NAME:

Abstract Algebra B Math 521B Michael E. O'Sullivan

Review for first exam

- Be able to precisely define the following terms. Be careful about the logic in the definition!
 - Group, subgroup, cyclic group, generators of a group.
 - Order of an element, order of a group.
 - Homomorphism, isomorphims, automorphism, inner automorphism.
 - Center of a group, centralizer of an element. Normalizer of a subgroup.
 - Normal subgroup, simple group.
- Here are the key theorems; be able to use them.
 - Theorem 7.8: the order of an element.
 - Theorem 7.10: properties determing a subgroup.
 - Theorems 7.18, 7.28: cyclic groups.
 - Theorems 7.26, 7.27: (Lagrange) the order of subgroups of a finite group.
 - Theorems 7.34, 7.36: Properties of normal subgroups and quotients.
 - Theorems 7.19 (and related problems), 7.41, 7.42, 7.43, 7.44: Homomorphism and isomorphism theorems.
 - Let $\phi: G \longrightarrow H$ be a homomorphism. You should be able to prove these.
 - * If B is a subgroup of B then $\phi^{-1}(B)$ is a subgroup of G. In addition, if B is normal then $\phi^{-1}(B)$ is normal.
 - * If A is a subgroup of G then $\phi(A)$ is a subgroup of H. If A is normal, $\phi(A)$ may not be!
 - You should be able to prove some of the simpler results about abelian groups and the order of an element (Sec. 7.2).
- Kown how to work with the standard examples.
 - $(\mathbb{Z}_n, +), (U_n, *).$
 - $\operatorname{Gl}(2,\mathbb{Q})$, $\operatorname{Sl}(2,\mathbb{Q})$ and the matrix groups over \mathbb{Z}_p for p prime.
 - The symmetric group S_n , the dihedral group D_n .
 - Subgroups of the above, such as the quaternions.