5 + a*x^4 + a*x^3 + a*x + 1)
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Since the factor() command returns a list of polynomial factors and their multiplicities, which we do not need, we
will strip those out.

sage: A = [p[0] for p in A]

Now we will just select one of these factors. The reader should also try different factors for themselves.

sage: p0 = A[2]

Now we take the product of all of the other factors.

sage: ap = prod( [p for p in A if p != a])
x^10 + (a + 1)*x^9 + a*x^8 + a*x^7 + x^5 + (a + 1)*x^3 + (a + 1)*x^2 + a*x + 1

Then compute the xgcd() of p0 and ap.

sage: d, s, t = xgcd(p0, ap)

You should recall that 𝑑 = 𝑠 · 𝑝0 + 𝑡 * 𝑎𝑝 is the extended gcd. You should check that 𝑠 · 𝑝0 ≡ 1 mod 𝑝 for all 𝑝 ̸= 𝑝0
and 𝑠 · 𝑝0 ≡ 0 mod 𝑝0

sage: s*p0 % A[1]
1
sage: s*p0 % A[2]
0
sage: s*p0 % A[0]
1

Now check that 𝑡 · 𝑎𝑝 ≡ 0 mod 𝑝 for 𝑝 ̸= 𝑝0 and 𝑡 · 𝑎𝑝 ≡ 1 mod 𝑝0.

sage: t*ap % A[0]
0
sage: t*ap % A[1]
0
sage: t*ap % A[2]
1

Now we will check that the polynomial that we computed is an idempotent in 𝐹 [𝑥] / ⟨𝑥𝑛 − 1⟩.

sage: f = R(bp*ap)
sage: f^2 == f
True

Check the generating polynomial.

sage: gcd(b*p0, x^19-1)
x^9 + (a + 1)*x^8 + (a + 1)*x^6 + (a + 1)*x^5 + a*x^4 + a*x^3 + a*x + 1
sage: p0
x^9 + (a + 1)*x^8 + (a + 1)*x^6 + (a + 1)*x^5 + a*x^4 + a*x^3 + a*x + 1

Exercises:

1. Find the idempoent element of 𝐹 [𝑥] / ⟨𝑥𝑛 − 1⟩ For 𝑞 = 4 and 𝑛 = 3, 5, 11 and 17.

For the reciprocal polynomials of idempotents, see Theorem 5 [MacWilliams1977] p. 219
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4.6.5 Other Codes

Hamming Codes

A Hamming Code is a simple linear code which has the capability to detect up to 2 contiguous errors and correct for
any single error.

We will begin by constructing a binary Hamming code with 3 parity checks.

sage: F = GF(2)
sage: C = HammingCode(3,F); C
Linear code of length 7, dimension 4 over Finite Field of size 2

Hamming codes always have a length, |F|𝑟 − 1 where 𝑟 is the number of parity checks and F is the finite-field over
which the code is defined. This is because the columns of its parity check matrix consists of all non-zero elements of
F𝑟.

sage: C.check_mat()
[1 0 1 0 1 0 1]
[0 1 1 0 0 1 1]
[0 0 0 1 1 1 1]

A Ternary Hamming Code is constructed by supplying a non-binary finite field as the base field. Here we will construct
the ternary Hamming code over 𝐺𝐹 (23) also with 3 parity checks.

sage: C = HammingCode(3, F); C
Linear code of length 73, dimension 70 over Finite Field in a of size 2^3

See also:

http://en.wikipedia.org/wiki/Hamming_code

BCH Codes

BCH codes, or Bose-Chaudhuri-Hockenghem codes, are a special class of the cyclic codes with 3 required parameters,
𝑛, 𝛿, 𝐹 and one optional one 𝑏. Here 𝑛 is the length of the code words, 𝛿 is a parameter called the designed distance
and 𝐹 is a finite field of order 𝑞𝑛 where 𝑔𝑐𝑑(𝑛, 𝑞) = 1.

If 𝑏 is not provided then a default value of zero is used. For example, you construct construct a BCH code of length
𝑛 = 13 with 𝛿 = 5 over 𝐹 = GF(9).

sage: F.<a> = GF(3^2,'a')
sage: C = BCHCode(13, 5, F)
sage: C
Linear code of length 13, dimension 6 over Finite Field in a of size 3^2

We can compute the code’s minimum distance using its minimum_distance() method.

sage: C.minimum_distance()
6

Since BCH codes are also linear, you can use SageMath to compute the code’s generating and check matrices.

sage: C.gen_mat()
[2 2 1 2 0 0 1 1 0 0 0 0 0]
[0 2 2 1 2 0 0 1 1 0 0 0 0]
[0 0 2 2 1 2 0 0 1 1 0 0 0]
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[0 0 0 2 2 1 2 0 0 1 1 0 0]
[0 0 0 0 2 2 1 2 0 0 1 1 0]
[0 0 0 0 0 2 2 1 2 0 0 1 1]
sage: C.check_mat()
[1 0 0 0 0 0 0 1 2 1 2 2 2]
[0 1 0 0 0 0 0 1 0 0 0 1 1]
[0 0 1 0 0 0 0 2 2 2 1 1 2]
[0 0 0 1 0 0 0 1 1 0 1 0 0]
[0 0 0 0 1 0 0 0 1 1 0 1 0]
[0 0 0 0 0 1 0 0 0 1 1 0 1]
[0 0 0 0 0 0 1 2 1 2 2 2 1]

We can also compute its dual code.

sage: Cp = C.dual_code(); Cp
Linear code of length 13, dimension 7 over Finite Field in a of size 3^2
sage: Cp.gen_mat()
[1 0 0 0 0 0 0 1 2 1 2 2 2]
[0 1 0 0 0 0 0 1 0 0 0 1 1]
[0 0 1 0 0 0 0 2 2 2 1 1 2]
[0 0 0 1 0 0 0 1 1 0 1 0 0]
[0 0 0 0 1 0 0 0 1 1 0 1 0]
[0 0 0 0 0 1 0 0 0 1 1 0 1]
[0 0 0 0 0 0 1 2 1 2 2 2 1]
sage: Cp.check_mat()
[1 0 0 0 0 0 2 2 1 2 0 0 1]
[0 1 0 0 0 0 1 0 1 2 2 0 2]
[0 0 1 0 0 0 2 0 1 0 2 2 1]
[0 0 0 1 0 0 1 0 2 2 0 2 1]
[0 0 0 0 1 0 1 2 2 0 2 0 1]
[0 0 0 0 0 1 1 2 1 0 0 2 2]

See also:

http://en.wikipedia.org/wiki/BCH_code
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