Abstract Algebra B
Math 521B
Michael E. O'Sullivan

Review for third exam

- Be able to define precisely the following terms. Be careful about the logic in the definition!
- transcendental element, algebraic element, minimal polynomial (Thm. 10.6).
- algebraic extension, simple extension, finitely generated extension, splitting field.
- Know some standard examples over \mathbb{Q} and \mathbb{R}.
- Find the minimal polynomial of some simple examples (e.g. $\sqrt{2+i}$). See 10.2 \# 1-7, 11,17.
- Find bases for extensions: (e.g. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ over $\mathbb{Q})$.
- Know the theorems and exercises about the dimension and bases of a composite extension.
(Thm. 10.4, Thm 10.10, Ex. 10.3 \#1-7, 8, 9, 11, 13).
- Know how to work with finite fields.
- Know the Freshman's rule (see also Ex. 10.6\# 10, 12).
- Know the fundamental theorem for finite fields (as stated in class, but also spread out in Sec. 10.6)
* There exists a field of order p^{n} for each prime p and $n \in \mathbb{N}$.
* The field is unique up to isomorphism, since it is the splitting field of $x^{p^{n}}-x$.
* The multiplicative group of a finite field is cyclic.
* Any finite field is a simple extension of a prime field.
- Given an irreducible polynomial whose root α generates the multiplicative group of $\mathbb{F}_{p^{n}}$, construct the dictionary between powers of α and polynomials in α.
- Use the dictionary to compute.

