Abstract Algebra
 Math 521A

Michael E. O'Sullivan
Review for Third Exam: Chapters 5, 6

Commutative rings with identity: ideals, and congruence modulo an ideal

- Know how to
- Define ideal, and prime ideal.
- Prove that a subset of a ring is an ideal (or show that it isn't).
- Use the language of ideals with $\mathbb{Z}, \mathbb{Z}_{n} F[x], F[x] / m(x)$.
- Know the relationship between homomorphisms and ideals.
(The kernel is an ideal; The first isomorphism theorem; See also $6.2 \# 13,24$).
- Know how to compute in the quotient of a ring by an ideal.
- If I is an ideal in R, the elements of R / I are written $a+I$ where $a \in R$.
$-a+I=b+I$ iff $a-b \in I$.
- Addition in R / I is defined by $(a+I)+(b+I)=(a+b)+I$.
- Multiplication in R / I is defined by $(a+I)(b+I)=(a b)+I$.
- Know how to compute in a polynomial ring modulo a polynomial.
- Find the inverse of an element $a(x)$ of $F[x] / m(x)$, when $a(x)$ is coprime to $p(x)$.
- Identify units and zero divisors in $F[x] / m(x)$.
- Identify all ideals in $F[x] / m(x)$.
- Define irreducible and prime for polynomials.
- Know that $m(x)$ is prime iff $m(x)$ is irreducible. In this case, $F[x] / m(x)$ is a field.
- Be able to work in $R \times S$ where R, S are commutative rings with identity.

What are the ideals in this ring?

- Our standard examples of non-principal ideal rings.
- Be able to compute and work with ideals in $\mathbb{Z}[x]$ and $F[x, y]$ for F a field. See 6.1\#41 and example p. 140, 6.2\#13, $6.3 \# 10$.
- Be able to find units, zero divisors, idempotent elements (x such that $x=x^{2}$) in $\mathbb{F}[x, y]$ modulo a simple ideal like $\left\langle x^{2}, x y, y^{2}\right\rangle$.

