Abstract Algebra Math 521A

Michael E. O'Sullivan

Review of the course

Rings and Ideals

- Know the definitions:
 - ring, commutative, identity, field;
 - unit, zero divisor, characteristic;
 - homomorphism, isomorphism.
- Know how to:
 - Prove that a subset of a ring is a subring, or an ideal (or show that it isn't).
 - Prove that a function is a homomorphism, or isomorphism (or show it isn't).
 - Show that two rings can't be isomorphic, because they have some different structure.
 - Identify the units and zero divisors in a ring.
- Know how to construct new rings from old and to compute in these rings.
 - The Cartesian product of rings R and S is a ring $R \times S$.
 - The 2×2 matrices over a ring R form a ring, which we write M(R).
 - The polynomial ring, R[x] over a ring R.
- Know how to work with quotient rings. (Here you may assume the ring is commutative with identity.)
 - If I is an ideal in R, the elements of R/I are written a+I where $a \in R$.
 - -a+I=b+I when $a-b\in I$.
 - Addition in R/I is defined by (a+I)+(b+I)=(a+b)+I.
 - Multiplication in R/I is defined by (a+I)(b+I)=(ab)+I.
- Know the special properties of \mathbb{Z} and F[x].
 - Division theorem.
 - Euclidean algorithm.
 - Prime iff irreducible.
 - Unique factorization.
 - Every nonzero element is either a zero divisor or a unit.
 - In F[x], (x-a) is a factor of f(x) iff a is a root of f(x).
 - Any ideal in \mathbb{Z} , \mathbb{Z}_n , F[x] or F[x]/a(x) is principal. Be able to identify all ideals in these rings. Know how to find a generator.
 - The inverse of a unit in \mathbb{Z}_n or in F[x]/p(x) can be found using the Euclidean algorithm. When p is prime \mathbb{Z}_p is a field. When p(x) is irreducible F[x]/p(x) is a field.

Groups

- Definitions
 - group, subgroup, cyclic subgroup, abelian group;
 - order of a group, order of an element;
 - homomorphism, isomorphism.
- Standard examples
 - The additive group of a ring.
 - The group of units in a ring.
 - U_n the group of units in \mathbb{Z}_n .
 - -Gl(2,F), the group of invertible 2×2 matrices over a field F.
 - -Sl(2,F), the group 2×2 matrices over a field F that have determinant 1.
 - $-D_n$, the group of symmetries of a regular polygon
 - $-S_n$ the group of permutations of n objects.
- Know how to prove that a subset of a group is a subgroup (or show it is not).
- Know how to show that a group is cyclic or show it is not.
- Know how to prove that a function from group G to group H is a homomorphism.

Have a look at the last two exams and the last couple of problem sets. Here are a few extra problems:

- 1. Let I and J be ideals in a ring R (commutative with identity).
 - (a) What is I + J? What is $I \times J$? What is $I \cap J$?
 - (b) Show that each of these is an ideal.
- 2. Express in the simplest form.

$$\langle x^2 - 1 \rangle + \langle x^2 + 2x + 1 \rangle \text{ in } \mathbb{Q}[x].$$

$$\langle x^2 - 1 \rangle \cap \langle x^2 + 2x + 1 \rangle \text{ in } \mathbb{Q}[x].$$

$$\langle x^2 - 1 \rangle + \langle x^2 + 2x + 1 \rangle \text{ in } \mathbb{Q}[x]/(x^3 - 1).$$

$$\langle x^2 - 1 \rangle \cap \langle x^2 + 2x + 1 \rangle \text{ in } \mathbb{Q}[x]/(x^3 - 1).$$

- 3. Identify an ismorphism between $Gl(2,\mathbb{Z}_2)$ and S_3 . How many isomorphisms are there? List all the subgroups of S_3
- 4. Show that the set of 2×2 matrices with determinant ± 1 is a subgroup of Gl(2, F).
- 5. Show that U_{11} is a cyclic group, generated by 2. Show that U_{15} is not cyclic.