Abstract Algebra Math 521A Michael E. O'Sullivan

Review for third exam

Rings and Ideals

- Know the definitions:
 - ring, commutative, identity, field;
 - unit, zero divisor, characteristic;
 - homomorphism, isomorphism.
 - ideal, principal ideal, generators of an ideal .
- Know how to:
 - Prove that a subset of a ring is an ideal (or show that it isn't).
 - Prove that a function is a homomorphism, or isomorphism (or show it isn't).
 - Show that two rings can't be isomorphic, because they have some different structure.
 - Identify the units and zero divisors in a ring.
- Know how to prove fundamental results about ideals in a commutative ring with identity.
 - The sum of ideals is an ideal.
 - The intersection of ideals is an ideal.
 - The kernel of a homomorphism is an ideal.
 - If I is an ideal in R and J is an ideal is S then $I \times J$ is an ideal in $R \times S$.
 - The annihilator of an ideal is an ideal.
- Know how to work with quotient rings.
 - If I is an ideal in R, the elements of R/I are written a + I where $a \in R$.
 - -a + I = b + I when $a b \in I$.
 - Addition in R/I is defined by (a + I) + (b + I) = (a + b) + I.
 - Multiplication in R/I is defined by (a + I)(b + I) = (ab) + I.
- Know these special examples.
 - Know what the ideals are in \mathbb{Z} , \mathbb{Z}_n , F[x] and F[x]/p(x) where F is a field.
 - Know how to find the simplest expression for an ideal in these rings.
 - Know some examples of non-principal ideals in F[x, y] and $\mathbb{Z}[x]$.