# Abstract Algebra <br> Math 521A 

Michael E. O'Sullivan
Review of the course

## Rings and Ideals

- Know the definitions:
- ring, commutative, identity, field;
- unit, zero divisor, characteristic;
- homomorphism, isomorphism.
- Know how to:
- Prove that a subset of a ring is a subring, or an ideal (or show that it isn't).
- Prove that a function is a homomorphism, or isomorphism (or show it isn't).
- Show that two rings can't be isomorphic, because they have some different structure.
- Identify the units and zero divisors in a ring.
- Know how to construct new rings from old and to compute in these rings.
- The Cartesian product of rings $R$ and $S$ is a ring $R \times S$.
- The $2 \times 2$ matrices over a ring $R$ form a ring, which we write $M(R)$.
- The polynomial ring, $R[x]$ over a ring $R$.
- Know how to work with quotient rings. (Here you may assume the ring is commutative with identity.)
- If $I$ is an ideal in $R$, the elements of $R / I$ are written $a+I$ where $a \in R$.
$-a+I=b+I$ when $a-b \in I$.
- Addition in $R / I$ is defined by $(a+I)+(b+I)=(a+b)+I$.
- Multiplication in $R / I$ is defined by $(a+I)(b+I)=(a b)+I$.
- Know the special properties of $\mathbb{Z}$ and $F[x]$.
- Division theorem.
- Euclidean algorithm.
- Prime iff irreducible.
- Unique factorization.
- Every nonzero element in $\mathbb{Z}_{n}$ or in $F[x] / m(x)$ is either a zero divisor or a unit.
- In $F[x],(x-a)$ is a factor of $f(x)$ iff $a$ is a root of $f(x)$.
- Any ideal in $\mathbb{Z}, \mathbb{Z}_{n}, F[x]$ or $F[x] / a(x)$ is principal. Know how to find a generator.
- The inverse of a unit in $\mathbb{Z}_{n}$ or in $F[x] / p(x)$ can be found using the Euclidean algorithm.


## Groups

- Definitions
- group, subgroup, cyclic subgroup, abelian group;
- order of a group, order of an element;
- homomorphism, isomorphism.
- Standard examples
- The additive group of a ring.
- The group of units in a ring.
- $U_{n}$ the group of units in $\mathbb{Z}_{n}$.
- $G l(2, F)$, the group of invertible $2 \times 2$ matrices over a field $F$.
- $S l(2, F)$, the group $2 \times 2$ matrices over a field $F$ that have determinant 1 .
- $D_{n}$, the group of symmetries of a regular polygon
- $S_{n}$ the group of permutations of $n$ objects.
- Know how to prove that a subset of a group is a subgroup (or show it is not).

Have a look at the last two exams and the last couple of problem sets. Here are a few extra problems:

1. Let $I$ and $J$ be ideals in a ring $R$ (commutative with identity).
(a) What is $I+J$ ? What is $I \times J$ ? What is $I \cap J$ ?
(b) Show that each of these is an ideal.
2. Express in the simplest form.
$\left\langle x^{2}-1\right\rangle+\left\langle x^{2}+2 x+1\right\rangle$ in $\mathbb{Q}[x]$.
$\left\langle x^{2}-1\right\rangle \cap\left\langle x^{2}+2 x+1\right\rangle$ in $\mathbb{Q}[x]$.
$\left\langle x^{2}-1\right\rangle+\left\langle x^{2}+2 x+1\right\rangle$ in $\mathbb{Q}[x] /\left(x^{3}-1\right)$.
$\left\langle x^{2}-1\right\rangle \cap\left\langle x^{2}+2 x+1\right\rangle$ in $\mathbb{Q}[x] /\left(x^{3}-1\right)$.
3. Identify an ismorphism between $G l\left(2, \mathbb{Z}_{2}\right)$ and $S_{3}$. How many isomorphisms are there? List all the subgroups of $S_{3}$
4. Show that the set of $2 \times 2$ matrices with determinant $\pm 1$ is a subgroup of $G l(2, F)$.
5. Show that $U_{11}$ is a cyclic group, generated by 2 .
