Lecture Notes for Math 620
 Groups, Rings, and Fields

Michael E. O'Sullivan

mosullivan@sdsu.edu

January 17, 2023

Contents

1 Getting Started 3
1.1 The Integers 3
1.2 Groups, Rings and Fields 10
1.3 The Univariate Polynomial Ring over a Field 14
2 Groups 20
2.1 Groups and First Examples 20
2.2 Subgroups 24
2.3 Homomorphisms 27
2.4 Some Constructions of Groups 31
2.5 Permutation Groups 34
2.6 Generators and Relations 31
2.7 Cosets and Conjugates 32
2.8 Normality and the First Isomorphism Theorem 35
2.9 More Examples of Groups 39
2.10 Structure in the Quotient Group: The Third Isomorphism Theorem \square
and the Correspondence Theorem 43
2.11 Problems 46
3 Classification and Structure of Groups 51
3.1 Interaction between Two Subgroups: The Second Isomorphism The- 51
3.2 Finitely Generated Abelian Groups 56
3.3 Simple Groups and the Classification of Finite Groups 67
4 Rings 72
4.1 Rings 72
4.2 Homomorphisms 76
4.3 Constructions 80
4.4 Ideals and Quotient Rings 86
4.5 Operations on Ideals and Properties of Ideals 94
4.6 Fractions 99
5 Fields 102
5.1 First Fields and Automorphisms 102
5.2 Constructing Fields 105
5.3 Finite Fields 110
5.4 Problems 117
5.5 Algebraic extensions and splitting fields 122

Chapter 1

Getting Started

1.1 The Integers

There are five main results for the integers that you should know. I will call them the Quotient-Remainder Theorem, the GCD Theorem, the Euclidean Algorithm, the Prime-Irreducible Theorem, and the Unique Factorization Theorem. I won't go into detail and the proofs will be very concise, because this material is treated very well in other resources [Hun12].

A fundamental property of the integers is the well ordering principle: Any nonempty subset of the nonnegative integers has a least element. This is actually an axiom used to formally define the integers. The well ordering principle plays a major role in the proofs of the theorems below.

There are five main results for the integers that you should know.
Theorem 1.1.1 (Quotient-Remainder). Let a and b be integers with $b>0$. There exist unique integers q, r such that

$$
\begin{aligned}
& \text { (1) } a=b q+r \text {, and } \\
& \text { (2) } 0 \leq r<b
\end{aligned}
$$

Proof. Consider the set $S=\{a-b c: c \in \mathbb{Z}\} \cap \mathbb{N}_{\geq 0}$. As a nonempty subset of the nonnegative integers it has a least element; call it r and suppose $r=a-b q$. If $r \geq b$ we would have a contradiction because then $r-b \geq 0$ and $r-b=a-b(q+1)$ would put $r-b \in S$. Thus we must have $0 \leq r<b$. This establishes existence of q, r as claimed.

To prove uniqueness, suppose another r^{\prime}, q^{\prime} satisfy (1) and (2) and suppose without loss of generality that $r \geq r^{\prime}$. (We want to show they are equal to r and q !) Then $a=b q+r=b q^{\prime}+r^{\prime}$ so $r-r^{\prime}=b\left(q^{\prime}-q\right)$. Now $b>r-r^{\prime} \geq 0$ but $b\left(q^{\prime}-q\right)$
is a multiple of b so is either 0 or else $\left|b\left(q^{\prime}-q\right)\right| \geq b$. Since $r-r^{\prime}=b\left(q^{\prime}-q\right)$, the only possibility is $r-r^{\prime}=0=b(q-q)^{\prime}$, so $r=r^{\prime}$ and $q=q^{\prime}$.

It is fairly common in programming languages (in particular in Python and Sage) to write the integer quotient as $a / / b$ and the remainder as $a \% b$. We will use this notation as needed.

Let a and b be integers. The common divisors of a and b are the integers that divide both a and b. The greatest common divisor (gcd) is the largest positive integer dividing both a and b. The common multiples of a and b are the integers that are multiples of both a and b. The least common multiple (lcm) is the smallest positive integer that is a multiple of both.

A linear combination of a and b is an integer that can be expressed as $a u+b v$ for some integers u and v.

The following result is an important property of the integers, and not obvious. We will see echos of it when we study rings.

Theorem 1.1.2 (GCD). Let a and b be integers, at least one of them nonzero. The gcd of a and b is the smallest positive linear combination of a and b. In particular, $\operatorname{gcd}(a, b)=a u+b v$ for some integers u and v.

The set of all linear combinations of a and b equals the set of multiples of $\operatorname{gcd}(a, b)$.

Proof. Let $S=\{a r+b s: r, s \in \mathbb{Z}\}$. Let d be the smallest positive element of S and let u, v be such that $d=a u+b v$. I claim d divides a and b.

By the QR theorem applied to a and $d, a=d q+r$ for some integer q and nonegative integer $r<d$. Then

$$
r=a-d q=a-(a u+b v) q=a(1-u q)-b v q
$$

This shows that r is also in S. But, d is the smallest positive element of S, and $r<d$. This shows $r=0$, so d divides a.

Similarly, one shows d divides b, so d is a common divisor of a and b. To show it is the greatest common divisor, let c be any other common divisor of a and b. Then c divides $a u+b v=d$ (by divisibility properties). Since d is positive $c \leq d$.

We say two integers are coprime (or relatively prime) when their gcd is 1.
Given a and b, how do we find their gcd? The answer (for arbitrary large integers) is not to factor each and look for common factors. Rather, use the Euclidean algorithm.

It is fairly common in programming languages (in particular in Python and Sage) to write the integer quotient as $a / / b$ and the remainder as $a \% b$. We will use this here.

Let's assume $a \geq b \geq 0$. Set $r_{-1}=a$ and $r_{0}=b$, and define inductively (while $r_{k} \neq 0$)

$$
\begin{aligned}
q_{k} & =r_{k-1} / / r_{k} \\
r_{k+1} & =r_{k-1} \% r_{k}, \quad \text { so that } \\
r_{k+1} & =r_{k-1}-q_{k} r_{k}
\end{aligned}
$$

The r_{k} are a strictly decreasing sequence of nonnegative integers, so the process must terminate: for some $n, r_{n+1}=0$. Now we make use of the following lemma, proved using basic divisibility properties.

Lemma 1.1.3. For integers a, b, c, s such that $a=b s+c$, we have $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}(b, c)$.

Let's apply this to the sequence r_{k}, letting n be minimal such that $r_{n+1}=0$. We have (since $r_{n+1}=0$)

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}\left(b, r_{1}\right)=\cdots=\operatorname{gcd}\left(r_{n}, r_{n+1}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
$$

This argument shows that the Euclidean algorithm produces the gcd of a and b. In the following Sage code we only keep two of the remainders at any time, not the whole sequence: after the k th pass through the while loop, r in the algorithm is r_{k-1} and s is r_{k}.

```
def euclid_alg(a,b):
    if b == 0:
        print "division by zero"
        return false
    else:
        r = a
        s = b
        while s != 0:
            rem = r %s
            r = s
            s = rem
        return r
```

There is a heftier Euclidean algorithm-often called the Extended Euclidean algorithm-which produces two integers u, v such that $a u+b v=\operatorname{gcd}(a, b)$. I like
the following matrix version of the algorithm. Let

$$
Q_{k}=\left[\begin{array}{cc}
-q_{k} & 1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad R_{k}=\left[\begin{array}{c}
r_{k} \\
r_{k-1}
\end{array}\right]
$$

where the sequence r_{k} and q_{k} are the same as used above in the Euclidean algorithm. Verify that $R_{k+1}=Q_{k} R_{k}$. Consequently,

$$
R_{n+1}=\left[\begin{array}{c}
0 \\
r_{n}
\end{array}\right]=Q_{n} Q_{n-1} \cdots Q_{0} R_{0}
$$

where $R_{0}=\left[\begin{array}{l}b \\ a\end{array}\right]$. Let $M=Q_{n} Q_{n-1} \cdots Q_{0}$. Then we have $M_{2,1} b+M_{2,2} a=r_{n}=$ $\operatorname{gcd}(a, b)$.

By the way, you can use the following equation, along with a few observations about the Fibonacci numbers to bound the number of steps for the Euclidean algorithm. See Ros00] for details.

Theorem 1.1.4 (Euclidean Algorithm). Let a, b be integers with $b \neq 0$. The Euclidean Algorithm outputs $\operatorname{gcd}(a, b)$ in at most $1+\log _{2} b / \log \alpha$ steps, where $\alpha=(1+\sqrt{5}) / 2$ is the golden ratio. The Extended Euclidean Algorithm outputs integers u, v with $|u|<b$ and $|v|<a$ such that $a u+b v=\operatorname{gcd}(a, b)$.

Here is the Sage code for the extended Euclidean algorithm.

```
def ext_euclid_alg(f,h):
    if h == 0:
        print "division by zero"
        return false
    else:
        M = matrix(2, 3, [f, 1, 0, h, 0, 1])
        s = M [0,0]
        r = M[1,0]
        while s != 0:
            q = r // s
            M = matrix(2,2,[ -q , 1, 1, 0]) * M
            s = M[0,0]
            r = M[1,0]
        return M
```

Definition 1.1.5. Let r be an integer with $|r|>1$. We say r is irreducible when $r=a b$ implies that either $a= \pm 1$ or $b= \pm 1$ (and the other is $\pm p$). We say r is prime when $r \mid a b$ implies $r \mid a$ or $r \mid b$.

The definition of irreducible is what we customarily use for primality, but the definitions given here are the accepted ones in more general contexts. Fortunately, we have the following theorem!

Theorem 1.1.6 (Prime-Irreducible). A nonzero integer is irreducible iff it is prime.

Proof. We prove this for positive integers; minor adjustments can be made for a negative number.

Let $p>1$ be an irreducible; let us show it is prime. Suppose that $p \mid a b$ for some integers a and b. We need to show $p \mid a$ or $p \mid b$. If p divides a we are done, so suppose it does not divide a. Since p is irreducible, its only positive divisors are 1 and p, so the GCD of a and p is 1 . By the GCD theorem, there are integers u, v such that

$$
1=a u+p v
$$

Multiplying by b

$$
b=a b u+p b v
$$

Since $p \mid a b$ we have that p divides the right hand side, thus p divides b.
Suppose now that p is prime, we will show it is irreducible. Let $p=a b$ be a factorization of p. We must show one of a or b is ± 1. Since p is prime and it divides (in fact equals) the product $a b$ it must divide one of the factors. Without loss of generality, say $p \mid a$, so $a=p x$ for some integer x. Then $p=a b=p x b$, so $p(1-x b)=0$. This shows that $1-x b=0$, so $x=b= \pm 1$.

The previous theorem is the key ingredient to establishing unique factorization.
Theorem 1.1.7 (Unique Factorization). Let a be a nonzero integer. There is a nonnegative integer t, positive prime numbers p_{1}, \ldots, p_{t}, and positive integers $e_{1}, \ldots e_{t}$ and choice of unit, $u=1$ or -1 , such that

$$
a=u p_{1}^{e_{1}} \cdots p_{t}^{e_{t}}
$$

Each of t, p_{i}, e_{i} and u is uniquely determined.

Integers Modulo n

Definition 1.1.8. Let n be an integer. Integer a is congruent modulo n to b when n divides $a-b$.

Theorem 1.1.9. Congruence modulo n is an eqivalence relation. The set $\{0,1, \ldots, n-$ $1\}$ is a system of representatives for congruence modulo n. That is, each integer is congruent modulo n to exactly one element of $\{0,1, \ldots, n-1\}$.

Proof. The relation of being congruent modulo n is clearly reflexive, since for any $a \in \mathbb{Z}, n \mid(a-a)$. It is symmetric because if $n \mid(a-b)$ then also $n \mid(b-a)$. It is transitive because if a is congruent to b abd b is congruent to c modulo n then $n \mid(a-b)$ and $n \mid(b-c)$. This implies that n divides the sum $(a-b)+(b-c)=a-c$, so a is congruent to c modulo n. Every integer is congruent to its remainder when divided by n, which is one of the elements of $\{0,1, \ldots, n-1\}$. Not two of these numbers differ by a multiple of n.

Two special cases are worth noting. When $n=0, a$ is congruent to b iff and only if $a=b$. When $n=1$ (or $n=-1$), a is congruent to b for all integers a and b. The integers n and $-n$ give the same equivalence relation, so we always use positive integers for the modulus.

It is common to write $[a]_{n}$ for the congruence class of a modulo n, whenever we need to be careful to distinguish between the integer a and the congruence class, or when we have more than one modulus to worry about. If there is a unique modulus the subscript n may be omitted. If it is clear from context that we are working modulo n, we may simply write a.

Finally we have:
Theorem 1.1.10 (Arithmetic mod n). Suppose that $a \equiv b \bmod n$ and $r \equiv s$ $\bmod n$. Then $a+r \equiv b+s \bmod n$ and ar $=b s \bmod n$. Thus, arithmetic on congruence classes modulo n is well-defined.

- $[a]+[r]=[a+r]$
- $[a] *[r]=[a r]$

Proof. Suppose that $a \equiv b \bmod n$ and $r \equiv s \bmod n$. We have $a=b+j n$ for some integer j and $r=s+k n$ for some integer k. Then $a+r=b+s+(j+k) n$ so $a+r \equiv b+s \bmod n$. We also have $a r=b s+(a k+b j+j k n) n$ so $a r \equiv b s \bmod n$.

This shows that no matter what element of an equivalence class is used to represent a class, arithmetic operations modulo n will give the same result.

We will write \mathbb{Z} / n for the set of equivalence classes modulo n, with the operations + and $*$. (It is common to use \mathbb{Z}_{n}, but \mathbb{Z} / n is consistent with notation we will use later.) Usually, we write the equivalence classes as $0,1, \ldots, n-1$ (without the brackets and using the least nonnegative representatives for each class). But, sometimes it is handy to be a bit flexible. For example it is good to remember that $n-b$ is equal to $-b$ in \mathbb{Z} / n. So (in \mathbb{Z} / n)

$$
b(n-1)=(-1) b=n-b
$$

Exercises 1.1.11.

(a) Let p be a prime number. Let $[a] \in \mathbb{Z} / p$ with $[a] \neq[0]$ (so a is not divisible by p. Use the GCD theorem 1.1 .2 to show there is some $r \in \mathbb{Z} / p$ such that $[a][r]=[1]$.
(b) Extend this result, partially, to \mathbb{Z} / n for composite n. If $[a] \in \mathbb{Z} / n$ is such that the integer a is coprime to n, then there is some $[r] \in \mathbb{Z} / n$ such that $[a][r]=[1]$.

1.2 Groups, Rings and Fields

Let us now introduce our three objects of study: groups, rings and fields. We will place familiar number systems in the context of groups, rings and fields. We want to give some perspective on the history of the number systems as well as their appearance in our system of education.

Definition 1.2.1. A binary operation on a set S is a function from $S \times S$ to S. One can also define operations that are unary $(S \longrightarrow S$) and ternary ($S \times S \times S \longrightarrow S$ and n-ary. An "operation" on S is usually assumed to be binary if not stated otherwise.

A binary operation $*$ on S is associative when $(a * b) * c=a *(b * c)$. It is commutative when $a * b=b * a$. It has an identity element when there is some element $e \in S$ such that $a * e=e * a=a$ for all $a \in S$.

A group has one binary operation, generically denoted $*$, while rings and fields have two binary operations, generically denoted + and $*$.

Definition 1.2.2. A group is a set G with a binary operation $*$ and a unary operation denoted $a \longmapsto a^{-1}$ satisfying the following properties.
(1) Associativity of *.
(2) Identity for $*$: There is an element, generically denoted e, such that $e * a=$ $a=a * e$ for all $a \in G$.
(3) Inverses for $*$: For each $a \in G$ the unary operation $a \longmapsto a^{-1}$ gives the inverse for a. That is, $a * a^{-1}=e=a^{-1} * a$.

A group which also satisfies $a * b=b * a$ is called commutative or abelian (after the mathematician Abel).

Definition 1.2.3. A ring is a set R, with two operations + and $*$ that satisfy the following properties.
(1) + and $*$ are both associative.
(2) + and $*$ are both commutative.
(3) + and $*$ both have identity elements. There is some element in R, that we call 0 , such that $a+0=a$ and there is an element, that we call 1 , such that $a * 1=a$.
(4) + admits inverses. That is, for each $a \in R$ there is some other element, that we write $-a$, such that $a+(-a)=0$.
(5) $*$ distributes over + . That is $a *(b+c)=a * b+a * c$.

A field is a ring with one additional property,
(7) $*$ admits inverses. For each $a \in R^{*}$ there is some other element, that we write a^{-1}, such that $a * a^{-1}=1$.

Comparing these definitions, one sees that a ring R is an abelian (commutative) group under addition, + , with identity element 0 and additive inverse operation $a \longmapsto-a$. Under the operation of multiplication, $*$, rings lack the property of inversion. A field F is an abelian group under + and $F^{*}=F \backslash\{0\}$ is an abelian group under $*$. The interaction between the two operations of + and $*$ for rings and fields is given by the distributive property.

Now to the question: what examples do we have of groups, rings, and fields?
The first number system that a child learns is the natural numbers $\mathbb{N}=$ $\{1,2,3,4, \ldots\}$ and eventually this is expanded to the integers by including 0 and the additive inverse of each positive integer. The integers, denoted \mathbb{Z}, are an abelian group under addition. The operation of multiplication as repeated addition is introduced and we now have the first example of a ring. The prototypical ring, as we shall see in Theorem 4.2.11.

Students in elementary school-the lucky ones-may also learn "clock arithmetic" in which addition is done on a clock, so $8: 00$ plus 7 hours is $3: 00$. This is essentially modular arithmetic. We saw in Section 1.1 that multiplication is also well defined modulo n, and one can check that the properties of a ring are satisfied. We call this number system \mathbb{Z} / n or sometimes \mathbb{Z}_{n}.

The next step in mathematics education is to expand this integer number system. The integers do not form a field since the only numbers with a multiplicative inverse in \mathbb{Z} are ± 1. There is a complicated process that enlarges the set of integers by adding fractions to create the rationals, \mathbb{Q}. I say the process is complicated because lots of people have trouble understanding fractions well, and a key part of the problem is that a given number has an infinite number of different names: $1 / 2=2 / 4=3 / 6=\cdots$. The process of forming fractions can be generalized to other rings, but it has delicate and subtle steps involving equivalence relations. When you see the construction in section 4.6 you may appreciate that these subtleties are closely tied to the difficulties people have with fractions.

There are two other fields that are introduced in secondary school education, although they are challenging to understand fully: the real numbers \mathbb{R}, and the complex numbers \mathbb{C}. Formally defining the real numbers is a sophisticated process, but treating them as all decimal numbers (including infinite non-repeating ones) and focusing on the number line is a way to work with them effectively enough to do most college level mathematics. We won't have much need for the real numbers,
but the relationship between the reals and the complex numbers is something that is key to studying fields in general. A complex number is of the form $a+b i$ in which $a, b \in \mathbb{R}$ and i is the square root of -1 . Addition is "componentwise," $(a+b i)+(c+d i)=(a+c)+(b+d) i$, and the additive inverse of $a+b i$ is $-a-b i$. Multiplication is based on $i^{2}=-1:(a+b i) *(c+d i)=(a c-b d)+(a d+b c) i$. One can check that $(a-b i) /\left(a^{2}+b^{2}\right)$ is the multiplicative inverse of $a+b i$. With these operations \mathbb{C} is a field. There was actually no need to use real numbers for a, b, c, d. We can introduce a field derived from \mathbb{Q} that includes i and uses the rules above for addition, nultiplication, and the inverses of each. We call this field the Gaussian rationals $\mathbb{Q}(i)$.

There is one other field that is accessible to those who have learned "clock arithmetic." If our clock had a prime number p of positions, we would get \mathbb{Z} / p, which, as was shown in Exercise 1.1.11, is a field. When thinking of it as a field we will write \mathbb{F}_{p}. Thus we have our slate of elementary fields, $\mathbb{Q}, \mathbb{Q}(i)$ and \mathbb{F}_{p}; supplemented if we want by \mathbb{R} and \mathbb{C}.

Each of these fields is of course a ring. Our collection of rings that are not fields is $\mathbb{Z}, \mathbb{Z} / n$. We may supplement it by the Gaussian integers

$$
\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}
$$

It is routine to check that this is a ring. Notice that there are 4 elements that have multiplicative units, $\pm 1, \pm i$.

All of our rings are groups under addition and we can study them as groups by "forgetting" the multiplicative structure ("forget" is actually a term used by mathematicians in this context!) We also have a few other examples by looking at the multiplicative group of a field. These are the nonzero rationals \mathbb{Q}^{*} and the nonzero elements of $\mathbb{Q}(i)$, and the nonzero elements of \mathbb{F}_{p} (and similary for \mathbb{R} and $\mathbb{C})$.

But what about a group that doesn't involve ignoring one of the operations on a ring? In particular, what about groups in which the operation is not commutative?

Group theory actually arose from the study of transformations that preserved structure in other mathematical areas. The symmetry of physical objects is perhaps the easiest entry point. Consider a regular pentagon as in the figure

Rotation clockwise about the center by 72° takes the pentagon to itself. Only the enumeration of the vertices would indicate that a change occured. Calling this rotation r, we can see there are 5 rotational symmetries, which are rotation by $72^{\circ}, 144^{\circ}, 216^{\circ}, 288^{\circ}$ and 360°. The latter has the same result as not moving the pentagon at all. This set of rotations is a group where the operation is just doing one rotation followed by another. We may write these rotations as r, r^{2}, r^{3}, r^{4} and r^{5}; the latter having the same effect as not moving pentagon at all, so $r^{5}=r^{0}$

is the identity element. It should be clear that $r^{i} * r^{j}=r^{i+j}$. This group has 5 elements and "looks a lot like" $\mathbb{Z} / 5$ under addition.

There is another type of symmetry indicated by the dashed line. For each vertex of the pentagon there is a line through that vertex and the midpoint of the opposite side that is an axis of symmetry for reflection. Let t_{i} be the reflection through the line at vertex i. We now have 10 symmetries of the pentagon: the identity, 4 non-trivial rotations, and 5 reflections. The group operation is composition, apply one transformation and then the other. We also face an ambiguity: does $r t_{i}$ mean rotate then reflect through the line through vertex i, or reflect and then rotate? Our convention will be to use our usual functional notation: $r t_{i}$ means apply t_{i} then apply r. It is fairly easy to show that $r t_{i} \neq t_{i} r$, but, in fact, the product of a rotation and one of the reflections is a reflection. This is our first example of a nonabelian group. It is called the dihedral group of order 5 , and written D_{5}.

Definition 1.2.4. For $n \geq 3$, the dihedral group of order n, written D_{n}, is the group of symmetries of a regular n-gon. In addition to the identity there are $n-1$ rotations and n reflections. The group operation is composition of the transformations.

Examples 2.1.7 and 2.1.8 and the following exercise develops this example in more detail.

1.3 The Univariate Polynomial Ring over a Field

Let F be a field, in particular, consider F to be $\mathbb{Q}, \mathbb{F}_{p}$, or the real numbers or complex numbers. By $F[x]$ we mean the polynomial ring in the indeterminate x. The key fact about polynomial rings is that all the theorems we discussed for integers in Section 1.1 also hold-with appropriate modifications-for polynomial rings over F. These are the Quotient-Remainder Theorem, the GCD Theorem, the Euclidean Algorithm, the Prime-Irreducible Theorem, and the Unique Factorization Theorem. This close relationship between \mathbb{Z} and $F[x]$ is such an important theme in algebra and number theory that I want to lay out the fundamentals in detail in this section, which parallels completely Section 1.1 .

We can think of the polynomial ring as (1) a vector space over F with an infinite basis $1, x, x^{2}, \ldots$, along with (2) the additional multiplicative structure defined by $x^{i} * x^{j}=x^{i+j}$ and the properties of commutativity, associativity and distributivity of multiplication over addition. The result is thus a ring.

Sometimes it is useful to write a polynomial $b(x) \in F[x]$ as a sum $b(x)=$ $\sum_{i=0}^{\infty} b_{i} x^{i}$ with the understanding that only a finite number of the b_{i} are nonzero. When all of the $b_{i}=0$ we get the zero polynomial. Suppose $b(x) \neq 0$ and let δ be the largest integer such that $b_{\delta} \neq 0$. We call δ the degree of $b(x) ; b_{\delta} x^{\delta}$ is the leading term of $b(x) ; x^{\delta}$ is the leading monomial of $b(x)$; and b_{δ} is the leading coefficient of $b(x)$. If $b_{\delta}=1$ we say $b(x)$ is monic. When $\delta=0$ we say $b(x)$ is a constant polynomial. The zero polynomial is also considered a constant polynomial and the degree is sometimes defined to be $-\infty$.

The product of a polynomial $a(x)$ of degree γ and $b(x)$ of degree δ has degree $\gamma+\delta$. Rules for divisibility of polynomials are similar to those for the integers. In particular if $a(x)$ divides $b(x)$ and $b(x)$ divides $c(x)$ then $a(x)$ divides $c(x)$. Furthermore if $d(x)$ divides both $a(x)$ and $b(x)$ then it divides their sum (and also any multiple of either $a(x)$ or $b(x))$.

The following lemma simplifies the proof of the Quotient-Remainder theorem. It is worth remarking that we are using the properties of a field when we divide by b_{γ}.

Lemma 1.3.1 (Division). Let $a(x)$ and $b(x)$ be in $F[x]$ with degrees γ and δ respectively and $\gamma>\delta$. Then the degree of $a(x)-\frac{a_{\gamma}}{b_{\delta}} x^{\gamma-\delta} b(x)$ is less than γ.

Proof. This is a straightforward computation.

$$
\begin{aligned}
a(x)- & \frac{a_{\gamma}}{b_{\delta}} x^{\gamma-\delta} b(x) \\
= & a_{\gamma} x^{\gamma}+a_{\gamma-1} x^{\gamma-1}+\cdots+a_{1} x+a_{0} \\
& \quad-\frac{a_{\gamma}}{b_{\delta}} x^{\gamma-\delta}\left(b_{\delta} x^{\delta}+b_{\delta-1} x^{\delta-1}+\cdots+b_{1} x+b_{0}\right) \\
= & a_{\gamma} x^{\gamma}+a_{\gamma-1} x^{\gamma-1}+\cdots+a_{1} x+a_{0} \\
& \quad-\left(a_{\gamma} x^{\gamma}+\frac{a_{\gamma} b_{\delta-1}}{b_{\delta}} x^{\gamma-1}+\cdots+\frac{a_{\gamma} b_{1}}{b_{\delta}} x^{\gamma-\delta+1}+\frac{a_{\gamma} b_{0}}{b_{\delta}} x^{\gamma-\delta}\right) \\
= & \left(a_{\gamma-1}-\frac{a_{\gamma} b_{\delta-1}}{b_{\delta}}\right) x^{\gamma-1}+\left(a_{\gamma-2}-\frac{a_{\gamma} b_{\delta-2}}{b_{\delta}}\right) x^{\gamma-2}+\cdots
\end{aligned}
$$

The leading terms of $a(x)$ and $\frac{a_{\gamma}}{b_{\delta}} x^{\gamma-\delta} b(x)$ cancel and the result has degree less than γ.

Theorem 1.3.2 (Quotient-Remainder). Let $a(x)$ and $b(x)$ be in $F[x]$ with $b(x) \neq$ 0 . There exist unique $q(x), r(x)$ such that
(1) $a(x)=b(x) q(x)+r(x)$, and
(2) $\operatorname{deg} r(x)<\operatorname{deg} b(x)$

Proof. Consider the set $S=\{a(x)-b(x) c(x): c(x) \in F[x]\}$. The set of degrees of the elements of S is a nonempty subset of the nonnegative integers, so it has a least element, δ. There is some polynomial of degree δ in S, call it $r(x)$, and suppose $r(x)=a(x)-b(x) q(x)$. I claim $\operatorname{deg}(r(x))<\operatorname{deg}(b(x))$. Suppose not. Let $\gamma=\operatorname{deg}(r(x))$ and $\delta=\operatorname{deg}(b(x))$. Apply Lemma 1.3.1 to $r(x)$ and $b(x)$ to get

$$
\begin{aligned}
r(x)-\frac{r_{\delta}}{b_{\gamma}} x^{\gamma-\delta} b(x) & =a(x)-b(x) q(x)-\frac{r_{\delta}}{b_{\gamma}} x^{\gamma-\delta} b(x) \\
& =a(x)-b(x)\left(q(x)+\frac{r_{\delta}}{b_{\gamma}} x^{\gamma-\delta}\right)
\end{aligned}
$$

This is also in S and has lower degree than $r(x)$, which contradicts our choice of $r(x)$. Thus we must have $\operatorname{deg}(r(x))<\operatorname{deg}(b(x))$. This establishes existence of $q(x)$ and $r(x)$ as claimed.

To prove uniqueness, suppose another $r^{\prime}(x), q^{\prime}(x)$ satisfy (1) and (2). (We want to show they are equal to $r(x)$ and $q(x)$!) Then $a(x)=b(x) q(x)+r(x)=$ $b(x) q^{\prime}(x)+r^{\prime}(x)$ so $r(x)-r^{\prime}(x)=b(x)\left(q^{\prime}(x)-q(x)\right)$. The degree on the left hand side is strictly less than the degree of $b(x)$. Since the right hand side is a multiple of $b(x)$, it must in fact be 0 . Thus $r(x)=r^{\prime}(x)$ and $q(x)=q^{\prime}(x)$.

The greatest common divisor of two integers was easy to define since the integers are well ordered. It is not obvious that, among the common divisors of $a(x), b(x) \in F[x]$, there is just one monic divisor of maximal degree. The following theorem shows the gcd can be uniquely defined and extends the GCD Theorem to polynomials. A polynomial combination of $a(x)$ and $b(x)$ is a polynomial that can be expressed as $a(x) u(x)+b(x) v(x)$ for some $u(x), v(x) \in F[x]$.

Theorem 1.3.3 (GCD). Let $a(x), b(x) \in F[x]$ with at least one of them nonzero. There is a unique polynomial $d(x)$ satisfying
(1) $d(x)$ is a common divisor of $a(x)$ and $b(x)$,
(2) $d(x)$ is monic,
(3) $d(x)$ is divisible by all other common divisors of $a(x)$ and $b(x)$ (so it is the greatest common divisor).

Furthermore, there exist $u(x), v(x) \in F[x]$ such that $d(x)=a(x) u(x)+b(x) v(x)$. The set of all polynomial combinations of $a(x)$ and $b(x)$ equals the set of multiples of $d(x)$.

Proof. Let $S=\{a(x) s(x)+b(x) t(x): s(x), t(x) \in F[x]\}$. Let $d(x)$ be a nonzero polynomial of minimal degree in S and let $u(x), v(x)$ be such that $d(x)=a(x) u(x)+$ $b(x) v(x)$. We may assume that $d(x)$ is monic, since any constant multiple of a polynomial in S is also in S. I claim $d(x)$ divides $a(x)$ and $b(x)$.

By the QR theorem applied to $a(x)$ and $d(x), a(x)=d(x) q(x)+r(x)$ for some $q(x)$ and $r(x)$ in $F[x]$ with $\operatorname{deg}(r(x))<\operatorname{deg}(d(x))$. Then

$$
\begin{aligned}
r(x) & =a(x)-d(x) q(x) \\
& =a(x)-(a(x) u(x)+b(x) v(x)) q(x) \\
& =a(x)(1-u(x) q(x))-b(x) v(x) q(x)
\end{aligned}
$$

This shows that $r(x)$ is also in S. If it were nonzero, it could be multiplied by a constant to get a monic element of S with lower degree than $d(x)$, which contradicts the choice of $d(x)$. Thus $r(x)=0$, so $d(x)$ divides $a(x)$.

Similarly, one shows $d(x)$ divides $b(x)$, so $d(x)$ is a common divisor of $a(x)$ and $b(x)$. To show it is the greatest common divisor, let $c(x)$ be any other common divisor of $a(x)$ and $b(x)$. Then $c(x)$ divides $a(x) u(x)+b(x) v(x)=d(x)$ (by divisibility properties) as claimed. Finally, the divisibility properties ensure every polynomial combination of $a(x)$ and $b(x)$ will be divisible by $d(x)$ since it divides both $a(x)$ and $b(x)$.

The proof of the theorem can be adapted for any set of polynomials $S \subseteq F[x]$. One can show that the smallest degree monic polynomial that can be expressed as a combination of the elements of S actually divides all the elements of S.

The discussion of the Euclidean algorithm for integers carries over almost verbatim. Assume $\operatorname{deg}(a(x)) \geq \operatorname{deg}(b(x))$. Set $r_{-1}(x)=a(x)$ and $r_{0}(x)=b(x)$, and define inductively (while $r_{k}(x) \neq 0$)

$$
\begin{aligned}
q_{k}(x) & =r_{k-1}(x) / / r_{k}(x) \\
r_{k+1}(x) & =r_{k-1}(x) \% r_{k}(x), \quad \text { so that } \\
r_{k+1}(x) & =r_{k-1}(x)-q_{k}(x) r_{k}(x)
\end{aligned}
$$

Then $\operatorname{deg}\left(r_{k}(x)\right)$ is a strictly decreasing sequence of nonnegative integers. The process must terminate: for some $n, r_{n+1}(x)=0$. Now we make use of the following lemma, proved using basic divisibility properties.

Lemma 1.3.4. For polynomials in $F[x] a(x), b(x), c(x), s(x)$ such that $a(x)=$ $b(x) s(x)+c(x)$, we have $\operatorname{gcd}(a(x), b(x))=\operatorname{gcd}(b(x), c(x))$.

Let's apply this to the sequence $r_{k}(x)$, letting n be minimal such that $r_{n+1}(x)=$ 0 . We have (since $r_{n+1}(x)=0$)
$\operatorname{gcd}(a(x), b(x))=\operatorname{gcd}\left(b(x), r_{1}(x)\right)=\cdots=\operatorname{gcd}\left(r_{n}(x), r_{n+1}(x)\right)=\operatorname{gcd}\left(r_{n}(x), 0\right)=r_{n}(x)$
This argument shows that the Euclidean algorithm produces the gcd of $a(x)$ and $b(x)$.

Let $r(x) \in F[x]$ have degree at least one. As with integers, we say $r(x)$ is irreducible when it can't be factored in a nontrivial way: whenever $r(x)=a(x) b(x)$ either $a(x)$ or $b(x)$ is a constant (that is in F). We say $r(x)$ is prime when $r(x) \mid a(x) b(x)$ implies $r(x) \mid a(x)$ or $r(x) \mid b(x)$.

As with integers, we have the equivalence of primality and irreducibility, which is a key step towards proving unique factorization.

Theorem 1.3.5 (Prime-Irreducible). Any nonconstant element of $F[x]$ is irreducible iff it is prime.

Proof. Let $r(x) \in F[x]$ be irreducible; let us show it is prime. Suppose that $p(x) \mid a(x) b(x)$ for some $a(x)$ and $b(x)$ in $F[x]$. We need to show $p(x) \mid a(x)$ or $p(x) \mid b(x)$. If $p(x)$ divides $a(x)$ we are done, so suppose it does not divide $a(x)$. Since $p(x)$ is irreducible, the GCD of $a(x)$ and $p(x)$ is 1 . By the GCD theorem, there are polynomials $u(x), v(x)$ such that

$$
1=a(x) u(x)+p(x) v(x)
$$

Multiplying by $b(x)$

$$
b(x)=a(x) b(x) u(x)+p(x) b(x) v(x)
$$

Since $p(x) \mid a(x) b(x)$ we have that $p(x)$ divides the right hand side, thus $p(x)$ divides $b(x)$. Thus we have shown that $p(x)$ is prime.

Suppose now that $p(x)$ is prime, we will show it is irreducible. Let $p(x)=$ $a(x) b(x)$ be a factorization of $p(x)$. We must show one of $a(x)$ or $b(x)$ is a constant. Since $p(x)$ is prime and it divides (in fact equals) the product $a(x) b(x)$ it must divide one of the factors. Without loss of generality, say $p(x) \mid a(x)$. We then have $\operatorname{deg}(a(x)) \geq \operatorname{deg}(p(x))$. On the other hand, since $p(x)=a(x) b(x)$ we have by additivity of degrees for a product of polynomials,

$$
\operatorname{deg}(p(x))=\operatorname{deg}(a(x))+\operatorname{deg}(b(x)) \geq \operatorname{deg}(a(x))
$$

We conclude that $\operatorname{deg}(p(x))=\operatorname{deg}(a(x))$ and $\operatorname{deg}(b(x))=0$. Thus $b(x)$ is a constant.

Theorem 1.3.6 (Unique Factorization). Let $a(x) \in F[x]$ be nonzero. There is a nonnegative integer t, a constant $u \in F$, distinct monic irreducible polynomials $p_{1}(x), \ldots, p_{t}(x)$, and positive integers $e_{1}, \ldots e_{t}$ such that

$$
a(x)=u\left(p_{1}(x)\right)^{e_{1}} \cdots\left(p_{t}(x)\right)^{e_{t}}
$$

Each of $t, p_{i}(x), e_{i}$ and u is uniquely determined, up to reordering of the $p_{i}(x)$ and e_{i}.

Polynomial modulus

We now extend the technique of modular arithmetic to the polynomial ring over a field.

Let $m(x) \in F[x]$ have degree d. Polynomials $a(x)$ and $b(x)$ are congruent modulo $m(x)$ when $m(x)$ divides $a(x)-b(x)$.

Theorem 1.3.7. Congruence modulo $m(x)$ is an equivalence relation. The set of polynomials of degree less than $\delta=\operatorname{deg}(m(x))$ is a system of representatives for congruence modulo $m(x)$. That is, each polynomial is congruent modulo $m(x)$ to its remainder when divided by $m(x)$, which has degree less than δ.

Any constant multiple of $m(x)$ will define the same equivalence relation as $m(x)$ so we usually take $m(x)$ to be monic. We will write $[a(x)]_{m(x)}$ for the congruence class of $a(x)$ modulo $m(x)$ whenever we need to be careful to distinguish between $a(x)$, otherwise we will omit the subscript if the modulus is obvious.

Theorem 1.3.8 (Arithmetic mod $m(x))$. Suppose that $a(x) \equiv b(x) \bmod m(x)$ and $r(x) \equiv s(x) \bmod m(x)$. Then $a(x)+r(x) \equiv b(x)+s(x) \bmod m(x)$ and $a(x) r(x)=b(x) s(x) \bmod m(x)$. Thus, arithmetic on congruence classes modulo $m(x)$ is well-defined.

- $[a(x)]+[r(x)]=[a(x)+r(x)]$
- $[a(x)] *[r(x)]=[a(x) r(x)]$

Proof. Suppose that $a(x) \equiv b(x) \bmod m(x)$ and $r(x) \equiv s(x) \bmod m(x)$. We have $a(x)=b(x)+u(x) m(x)$ and $r(x)=s(x)+v(x) m(x)$ for some polynomials $u(x)$ and $v(x)$. Then $a(x)+r(x)=b(x)+s(x)+(u(x)+v(x)) m(x)$ so $a(x)+r(x) \equiv b(x)+s(x)$ $\bmod m(x)$. We also have

$$
a(x) r(x)=b(x) s(x)+(a(x) v(x)+b(x) u(x)+u(x) v(x) m(x)) m(x)
$$

so $a(x) r(x) \equiv b(x) s(x) \bmod m(x)$.
This shows that no matter what element of an equivalence class is used to represent a class, arithmetic operations modulo $m(x)$ will give the same result.

We will write $F[x] / m(x)$ for the set of equivalence classes modulo $m(x)$, with the operations + and $*$ as designated above.

Exercises 1.3.9.

(a) Let $m(x)$ be an irreducible monic polynomial in $F[x]$. Let $[a(x)] \in F[x] / m(x)$ with $a(x)$ not divisible by $m(x)$. Use the GCD Theorem 1.3.3 to show there is some $r(x) \in F[x]$ such that $[a(x)][r(x)]=[1]$.
(b) Extend this result, partially, to other $F[x] / m(x)$. If $a(x) \in F[x]$ is such that the $a(x)$ is coprime to $m(x)$, then there is some $r(x) \in F[x]$ such that $[a(x)][r(x)]=[1]$.

Chapter 2

Groups

2.1 Groups and First Examples

The material in this section is a quick summary of the most fundamental properties of groups. I have omitted some proofs because they are are fairly routine, are good exercises for the reader, and are available from many sources. See in particular the book of Hungerford Hun12. It is worthwhile reviewing the proofs as you read!

Definition 2.1.1. A binary operation on a set S is a function from $S \times S$ to S. Similarly, a unary operation is a function $S \longrightarrow S$. An "operation" on S is usually assumed to be binary if not stated otherwise.

Definition 2.1.2. A group is a set G with a binary operation * and a unary operation denoted $a \longmapsto a^{-1}$ satisfying the following properties.
(1) Associativity of $*$: For all $a, b, c \in G,(a * b) * c=a *(b * c)$.
(2) Identity for $*$: There is an element, usually denoted e, such that $e * a=a=$ $a * e$ for all $a \in G$.
(3) Inverses for $*$: For each $a \in G$ the unary operation $a \longmapsto a^{-1}$ gives the multiplicative inverse for a. That is, $a * a^{-1}=e=a^{-1} * a$.

A group which also satisfies $a * b=b * a$ is called commutative or abelian (after the mathematician Abel).

The operation is usually called a product. So $a * b$ is the product of a and b. One must be careful, because, in a nonabelian group, the products $a * b$ and $b * a$ are not necessarily equal. In abelian groups (for example the integers form an abelian group) the operation is often called addition and is written with a + sign, while the identity is written as 0 .

The most basic properties are contained in the following proposition. The proofs of all of these are called by a friend of mine "card tricks."

Proposition 2.1.3 (Basic Properties). Let G, * be a group. Then
(1) The identity element is unique.
(2) The inverse of any element is unique.
(3) The cancellation law holds: $a * b=a * c$ implies $b=c$ (and similarly for cancellation on the right).
(4) If $a * g=g$ for some $g \in G$, then $a=e_{G}$.
(5) $(a * b)^{-1}=b^{-1} * a^{-1}$.
(6) $\left(a^{-1}\right)^{-1}=a$.

Let G be a group. When there is risk of confusion, with more than one group under consideration, we will use $*_{G}$ for the operation on the group G and e_{G} for the identity element. Otherwise we will not subscript with G. Unless there is some reason to be very clear we rarely write the group operation: $g_{1} g_{2}$ means $g_{1} *_{G} g_{2}$. For a positive integer n, g^{n} is shorthand for $\underbrace{g g \cdots g}_{n \text { factors }}$ and g^{-n} is shorthand for $\underbrace{g^{-1} g^{-1} \cdots g^{-1}}_{n \text { factors }}$. It is straightforward to check that the usual rules for exponents apply.

For an additive group, the identity is usually written as 0 not e. The sum $\underbrace{g+g+\cdots+g}$ is written $n g$. Think of this as repeated addition, not as multipli-
n terms
cation: the group just has one operation, and n is an integer, not necessarily an element of the group.

The first examples come from a familiar place, the integers. I assume the reader has seen modular arithmetic previously.
Example 2.1.4. The integers \mathbb{Z} form a group with operation + , identity element 0 and inversion operation $a \longmapsto-a$. The elements 1 and -1 generate the group \mathbb{Z} in the sense that by applying inversion and repeated addition we can get all the other elements of \mathbb{Z}. This is not true for other elements.

The set of multiples of n in \mathbb{Z} also is a group under + with identity 0 . Adding two multiples of n gives another multiple of n, and the additive inverse of a multiple of n is also a multiple of n. We will denote this group by $n \mathbb{Z}$. In the next section we introduce the abstract definition of a subgroup. Here $n \mathbb{Z}$ is a subgroup of \mathbb{Z}. The elements n and $-n$ generate $n \mathbb{Z}$ just as 1 and -1 generate \mathbb{Z}.

The integers modulo n, which I will write \mathbb{Z}_{n}, also forms a group under + . We can write the elements as $0,1,2, \ldots, n-1$, but these are really shorthand for equivalence classes. The formal definition of \mathbb{Z}_{n} is left till later, as a special case of quotient groups (and later quotient rings). An interesting question is what elements generate \mathbb{Z}_{n}.
Example 2.1.5. The Cartesian product $\mathbb{Z} \times \mathbb{Z}$ is a group under coordinatewise addition with identity element $(0,0)$ and inverse operator $(a, b) \longmapsto(-a,-b)$. It is not possible to generate all elements by repeated addition of a single element. (Exercise)

The Cartesian product $\mathbb{Z} / m \times \mathbb{Z} / n$ under coordinatewise addition (and using coordinatewise identity elements and inversion) is also a group. In certain cases it is possible to have a single element generate all elements by repeated addition.

Exercises 2.1.6.

(a) Consider \mathbb{Z}_{n} for $n=2,3,4,5,6,7$. Which elements $a \in \mathbb{Z}_{n}$ generate all of \mathbb{Z}_{n} ?
(b) Experiment with some small integers m and n to find cases in which $\mathbb{Z}_{m} \times \mathbb{Z}_{n}$ is generated by a single element and other cases in which it is not.

The abstract notion of a group had its origin in notions of symmetry and in permutation. In particular the set of transformations of a figure to itself forms a group.
Example 2.1.7. Recall the definition of the dihedral group D_{n}, which is the symmetry group of a regular n-gon 1.2 .4 . The case $n=5$ is in the figure. The group includes the identity, 4 nontrivial rotations r, r^{2}, r^{3}, r^{4} (where we define r to be rotation clockwise by 72%) and 5 reflections. It is clear how to compose rotations and that $r^{i} * r^{j}=r^{i+j}$ where the exponent can be reduced modulo 5 . Our convention for the operation is to apply the rightmost transformation first, so: $r t_{i}$ means apply t_{i} then apply r.

Another question arises: how might we compactly describe the product of various elements r^{i}, t_{j} ?

Example 2.1.8. Let's elaborate on the previous example by enumerating the vertices from 1 to 5 and writing down the effect of rotation by 72° on the vertices in a table. The bottom row shows where the vertex in the top row goes.

$$
r=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 4 & 5 & 1
\end{array}\right)
$$

Similarly

$$
r^{3}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 5 & 1 & 2 & 3
\end{array}\right)
$$

Here are two of the reflections

$$
t_{1}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 5 & 4 & 3 & 2
\end{array}\right) \quad t_{2}=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 1 & 5 & 4
\end{array}\right)
$$

More generally, we can consider all possible permutations; there are 5!. Composing them is just composing functions. The inverse permutation involves flipping the two rows of the permutation and then, for convenience, rearranging the columns so that the first row is increasing order.

For

$$
p=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
4 & 3 & 1 & 5 & 2
\end{array}\right), \quad \text { the inverse is } p^{-1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 2 & 1 & 4
\end{array}\right) .
$$

The permutation group S_{4} may be seen as contained in S_{5}; it is just the set of all permutations in S_{5} that take 5 to 5 (we say these "fix" 5). There are other subgroups that have the exact same structure as S_{4}. For example the set of all permutations in S_{5} that fix 3. These subgroups are all isomorphic (see a later section).

Exercises 2.1.9. It may be helpful to use both the diagram of the pentagon and the permutations in the last example to answer these questions.
(a) In D_{5} as discussed above, show that $r t_{1}$ is one of the other reflections. Find a function $f(i)$ such that $r t_{i}=t_{f(i)}$.
(b) Find a function $f(i, j)$ such that $r^{j} t_{i}=t_{f(i, j)}$.

Exercises 2.1.10. A Perverse Group

(a) Show that \mathbb{Z} is a group under the operation \square defined by $a \square b=a+b-2$. (What is the identity element? What is the inverse of an element a ?)
(b) Find an isomorphism from $\mathbb{Z},+$ to \mathbb{Z}, \square.

2.2 Subgroups

A key thing to study in any topic is the subsets of a given object that have useful structure. In this section we treat subsets of a group that are themselves groups. We also consider cardinality of a group and the order of an element.

Definition 2.2.1. The cardinality of a group G, written $|G|$ is just the cardinality of the underlying set. It is also called the order of the group.

Many of our examples will be finite groups and we will be studying some of the properties that go into understanding the structure of finite groups.

Definition 2.2.2. For $g \in G$ the order of the element g is the smallest positive integer n such that $g^{n}=e$, if such an n exists. If no such n exists then g has infinite order. We use $|g|$ or $\operatorname{ord}(g)$ for the order of g.

The exponent of G is the least common multiple of the orders of the elements of G, if such an integer exists, that is $\exp (G)=\operatorname{lcm}\{\operatorname{ord}(g): g \in G\}$. If no such element exists one can say the exponent is infinite.

Only the identity element of a group has order 1. Every nonzero element of \mathbb{Z} has infinite order. In \mathbb{Z}_{n} some elements have order n, but other non-identity elements may have a different order. For any finite group there is a well defined exponent, but an infinite group may or may not have one.

Theorem 2.2.3 (Order Theorem). Let g be an element of the group G.
(1) If g has infinite order, then elements g^{t} for $t \in \mathbb{Z}$ are all distinct.
(2) If g has order n then
(a) $g^{t}=g^{s}$ if and only if $t \equiv s \bmod n$. In particular $g^{t}=e$ if and only if n divides t.
(b) $\operatorname{ord}\left(g^{t}\right)=\frac{n}{\operatorname{gcd}(t, n)}$.

Proof. Suppose $g^{t}=g^{s}$ for integers s, t. Then $g^{t-s}=e_{G}$. If g has infinite order then $s-t=0$ so $s=t$. This proves item (1).

Suppose g has order n. For an integer t use the quotient remainder theorem to write $t=n q+r$. Then $g^{t}=g^{n q+r}=\left(g^{n}\right)^{q} g^{r}=e^{q} g^{r}=g^{r}$. This shows claim (2a).

Now let $d=\operatorname{gcd}(t, n)$ and write $t=d a$ and $n=d b$. Then a, b have no common factor (otherwise d would not be the gcd) and we observe that $b=n / \operatorname{gcd}(t, n)$. We now have $\left(g^{t}\right)^{b}=g^{d a b}=\left(g^{n}\right)^{a}=e$. Furthermore, if $\left(g^{t}\right)^{s}=e$ then, by (2a), $n=d b$ divides $t s=d a s$. Cancelling d and taking note of b and a being coprime we get b divides s. This establishes (2b).

Definition 2.2.4. A nonempty subset H of a group G is a subgroup, when H is a group using the operation $*_{G}$ on G. This means that for any $h \in H$ the inverse h^{-1} must also be in H and for $h, h, h^{\prime} \in H$, the product $h *_{G} h^{\prime}$ must also be an element of H. We will say H is closed under inversion and multiplication. We will write $H \leq G$ when H is a subgroup of G (as opposed to $H \subseteq G$ when H is just a subset), and $H<G$ when H is a proper subgroup (that is $H \neq G$).

The following proposition is a sanity check on our definition of subgroup: the identity element and inversion are the same for the subgroup as for the group.

Proposition 2.2.5. If K is a subgroup of G then $e_{K}=e_{G}$ and the inversion operation is the same on K as it is on G.

Proof. If K is a subgroup of G then it must have an identity element. For any $k \in K$, we have (using $*_{K}=*_{G}$) that $e_{K} *_{K} k=e_{K} *_{G} k=k$ Proposition 2.1.3 (4) shows that it must be the case that $e_{K}=e_{G}$. (If something acts like the identity it is the identity!)

Let $k \in K$ and let k^{-1} be its inverse in G. This k^{-1} is also the inverse of k in the subgroup K because $k * k^{-1}=e_{G}=e_{K}$.
(Thank goodness for both of these facts.)
Proposition 2.2.6 (Subgroup Properties). If K is a nonempty subset of G that is closed under inversion and closed under mulitplication in G then K is a subgroup of G (i.e. it also contains e_{G}).

If K is a nonempty subset of G such that $h *_{G} k^{-1} \in K$ for all $h, k \in K$ then K is a subgroup of G.
Proof. Since K is nonempty, it contains some element k. Since K is closed under inversion, $k^{-1} \in K$. Since K is closed under multiplication, $k *_{G} k^{-1}=e_{G} \in K$. Thus K satisfies the definition of a group since it has associativity (immediate since $*_{K}$ is the restriction of $*_{G}$), an identity element, and inverses (by assumption).

Suppose K is a nonempty subset of G such that $h *_{G} k^{-1} \in K$ for all $h, k \in K$. For any $k \in K$, setting $h=k$ gives $k *_{G} k^{-1}=e_{G} \in K$. Letting $h=e_{G}$ gives $e_{G} * k^{-1}=k^{-1} \in K$, so K is closed under inversion. Now for any $h, k \in K$ we know $k^{-1} \in K$, so $h *_{G}\left(k^{-1}\right)^{-1}=h *_{G} k \in K$. This shows K is closed under multiplication.

Exercises 2.2.7.

(a) Let G be a group and g and arbitrary element of G. Show that $\left\{g^{i}: i \in \mathbb{Z}\right\}$ is a subgroup of G. This group is called the cyclic subgroup generated by g and is written $\langle g\rangle$.
(b) Let G be a group. Show that the set $Z(G)=\{a \in G: a g=g a$ for all $g \in G\}$ is an abelian subgroup of G. It is called the center of G.
(c) Let H and K be subgroups of G. Show that their intersection is also a subgroup of G.

Note that there is consistency between the order of an element and the order of a group. If $g \in G$ has order n then the set of powers of g is $\left\{g^{0}=e_{G}, g, g^{2}, \ldots, g^{n-1}\right\}$ (any other power of g is one of these). This set is a subgroup of G of order n. If $g \in G$ has infinite order then it generates a cyclic subgroup that is infinite. (It is not really cycling in the infinite case, but that's the term used!)
Example 2.2.8. The integers, \mathbb{Z}, the rational numbers, \mathbb{Q}, the real numbers \mathbb{R} and the complex numbers \mathbb{C} are all abelian groups under addition. We sometimes write $\mathbb{Z},+$ (for example) to emphasize that we are are ignoring multiplication, and are just considering the additive properties of \mathbb{Z}. Clearly we have a sequence of subgroups.

$$
\mathbb{Z}<\mathbb{Q}<\mathbb{R}<\mathbb{C}
$$

Example 2.2.9. The set of integers modulo n forms a group under addition. This group is called the cyclic group of order n and written $\mathbb{Z}_{n},+$ or sometimes C_{n} (I will just use \mathbb{Z}_{n} if the context is clear that we are talking about the additive group, not the ring).
Example 2.2.10. The dihedral group of order $2 n$ is the group of symmetries of a regular n-gon. Some sources, including Hungerford, write this group as D_{n}. The group has $2 n$ elements: the identity, $n-1$ non-trivial rotations, and n reflections. Consequently, some authors, including Ash, write this group as $D_{2 n}$. I will use D_{n}. The set of rotations forms a subgroup of order n in D_{n}, and each reflection generates a subgroup of order 2 .

Exercises 2.2.11.

(a) Suppose that every element of G has order 2 . Show that G is abelian.
(b) If G has even order then G has an element of order 2. (Consider the pairing of g with g^{-1}).

Exercises 2.2.12.

(a) If $g \in G$ has order m and $h \in H$ has order n, find the order of $(g, h) \in G \times H$.
(b) Suppose that $a, b \in G$ commute (that is $a b=b a$). If $\operatorname{ord}(a)$ and $\operatorname{ord}(b)$ are coprime find the order of $a b$.
(c) Let A be an abelian group with finite exponent. Show that there is some $a \in A$ such that $\operatorname{ord}(a)=\exp (A)$.

LATTICE of SUBGROUPS

Exercises 2.2.13. Lattice Diagrams for Groups

(a) Draw the subgroup lattice diagram for \mathbb{Z}_{45}.
(b) Draw the subgroup lattice diagram for $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(c) Draw the subgroup lattice diagram for $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.
(d) Draw the subgroup lattice diagram for $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
(e) Draw the subgroup lattice diagram for $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$.
(f) Find all subgroups of $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$. Describe the logic of your process for finding them. Present them in an organized fashion. Draw the lattice if you can.

2.3 Homomorphisms

Definition 2.3.1. For groups G, H a function $\varphi: G \longrightarrow H$ is a homomorphism when
(1) $\varphi\left(g_{1} *_{G} g_{2}\right)=\varphi\left(g_{1}\right) *_{H} \varphi\left(g_{2}\right)$ for all $g_{1}, g_{2} \in G$, and
(2) $\varphi\left(e_{G}\right)=e_{H}$, and
(3) $\varphi\left(g^{-1}\right)=(\varphi(g))^{-1}$ for all $g \in G$.

A homomorphism φ that is also a bijection (one-to-one and onto) is called an isomorphism.

I like to speak informally about a homomorphism as a function that respects structure: A homomorphism of groups "respects" the property of the identity element, multiplication, and inversion.

It is fairly easy to show that the first item in the definition of homomorphism implies the other two. This result and another important result are contained in the following proposition.

Proposition 2.3.2 (Homomorphisms). Let G, H, K be groups.
If $\varphi: G \longrightarrow H$ is a function such that $\varphi\left(g_{1} *_{G} g_{2}\right)=\varphi\left(g_{1}\right) *_{H} \varphi\left(g_{2}\right)$ then φ is a group homomorphism.

If $\varphi: G \longrightarrow H$ and $\theta: H \longrightarrow K$ are group homomorphisms then the composition $\theta \circ \varphi$ is also a group homomorphism.

Exercises 2.3.3.

(a) Prove the proposition. Assuming that φ respects multiplication show that it also takes the identity of G to the identity of H and that it respects inversion.
(b) Prove that the composition of homomorphisms is a homomorphism.

The simplest type of a homomorphism is the inclusion of a subgroup H of G into G. That is, when $H<G$, then there is a function $H \longrightarrow G$ that takes elements of H to themselves (now thought of as elements of G).

Proposition 2.3.4. Let g be an element of a group G. There is homomorphism

$$
\begin{aligned}
\varphi: \mathbb{Z} & \longrightarrow G \\
t & \longmapsto g^{t}
\end{aligned}
$$

When $g \in G$ has infinite order this homomorphism is injective.
When $g \in G$ has order n, the function below is an injective homomorphism.

$$
\begin{aligned}
& \varphi: \mathbb{Z}_{n} \longrightarrow G \\
& t \longmapsto g^{t}
\end{aligned}
$$

Proof. Let g be an element of a group G. Consider the function $\mathbb{Z} \longrightarrow G$ taking t to g^{t}. The function is a homomorphism because for $s, t \in \mathbb{Z}, s+t$ maps to $g^{s+t}=g^{s} * g^{t}$ and this is the product of the images of s and t.

Now assume that g has infinite order. Suppose that $g^{s}=g^{t}$. Then $g^{s-t}=e_{G}$. Since g has infinite order $s-t=0$, so $s=t$. This proves injectivity.

The proof for g of finite order is similar.
Example 2.3.5. The function $\mathbb{Z} \longrightarrow \mathbb{Z}_{n}$ that takes k to its equivalence class modulo n is a surjective homomorphism.

Proposition 2.3.6. Let $G \longrightarrow H$ be a homomorphism. The image of G, which we write $\varphi(G)$, is a subgroup of H.

Proof. We need only show that the image is closed under inversion and multiplication. Consider an element of $\varphi(G)$. Since it is the image of φ we may write it as $\varphi(g)$ for some $g \in G$. By the properties of a homomorphism

$$
\varphi\left(g^{-1}\right) \varphi(g)=\varphi\left(g^{-1} g\right)=\varphi\left(e_{G}\right)=e_{H}
$$

This shows that the inverse of $\varphi(g)$ is $\varphi\left(g^{-1}\right)$ and that it is in the image of φ. Consider two elements of $\varphi(G)$, which we may write as $\varphi\left(g_{1}\right)$ and $\varphi\left(g_{2}\right)$. Their product is $\varphi\left(g_{1}\right) \varphi\left(g_{2}\right)=\varphi\left(g_{1} g_{2}\right)$, and this is in the image of φ. We have shown that $\varphi(G)$ is closed under inversion and under multiplication so it is a subgroup of G.

When there exists an isomorphism $\varphi: G \longrightarrow H$ we say G and H are isomorphic and write $G \cong H$. The following proposition shows that being isomorphic satisfies symmetry, and transitivity so determines an equivalence relation on any set of groups.

Proposition 2.3.7 (Isomorphisms). If φ is an isomorphism of groups, then the inverse function φ^{-1} is also an isomorphism of groups.

If $\varphi: G \longrightarrow H$ and $\theta: H \longrightarrow K$ are group isomomorphisms then the composition $\theta \circ \varphi$ is also a group isomorphism.

On any set of groups \mathcal{G}, the relation of being isomorphic is an equivalence relation.

PROOF

If there is an isomorphism between groups G and H then G and H have the same algebraic structure, so we consider them equivalent.

Exercises 2.3.8.

(a) Show that for each $a \in \mathbb{Z}_{n}$ there is a unique homomorphism $\varphi_{a}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{n}$ such that $\varphi_{a}(1)=a$.
(b) Under what conditions on a is φ_{a} an isomorphism?
(c) Identify all subgroups of \mathbb{Z}_{n}.

Exercises 2.3.9.

(a) Show that if $d \mid n$ then there is a homomorphism \mathbb{Z}_{n} to \mathbb{Z}_{d} that takes 1 (in \mathbb{Z}_{n}) to 1 (in \mathbb{Z}_{d}). Show that it is also surjective.
(b) Show that if d does not divide n then there is no homomorphism \mathbb{Z}_{n} to \mathbb{Z}_{d} that takes 1 (in \mathbb{Z}_{n}) to $1\left(\right.$ in $\left.\mathbb{Z}_{d}\right)$.

Exercises 2.3.10.

(a) Show that there is an injective homomorphism from \mathbb{Z}_{n} into D_{n} taking 1 to rotation by $2 \pi / n$.
(b) How many injective homomorphisms are there from \mathbb{Z}_{n} into D_{n} ?
(c) Identify all subgroups of D_{n} for $n=3,4,5,6$. Draw a lattice diagram showing containment of subgroups.

The following result has a straightforward proof, but it is worth doing carefully: Think of $\operatorname{Aut}(G)$ as a subgroup of $\operatorname{Bij}(G)$, the group of bijections of the set G.

Proposition 2.3.11 (Automorphisms). Let G be a group, the set of all isomorphisms from G to itself is a group. This new group is called $\operatorname{Aut}(G)$, the group of automorphisms of G.

Proof. The identity map is clearly an automorphism of G, so the subset of $\operatorname{Bij}(G)$ consisting of isomorphisms is nonempty. Proposition 2.3.7 shows that the inverse of an isomorphism is an isomorphism and the composition of two isomorphisms is an isomorphism. Thus $\operatorname{Aut}(G)$ is a subgroup of $\operatorname{Bij}(G)$.

Exercises 2.3.12.

(a) Show that $\operatorname{Aut}(\mathbb{Z})$ has two elements and $\operatorname{Aut}(\mathbb{Z}) \cong \mathbb{Z}_{2}$.
(b) Compute $\operatorname{Aut}\left(\mathbb{Z}_{n}\right)$ for $n=2,3,4,5,6,7$. [In each case the answer is a cyclic group.]
(c) Show that $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$ is not cyclic.

Exercises 2.3.13.

(a) If $\varphi: G \longrightarrow H$ is a homomorphism, then $\operatorname{ord}(\varphi(g))$ divides $\operatorname{ord}(g)$.
(b) If $\varphi: G \longrightarrow H$ is an isomorphism, then $\operatorname{ord}(\varphi(g))=\operatorname{ord}(g)$.

The previous exercises give important restrictions on homomorphisms. If you want to create a homomorphism from G to H, each element g in G must go to an element of H that has order dividing $\operatorname{ord}(g)$.

Exercises 2.3.14.

(a) Show that there is a nontrivial homomorphism from D_{3} to \mathbb{Z}_{2} but that any homomorphism from D_{3} to \mathbb{Z}_{3} is trivial.

The next proposition is a key result about the relationship between homomorphims and subgroups. Recall that for sets X, Y and an arbitrary function $f: X \longrightarrow Y$, we define $f\left(X^{\prime}\right)=\left\{f(x): x \in X^{\prime}\right\}$. In general, f^{-1} may not be a function, but for a subset Y^{\prime} of Y we define $f^{-1}(Y)$ to be $\left\{x \in X: f(x) \in Y^{\prime}\right\}$.

Proposition 2.3.15. Let $\varphi: G \longrightarrow H$ be a homomorphism.

- If G^{\prime} is a subgroup of G then $\varphi\left(G^{\prime}\right)$ is a subgroup of H.
- If H^{\prime} is a subgroup of H then $\varphi^{-1}\left(H^{\prime}\right)$ is a subgroup of G.

Proof. The proof of the first item is similar to the proof in Proposition 2.3.6.
Suppose H^{\prime} is a subgroup of H. Let $g \in \varphi^{-1}\left(H^{\prime}\right)$. Since φ is a homomorphism, we have $\varphi\left(g^{-1}\right)=(\varphi(g))^{-1}$. Since $\varphi(g) \in H^{\prime}$ and H^{\prime} is a subgroup, $(\varphi(g))^{-1} \in H^{\prime}$. This shows that $g^{-1} \in \varphi^{-1}\left(H^{\prime}\right)$, so $\varphi^{-1}\left(H^{\prime}\right)$ is closed under inversion.

Let g, a be elements of $\varphi^{-1}\left(H^{\prime}\right)$. Since we assume $\varphi(a)$ and $\varphi(g)$ are in H^{\prime} and H^{\prime} is a subgroup of H we have $\varphi(g a)=\varphi(g) \varphi(a)$ is an element of H^{\prime}. This shows that $\varphi^{-1}\left(H^{\prime}\right)$ is closed under multiplication.

Definition 2.3.16. Let $\varphi: G \longrightarrow H$ be a homomorphism. The kernel of φ is $\left\{g \in G: \varphi(g)=e_{H}\right\}$. Since e_{H} is a subgroup of $H, \operatorname{ker}(\varphi)$ is a subgroup of G by the previous proposition.

Proposition 2.3.17. Let $\varphi: G \longrightarrow H$ be a homomorphism of groups. The kernel of φ is trivial (just $\left\{e_{G}\right\}$) if and only if φ is injective.
Proof. Suppose φ is injective. By definition $\varphi\left(e_{G}\right)=e_{H}$, and since only one element of G has image $e_{H}, \operatorname{ker}(\varphi)=\left\{e_{G}\right\}$.

Conversely, assume $\operatorname{ker}(\varphi)=\left\{e_{G}\right\}$. Suppose that $\varphi(g)=\varphi(a)$. Then

$$
e_{H}=\varphi(g) *_{H} \varphi(a)^{-1}=\varphi\left(g *_{G} a^{-1}\right)
$$

using the properties of homomorphisms. By assumption $g *_{G} a^{-1}=e_{G}$, so $g=a$. This shows φ is injective.

An injective homomorphism $\varphi: G \longrightarrow H$ gives a bijection from G to $\varphi(G)$, which by proposition 2.3 .15 is a subgroup of H. Thus $\varphi: G \longrightarrow \varphi(G)$ is an isomorphism. We will often call an injective homomorphism an embedding since the image is a "copy" of G inside of H.

2.4 Some Constructions of Groups

There main result here is the direct product of groups. The idea is simple (and was illustrated in the first examples of groups that we gave). Given two groups, for the Cartesian product as sets, and apply componentwise operations to get a new group. This section also treats constructions of some subgroups of a given group.

The Direct Product

Definition 2.4.1. Let G and H be groups. The Cartesian product $G \times H$, along with the unary operation (of inversion) and the binary operation (of multiplication) below form the direct product of G and H.

$$
\begin{aligned}
(g, h)^{-1} & =\left(g^{-1}, h^{-1}\right) \\
\left(g_{1}, h_{1}\right) *_{G \times H}\left(g_{2}, h_{2}\right) & =\left(g_{1} *_{G} g_{2}, h_{1} *_{H} h_{2}\right)
\end{aligned}
$$

The identity element is of course $\left(e_{G}, e_{H}\right)$.
The following proposition shows that the direct product is in fact a group and gives other important properties. None of the following are surprising and they are routine to prove.

Theorem 2.4.2 (Direct Product). Let G and H be groups.
(1) The above definition does, indeed, make $G \times H$ a group.
(2) The associative law for the product of several groups holds: $G_{1} \times\left(G_{2} \times G_{3}\right) \cong$ $\left(G_{1} \times G_{2}\right) \times G_{3}$.
(3) $G \times H$ is abelian if and only if G and H are abelian.
(4) If G^{\prime} is a subgroup of G and H^{\prime} is a subgroup of H then $G^{\prime} \times H^{\prime}$ is a subgroup of $G \times H$. In particular $G \times\left\{e_{H}\right\}$ and $\left\{e_{G}\right\} \times H$ are subgroups of $G \times H$.
(5) There are injective homomorphisms $i_{G}: G \longrightarrow G \times H$ taking g to (g, e_{H}) (and similarly $i_{H}: H \longrightarrow G \times H$).
(6) The projection maps $p_{G}: G \times H \longrightarrow G$ and $p_{H}: G \times H \longrightarrow H$ are surjective homomorphisms.
(7) The construction and the observations above can be generalized to the direct product of any set of groups $\left\{G_{i}: i \in I\right\}$ indexed by a finite set I. (It extends with some modification due to subtle issues when I is infinite.)

The following result is more subtle and it turns out to be a powerful idea.
Proposition 2.4.3 (Universal Property of the Product). Let G, H, K be groups, and let $\varphi: G \longrightarrow H$ and $\psi: G \longrightarrow K$ be homomorphisms. The function $\alpha:$ $G \longrightarrow H \times K$ defined by $g \longmapsto(\varphi(g), \psi(g))$ is a homomorphism. It is the unique homomorphism such that $p_{G} \circ \alpha=\varphi$ and $p_{H} \circ \alpha=\psi$.

Proof. Note first that, by construction, $p_{G} \circ \alpha=\varphi$ and $p_{H} \circ \alpha=\psi$. Furthermore, there is no other choice for the definition of α satisfying this property.

We have to show that α respects inversion and multiplication. Let $g \in G$. We have to show that $\alpha\left(g^{-1}\right)$ is the inverse of $\alpha(g)$. The subscript on $*$ that we sometimes use to show group being used is omitted in the following derivation, but it is worthwhile to identify it while reading.

$$
\begin{aligned}
\alpha(g) * \alpha\left(g^{-1}\right) & =(\varphi(g), \psi(g)) *\left(\varphi\left(g^{-1}\right), \psi\left(g^{-1}\right)\right) \\
& \left.=\left(\varphi(g) * \varphi\left(g^{-1}\right), \psi(g)\right) * \psi\left(g^{-1}\right)\right) \\
& =\left(\varphi\left(g g^{-1}\right), \psi\left(g * g^{-1}\right)\right) \\
& =\left(e_{H}, e_{K}\right)
\end{aligned}
$$

This proves that $\alpha\left(g^{-1}\right)$ is the inverse of $\alpha(g)$. Similarly for $g_{1}, g_{2} \in G$,

$$
\begin{aligned}
\alpha\left(g_{1}\right) * \alpha\left(g_{2}\right) & =\left(\varphi\left(g_{1}\right), \psi\left(g_{1}\right)\right) *\left(\varphi\left(g_{2}\right), \psi\left(g_{2}\right)\right) \\
& \left.=\left(\varphi\left(g_{1}\right) * \varphi\left(g_{2}\right), \psi\left(g_{1}\right)\right) * \psi\left(g_{2}\right)\right) \\
& =\left(\varphi\left(g_{1} g_{2}\right), \psi\left(g_{1} g_{2}\right)\right) \\
& =\alpha\left(g_{1} g_{2}\right)
\end{aligned}
$$

This shows α respects products.

Exercises 2.4.4.

(a) Not all subgroups of $G \times H$ are direct products of subgroups of G and H. Illustrate with some examples: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

Exercises 2.4.5. We have shown that there is a homomorphism $\mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{d}$ taking 1 in \mathbb{Z}_{n} to 1 in \mathbb{Z}_{d} if and only if $d \mid n$. Suppose c and d both divide n.
(a) What is the kernel of the homomorphism $\mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{c} \times \mathbb{Z}_{d}$?
(b) Under what conditions is it an isomorphism?
(c) Illustrate with $n=8$ and $c=d=4$. What is the image?
(d) Illustrate with $n=18$ and $c=6$ and $d=9$. What is the image?

Intersections and Join of Subgroups

Proposition 2.4.6. Let H_{1}, \ldots, H_{t} be subgroups of G. The intersection $\bigcap_{i=1}^{t} H_{i}$ is a subgroup of G.

More generally, if \mathcal{H} is a set of subgroups of G then $\bigcap_{H \in \mathcal{H}} H$ is a subgroup of G.

Proof. Suppose h and h^{\prime} are in $\bigcap_{H \in \mathcal{H}} H$. Since each $H \in \mathcal{H}$ is a subgroup of G, $h^{\prime} h^{-1} \in H$ for each $H \in \mathcal{H}$. Thus $h^{\prime} h^{-1} \in \bigcap_{H \in \mathcal{H}} H$, and Proposition 2.2.6 shows $\bigcap_{H \in \mathcal{H}} H$ is a subgroup of G.

Let S be an arbitrary subset of a group G. Let \mathcal{H} be the set of all subgroups of G containing S. Then $\bigcap_{H \in \mathcal{H}} H$ is a group of G, and it contains S, since each $H \in \mathcal{H}$ contains S. Furthermore, any subgroup K of G containing S is in \mathcal{H} so $\bigcap_{H \in \mathcal{H}} H \subseteq K$. This argument justifies the following definition.
Definition 2.4.7. Let G be a group and let S be a subset of G. By $\langle S\rangle$ we mean the smallest subgroup of G containing S. It is the intersection of all subgroups of G containing S. We say $\langle S\rangle$ is the subgroup of G generated by S.

If H and K are subgroups of G their join, written $H \vee K$, is $\langle H \cup K\rangle$.

One interesting problem is to find minimal size sets that generate a group. For example, the elements 1 and -1 both generate \mathbb{Z}. The element 1 generates \mathbb{Z}_{n} as does any $a \in \mathbb{Z}_{n}$ that is coprime to n. (Exercise)

If a group G is generated by a single element, say $a \in G$, then $G=\left\{a^{i}: i \in \mathbb{Z}\right\}$ so G is equal to the cyclic subgroup generated by a. We call G a cyclic group, because, as we will discuss later, it is isomorphic to \mathbb{Z} if a has infinite order, or to \mathbb{Z}_{n} if a has order n. So, cyclic groups are not that complicated.

Groups generated by two elements can be quite complicated. We will see that D_{n} and S_{n} are each generated by two elements.

2.5 Permutation Groups

For n a positive integer, the symmetric group S_{n} is the set of all bijections on $\{1, \ldots, n\}$. These are also called permutations of $\{1, \ldots, n\}$. The number of elements in S_{n} is n !. Informally, we may justify this claim by noting that there are n possible images for the number 1 . Once the image for 1 is chosen, there are $n-1$ choices for the number 2 . Continuing in this manner we count n ! bijections from $\{1, \ldots, n\}$ to itself. One can give a more formal inductive proof.

We will sometimes write an element π of S_{n} in tabular form with i in the top row and $\pi(i)$ in the bottom row.

Exercises 2.5.1.

(a) Here are two elements of S_{5} :

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 2 & 4
\end{array}\right) \quad \text { and } \quad \sigma=\left(\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
1 & 3 & 4 & 2 & 5
\end{array}\right)
$$

(b) Compute the inverse of each.
(c) Compute the products $\pi \sigma$ and $\sigma \pi$, using the usual convention for compositions: $(\pi \sigma)(i)=\pi(\sigma(i))$. You should see that the results are not equal.

Example 2.5.2. Let $n=3$, and enumerate the vertices of a triangle clockwise as $1,2,3$. Each element of D_{3} gives rise to a permutation of $\{1,2,3\}$.

Let r be rotation clockwise by $2 \pi / 3$. Then

$$
r=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad \text { and } \quad r^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right) .
$$

There are three reflections, each fixes one element of $\{1,2,3\}$ and transposes the other two

$$
u_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad u_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \quad u_{3}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3 v
\end{array}\right) .
$$

This exhausts all permutations of $\{1,2,3\}$ so by enumerating the vertices of the triangle we have established a bijection between D_{3} and S_{3}. This is actually an isomorphism since the operation for D_{3} is composition, as it is for S_{n}.

Exercises 2.5.3.

(a) How many ways are there to embed \mathbb{Z}_{4} in S_{4} ?
(b) How many ways are there to embed D_{4} in S_{4} ?

Definition 2.5.4. Let $a_{1}, a_{2}, \ldots, a_{t}$ be distinct elements of $\{1, \ldots, n\}$. We use the notation $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ to define an element of S_{n} called a t - cycle. This permutation takes a_{i} to a_{i+1}, for $i=1,2,3 \ldots, t-1$ and it takes a_{t} to a_{1}. Every element of $\{1, \ldots, n\} \backslash\left\{a_{1}, \ldots, a_{t}\right\}$ is fixed (i.e. taken to itself) by the cycle $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$. We will call the set $\left\{a_{1}, \ldots, a_{t}\right\}$ the support of the cycle $\left(a_{1}, a_{2}, \ldots, a_{t}\right)$.

A two-cycle is often called a transposition.
Two cycles are called disjoint when their supports are disjoint sets.
When we use cycle notation we will use id for the identity permutation.

Exercises 2.5.5.

(a) Show that disjoint cycles commute.
(b) Suppose σ is a t-cycle. For which r is σ^{r} a t-cycle? What can happen for other r ?
(c) Show that for a t-cycle σ, there is an injective homomorphism $\mathbb{Z}_{r} \longrightarrow S_{n}$ taking 1 to σ.

Definition 2.5.6. Let $\pi \in S_{n}$. The orbit of $a \in\{1, \ldots, n\}$ under π is the set $\left\{\pi^{i}(a): i \in \mathbb{Z}\right\}$.

Let $\pi \in S_{n}$. A cycle decomposition for π is a product of disjoint cycles that is equal to π.

We want to show every permutation has a unique cycle decomposition. The first step is this lemma.

Lemma 2.5.7. Let $\pi \in S_{n}$. Any two orbits of π are either equal or disjoint.
Proof. Suppose two orbits of $\pi \in S_{n}$ are not disjoint. We will show they are equal. Let a, b, c be distinct elements of $\{1,2, \ldots, n\}$. Suppose that b is in the orbit of a and also in the orbit of c. We will show that $\operatorname{orb}(a)=\operatorname{orb}(c)$. We have assumed $\pi^{i}(a)=b$ and $\pi^{j}(c)=b$ for some $i, j \in \mathbb{Z}$. Then $\pi^{i}(a)=\pi^{j}(c)$ so $\pi^{i-j}(a)=c$ so c is in $\operatorname{orb}(a)$. Moreover, anything in the orbit of c must be in the orbit of a since $\pi^{k}(c)=\pi^{k+i-j}(a)$. The reverse is also true by the same reasoning, so $\operatorname{orb}(a)=\operatorname{orb}(c)$.

Proposition 2.5.8. Every permutation in S_{n} has a cycle decomposition, and it is unique up to reordering the factors.

Proof. This is just a sketch that should make sense. One could formalize using induction. Take an element $a \in\{1, \ldots, n\}$. Since $\{1, \ldots, n\}$ is finite, there is some pair of distinct positive integers such that $\pi^{i}(a)=\pi^{j}(a)$. Notice that $\pi^{i}(a)=$ $\pi^{j}(a)$ implies $\pi^{i-1}(a)=\pi^{j-1}(a)$ and so forth until $\pi^{i-j}(a)=a$. Thus, there is some minimal positive integer, call it d, such that $\pi^{d}(a)=a$. It should be clear that, for $m \in \mathbb{Z}, \pi^{m}(a)=\pi^{r}(a)$ for r the remainder when m is divided by d. Now consider the cycle $\left(a, \pi(a), \ldots, \pi^{r-1}(a)\right)$. The orbit of a is this list of elements, $\operatorname{orb}(a)=\left\{a, \pi(a), \ldots, \pi^{r-1}(a)\right\}$. Consequently, π can be written as the product of $\left(a, \pi(a), \ldots, \pi^{r-1}(a)\right)$ and some other permutation that fixes each element in $\operatorname{orb}(a)$. Now choose an element of $\{1, \ldots, n\} \backslash \operatorname{orb}(a)$ and look at its orbit; continue.

Definition 2.5.9. We will call the list of cycle lengths, in decreasing order, the signature of the permutation.

We will include one-cycles in the definition of the cycle decomposition, although we will not write them unless it is needed for clarity. For example, the permutation π in S_{5} from Exercise 1 has cycle decomposition $\pi=(1,3)(2,5,4)$ and signature 3,2 . If we consider π as an element of S_{6}, we have $\pi=(1,3)(2,5,4)(6)$ and the signature is $3,2,1$.

Exercises 2.5.10.

(a) For $\pi \in S_{n}$, the sum of the signature list is n.
(b) If $\pi=\sigma_{1} \sigma_{2} \cdots \sigma_{r}$ is a cycle decomposition, then $\pi^{k}=\sigma_{1}^{k} \sigma_{2}^{k} \cdots \sigma_{r}^{k}$. Under what conditions is this also a cycle decomposition in the sense that each σ_{i}^{k} is a cycle?
(c) The order of $\pi \in S_{n}$ is the lcm of the signature list.
(d) Identify all possible signatures for elements of S_{4} and the order of these elements. What is the exponent of S_{4} ?
(e) Identify all possible signatures for elements of S_{5} and the order of these elements. What is the exponent of S_{5} ?
(f) For each possible signature in S_{5}, count how many elements have that signature. Check that you get the correct total number of elements in S_{5}.

There is a another factorization that is important.
Proposition 2.5.11. Every permutation can be written as a product of transpositions.

Proof. Since every permutation is a product of cycles, it is enough to show that every cycle is a product of transpositions. This is shown by verifying that

$$
\left(a_{1}, a_{2}, \ldots, a_{t}\right)=\left(a_{1}, a_{2}\right) *\left(a_{2}, a_{3}\right) * \cdots *\left(a_{t-2}, a_{t-1}\right) *\left(a_{t-1}, a_{t}\right)
$$

Recall that we treat permutations are functions and we apply the rightmost permutation first. One can see that a_{t} gets mapped to a_{t-1} then a_{t-2} and so forth, until the final transposition is applied and takes a_{2} (the image of a_{t} at this point) to a_{1}. Similar arguments apply to the other a_{i}.

We may interpret the previous result as saying that S_{n} is generated by transpositions. That is somewhat good news: there are n ! elements of S_{n} but only $\binom{n}{2}$ transpositions. Thus $n(n-1) / 2$ elements of S_{n} are enough to generate S_{n}. In fact we can do much better!

Exercises 2.5.12. Generators for S_{n}.
(a) Show that S_{n} is generated by the $n-1$ elements $(1, k)$ for $k=2, \ldots, n$. [Show that you can get an arbitrary transposition by conjugating $(1, k)$ by some ($1, j$), see Definition [2.7.8.]
(b) Show that S_{n} is generated by 2 elements: $(1,2)$ and $(1,2,3, \ldots, n-1, n)$. [Show that you can get all $(1, k)$ from these two using conjugation and then apply the previous exercise.]

Exercises 2.5.13.

(a) Let a, b, c be distinct elements of $\{1, \ldots, n\}$. Write down all possible factorizations of the 3 -cycle (a, b, c) as a product of 2 transpositions.
(b) Let a be an element of $\{a, \ldots, n\}$. Let τ_{1}, τ_{2} be transpositions in S_{n} with $\tau_{1} \neq \tau_{2}$. Show that there exist transpositions $\sigma_{1}, \sigma_{2} \in S_{n}$ such that $\sigma_{1} \sigma_{2}=$ $\tau_{1} \tau_{2}$ and a is not in the support of σ_{2}. [You will need to consider a few different cases depending on whether a is in the support of τ_{1} or τ_{2}.]

We know from the previous proposition that a permutation can be written as a product of transpositions. This "factorization" is not unique, for example id $=(1,2)(1,2)=(1,3)(1,3)$, but the next proposition shows that the parity of the factorization is.

Proposition 2.5.14. The identity element of S_{n} cannot be written as the product of an odd number of transpositions.

Consequently, any permutation can be written as a product of an even number of transpositions, or an odd number of transpositions, but not both.

Proof. We will show that if id is the product of n transpositions then it is the product of $n-2$ transpositions. Consequently, if it is the product of an odd number of transpositions, inductively we could show that id is a single transposition. This is clearly false.

Suppose that id $=\tau_{1} \cdots \tau_{n}$ with $\tau_{i}=\left(b_{2 i-1}, b_{2 i}\right)$. The b_{i} are not necessarily distinct, except $b_{2 i-1} \neq b_{2 i}$ so that τ_{i} is indeed a transposition. Let $a=b_{1}$. Let k be the largest integer such that a is in the support of τ_{k} (so either $b_{2 k-1}$ or $b_{2 k}$ is equal to a). Note that $k \neq 1$ because if a was only in the support of τ_{1} then $\tau_{1} \cdots \tau_{n}(a)=\tau_{1}\left(b_{1}\right)=b_{2} \neq a$ and the factorization would not be the identity.

Using the previous exercise we can rewrite the factorization of the identity replacing $\tau_{k-1} \tau_{k}$ with $\sigma_{k-1} \sigma_{k}$ in which a is not in the support of σ_{k} (the indexing of $k-1$ and k on σ_{k-1} and σ_{k} is just for notational convenience). We have a new factorization of id with n terms, but now, only the transpositions $\tau_{1}, \ldots, \tau_{k-2}$ and σ_{k-1} can have a in the support. If $\tau_{k-2}=\sigma_{k-1}$ we can cancel and get a shorter factorization of the identity using $n-2$ transpositions, as claimed. Otherwise we repeat the process: find the largest index such that the transposition with that index has a in the support; use the exercise to move a into a lower index term; cancel if possible; if not repeat. Eventually we either get a cancelation, or we arrive at a factorization $\tau_{1} \sigma_{2} \cdots \tau_{k+1} \tau_{k+2} \cdots \tau_{n}$ in which only the first two transpositions τ_{1} and σ_{2} have a in their support. Then $\tau_{1} \sigma_{2}(a)=\operatorname{id}(a)=a$. This is possible only if $\tau_{1}=\sigma_{2}$. Thus we may cancel and get id equal to the product of $n-2$ transpositions as claimed.

For the second part, suppose that π is the product of transpositions in two ways: $\pi=\sigma_{1} \sigma_{2} \ldots \sigma_{m}=\theta_{1} \theta_{2} \ldots \theta_{k}$. Then id $=\sigma_{1} \sigma_{2} \ldots \sigma_{m} \theta_{1}^{-1} \theta_{2}^{-1} \ldots \theta_{k}^{-1}$. Thus $m+k$ must be even, and this implies that m and k must have the same parity.

We now have an important and easy consequence.
Proposition 2.5.15. The set of even parity permutations forms a subgroup of S_{n}. This is called the alternating group and is denoted A_{n}.

Furthermore, there is a homomorphism from S_{n} to \mathbb{Z}_{2} whose kernel is A_{n}.

Exercises 2.5.16.

(a) Suppose that σ is a k-cycle and τ is an m-cycle and there is exactly one element of $\{1, \ldots, n\}$ that is in the support of both σ and τ. Show that $\sigma \tau$ is a $(k+m-1)$-cycle.
(b) Show that the product of two disjoint transpositions can also be written as the product of two 3 -cycles.
(c) Use part (a) (with $k=m=2$ and part (b) to prove that A_{n} is generated by 3 cycles.
(d) Compute $(1,2, a)(1, b, 2)$ for a, b distinct and not equal to 1 or 2 . . Use the result as motivation to show that the 3 -cycles of the form $(1,2, a)$ generate A_{n} for $n \geq 4$.

Exercises 2.5.17.

(a) Show that there is a homomorphism from S_{n} to \mathbb{Z}_{2} whose kernel is A_{n}.
(b) Find all subgroups of A_{4}. Draw a diagram of the subgroup lattice.
(c) What is the intersection of A_{4} and D_{4} ?

Cayley's Theorem

For any set T a bijection from T to itself is called a permutation of T. The set of all permutations of T is a group under composition: The composition of two permutations of T will again be a bijection from T to T; The identity map $\operatorname{id}(t)=t$ acts as an identity under composition; Each permutation of T has an inverse function that is again a bijection from T to T. Following our notation for permutations of $\{1, \ldots, n\}$ we will write the set of permutations of an arbitrary set T as S_{T}.

For a group G, we can forget that G is a group and just look at arbitrary bijections (set maps) from G to itself. The next theorem shows there is an injective homomorphism from G to S_{G}.

Theorem 2.5.18. Any group G is isomorphic to a subgroup of a permutation group. If $|G|=n$ there is an embedding of G in S_{n}.

Proof. Let us prove the result for finite groups first. Suppose G has order n and enumerate the elements of G so $G=\left\{g_{1}=e, \ldots, g_{n}\right\}$. Let $a \in G$ and consider left multiplication of elements in G by a as a function from G to G. We have $a g_{i}=a g_{j}$ implies that $g_{i}=g_{j}$ by cancellation, so $i=j$. Since G is finite, and multiplication by a is injective, it is also surjective. (Or note that for any g_{j} we have $a\left(a^{-1} g_{j}\right)=g_{j}$.) Thus multiplication by a permutes the elements of G. Define $\lambda_{a} \in S_{n}$ by $\lambda_{a}(i)$ is the unique j such that $a g_{i}=g_{j}$. We may then write $a g_{i}=g_{\lambda_{a}(i)}$. Observe that

$$
g_{\lambda_{a b}(i)}=a b g_{i}=a\left(b g_{i}\right)=a\left(g_{\lambda_{b}(i)}\right)=g_{\lambda_{a}\left(\lambda_{b}(i)\right)}=g_{\lambda_{a} \circ \lambda_{b}(i)}
$$

This shows that $\lambda_{a b}=\lambda_{a} \circ \lambda_{b}$ so the function λ is a homomorphism.

In some ways the proof for a general G mapping to S_{G} is simpler. For each $a \in G$, left multiplication by a maps elements of G to elements of G. Let us call this map $\lambda_{a}: g \longrightarrow a g$. We can see that λ_{a} is a permutation of G. For any $g \in G$, $\lambda_{a}\left(a^{-1} g\right)=a\left(a^{-1} g\right)=g$, so $a^{-1} g$ is a preimage for g. Since g was arbitrary, λ_{a} is surjective. We also have λ_{a} is injective because $\lambda_{a}(g)=\lambda_{a}\left(g^{\prime}\right)$ implies $a g=a g^{\prime}$, which by cancellation in G gives $g=g^{\prime}$.

Define $\lambda: G \longrightarrow S_{G}$ by $\lambda: a \longrightarrow \lambda_{a}$. Since $\lambda_{a}(e)=a$, we have $\lambda_{a}=\lambda_{b}$ can only be true if $a=b$. Thus λ is injective. To show it is a homomorphism we have to show that $\lambda_{a b}=\lambda_{a} \circ \lambda_{b}$. The following computation does that. We have for all $g \in G$.

$$
\lambda_{a b}(g)=(a b) g=a(b g)=\lambda_{a}(b g)=\lambda_{a}\left(\lambda_{b}(g)\right)=\left(\lambda_{a} \circ \lambda_{b}\right)(g)
$$

Exercises 2.5.19. Cayley's Theorem
(a) Let $n=5$ and think of \mathbb{Z}_{n} in the usual way as $\{0,1,2,3,4\}$ with addition modulo n. For each $a \in \mathbb{Z}_{n}$ write down in tabular form the function on \mathbb{Z}_{n} defined by addition of a.
(b) Show that part (a) defines a function from \mathbb{Z}_{5} to S_{5}, provided you think of S_{5} as the group of permutations of $\{0,1,2,3,4\}$. Show that this function is a homomorphism.
(c) Now consider $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Enumerate the 4 elements in any way you choose as $a_{1}, a_{2}, a_{3}, a_{4}$. For each a_{i} define a permutation σ_{i} by $a_{i} a_{1}=a_{\sigma_{i}(1)}, a_{i} a_{2}=$ $a_{\sigma_{i}(2)}, a_{i} a_{3}=a_{\sigma_{i}(3)}, a_{i} a_{4}=a_{\sigma_{i}(4)}$.
(d) Show in part (c) that this gives a homomorphism from $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ to S_{4}.
(e) Similarly, the next steps define a homomorphism from D_{3} to S_{6}. Enumerate the elements of as follows

$$
D_{3}=\left\{a_{1}=r^{0}, a_{2},=r, a_{3}=r^{2}, a_{4}=t, a_{5}=r t, a_{6}=r^{2} t\right\}
$$

For each a_{i} define a permutation σ_{i} in $S_{6} . \sigma_{1}$ is the identity, and σ_{2} is given by $\sigma_{2}(i)=k$ whenever $r a_{i}=a_{k}$. Verify that each σ_{i} is indeed a permutation by writing it in permutation notation.
(f) Verify in three examples that for any $a, b \in D_{3}$, the permutation corresponding to $a b$ equals the product of the permutations corresponding to a and b.
(g) Which elements of D_{3} correspond to odd permutations in S_{6} ?

Exercises 2.5.20.

(a) Let A and B be disjoint subsets of $\{1, \ldots, n\}$. Explain how to think of $S_{A} \times S_{B}$ as a subgroup of S_{n}.
(b) Generalize to any partition of $\{1, \ldots, n\}$.

Exercises 2.5.21.

(a) Let n be a positive integer and $k>n / 2$. Find a formula for the number of elements of S_{n} that include a k-cycle.
(b) Use Stirling's formula to approximate the formula you just computed.
(c) Estimate the probability that a random element of S_{n} has a cycle of length larger than $n / 2$.

2.6 Generators and Relations

Groups are often described by identifying a set of generators, and then giving certain properties that must be satisfied by those generators. The latter are called the relations. Identifying the generators and relations for a group is called giving a presentation of the group. The group is then the set of all "words" in the generators but subject to all the relations giving a way to simplify the word.

This description can be straightforward in the simplest instances, but it is quite subtle in general. We give a few examples here and defer a more thorough treatment to Section ??.

We have noted that \mathbb{Z} requires only one generator, as do the groups \mathbb{Z}_{n}. We may describe \mathbb{Z}_{n} (actually a group isomorphic to it) using the generator a, and the relation $a^{n}=1$, in which I use 1 for the identity element. This would be written

$$
\left\langle a \mid a^{n}=1\right\rangle
$$

The homomorphism $\mathbb{Z}_{n} \longrightarrow\left\langle a \mid a^{n}=1\right\rangle$ taking 1 to a is clearly an isomorphism.
We could also (somewhat perversely) describe \mathbb{Z}_{n} in other ways. For example when p and q are distinct primes (or even just coprime to each other), we could use two generators.

$$
\mathbb{Z}_{p q} \cong\left\langle a, b \mid a^{p}=1, b^{q}=1, a b=b a\right\rangle
$$

This tells us there that a is an element of order p, b is an element of order q and that a and b commute. The latter relation could also be written $a b a^{-1} b^{-1}=1$.

Exercises 2.6.1.

(a) Show that the presentation for $\mathbb{Z}_{p q}$ in the previous paragraph is isomorphic to the group with presentation $\left\langle c \mid c^{p q}=1\right\rangle$ via the function $c \rightarrow a b$.

The dihedral group D_{n} has a presentation as follows

$$
\left\langle a, b \mid a^{n}=1, b^{2}=1, b a=a^{n-1} b\right\rangle
$$

The generator a is clearly playing the role of rotation by $2 \pi / n$ and b the role of a reflection. The final relation tells us that in any product using a and b (loosely called a "word") we can switch any occurrence of $b a$ to be $a^{n-1} b$ and thereby rearrange so that all the as are on the left and all the bs on the right. So, just using these relations we know that any element of this group can be uniquely written $a^{i} b^{k}$ for $i \in\{0, \ldots, n-1\}$ and $k \in\{0,1\}$. The group product is easily summarized by the following

$$
\begin{aligned}
a^{i} * a^{j} b^{k} & =a^{i+j} b^{k} \\
a^{i} b * a^{j} b^{k} & =a^{i-j} b^{k+1}
\end{aligned}
$$

Exponents on a are computed modulo n and on b modulo 2 .
Here is another group. It is called the quaternion group.

$$
Q=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, b a=a^{-1} b\right\rangle
$$

Exercises 2.6.2.

(a) Show that $Q 8$ elements. List them in a useful fashion and show how to multiply them as we did for the dihedral group.
(b) Show that Q has 1 element of order 2 and 6 of order 4 .
(c) Draw the lattice diagram for this group.

2.7 Cosets and Conjugates

The following bit of notation is useful.
Notation 2.7.1. Let S and T be subsets of a group G.

$$
S T=\{s t: s \in S, t \in T\}
$$

Similarly, for $g \in G, g S=\{g s: s \in S\}$. We may use analogous notation for the set of all products from 3 or more sets.

Notice that $S T$ and $T S$ are not necessarily equal when the group G is not abelian.

Exercises 2.7.2. Read through all of these before solving.
(a) Let T be a subset of a group G. Prove that T is a subgroup of G if and only if $T T=T$ and $T^{-1} T=T$.
(b) Let T be a subset of the finite group G. Prove that $T T=T$ if and only if T is a subgroup of G.
(c) Give an example to show that for an arbitrary group show that $T T=T$ is not sufficient to ensure T is a group of G.

Definition 2.7.3. Let $H \leq G$ and let $g \in G$. Then $g H$ is called a left coset of H in G. and $H g$ is called a right coset of H in G.

We will prove several results for left cosets. There are analogous results for right cosets.
Lemma 2.7.4. Let G be a group and H a subgroup of G. The function

$$
\begin{aligned}
\lambda_{g}: H & \longrightarrow g H \\
h & \longmapsto g h
\end{aligned}
$$

is a bijection.
Proof. It is a surjection by definition of $g H$. Suppose $g h=g h^{\prime}$, multiplying on the left by g^{-1} gives $h=h^{\prime}$, so λ_{g} is injective.

Lemma 2.7.5. Let G be a group and H a subgroup of G. For $a, g \in G$, if $g H \cap a H \neq \emptyset$ then $g H=a H$.
Proof. First we show that if $g \in a H$ then $g H \subseteq a H$. For $g \in a H$, we have $g=a k$ for some $k \in H$. Now for any $h \in H$, we have $g h=a k h \in a H$ since $k h \in H$. This shows $g H \subseteq a H$.

Suppose $x \in g H \cap a H$. Then there are $h, k \in H$ such that $x=g h=a k$. Then $g=a k h^{-1} \in a H$ and similarly $a=g h k^{-1} \in g H$. From the previous paragraph, we have $a H \subseteq g H$ and $g H \subseteq a H$, so $a H=g H$.

Theorem 2.7.6 (Lagrange). Let G be a group with subgroup H. The set of cosets of H form a partition of G.

Consequently, if G is a finite group with subgroup H then the order of H divides the order G. In particular the order of any element of G divides $|G|$.
Proof. Any $g \in G$ is in some coset, namely $g H$, so the cosets cover G. The previous lemma shows that any two unequal cosets are disjoint. Thus the cosets partition G.

Suppose G is finite. Since the cosets of H partition G, there are elements a_{1}, \ldots, a_{t} such that G is the disjoint union of $a_{1} H, a_{2} H, \ldots, a_{t} H$. The cosets of H all have the same number of elements by Lemma 2.7.4. Thus $|G|=\sum_{i=1}^{t}\left|a_{i} H\right|=$ $t|H|$. Thus the number of elements of G is a multiple of $|H|$.

For any $a \in G$ the number of elements in the subgroup $\langle a\rangle$ is $\operatorname{ord}(a)$. So ord (a) divides $|G|$.

Definition 2.7.7. Let $H \leq G$. The index of H in G, written $[G: H$], is the number of cosets of H in G, which may be infinite.

If G is finite and $H \leq G$ then $[G: H]=|G| /|H|$, since all cosets have $|H|$ elements.

Conjugation

Now we consider conjugation.
Definition 2.7.8. Let $a \in G$ and $g \in G$. The element $a g a^{-1}$ is called the conjugation of g by a. If S is a subset of G, we define $a S a^{-1}$ to be $\left\{a s a^{-1}: s \in S\right\}$. It is the conjugation of S by a.

Exercises 2.7.9.

(a) Show that A_{n} is invariant under conjugation: for any $\pi \in S_{n}, \pi A_{n} \pi^{-1}=A_{n}$.
(b) Let C_{n} be the rotation subgroup of D_{n}. Find two elements of C_{4} that are conjugate as elements of D_{4} but are not conjugate as elements of C_{4}.
(c) Find two elements of D_{4} that are conjugate as elements of S_{4} but are not conjugate as elements of D_{4}.
(d) Consider D_{n} as a subset of S_{n} by enumerating the vertices of an n-gon clockwise $1,2, \ldots, n$. Show that the n-cycle $(1,2, \ldots, n)$ and any reflection generate D_{n}.

Exercises 2.7.10. Let H be a subgroup of a group G.
(a) Let $a \in G$. Show that $a H a^{-1}$ is a subgroup of G.
(b) Show that $a H^{-1}$ has the same number of elements as H.

Exercises 2.7.11.

(a) Define a function $\varphi_{a}: G \longrightarrow G$ by $\varphi(g)=a g a^{-1}$. Show that φ_{a} is an automorphism of G.
(b) Show that $\varphi: G \longrightarrow \operatorname{Aut}(G)$ defined by $\varphi: a \longmapsto \varphi_{a}$ is a homomorphism. The image, $\left\{\varphi_{a}: a \in G\right\}$, is therefore a subgroup of $\operatorname{Aut}(G)$. It is called $\operatorname{Inn}(G)$, the group of inner automorphisms of G.
(c) What is the kernel of φ ?

Proposition 2.7.12. Let $\pi \in S_{n}$. For any $\sigma \in S_{n}$, the signature of σ and the signature of $\pi \sigma \pi^{-1}$ are the same.

One proof is contained in the following suite of exercises.

Exercises 2.7.13.

(a) Consider first the case where σ is a t-cycle and π is a transposition. Show that $\pi \sigma \pi^{-1}$ is a t-cycle. [You will have to consider 3 cases based on $\operatorname{supp}(\sigma) \cap$ $\operatorname{supp}(\pi)$.]
(b) Extend to arbitrary σ and transposition π by writing σ as the product of disjoint cycles and using the fact that conjugation by π "respects products."
(c) Extend to arbitrary π by noting that every permutation is the product of transpositions.

Here is another approach to proving the proposition.

Exercises 2.7.14.

(a) Let $\pi \in S_{n}$. Let $\left(a_{1}, a_{2}, \ldots, a_{k}\right) \in S_{n}$ be a k-cycle, so the a_{i} are distinct. Show that

$$
\pi *\left(a_{1}, a_{2}, \ldots, a_{k}\right) * \pi^{-1}=\left(\pi\left(a_{1}\right), \pi\left(a_{2}\right), \ldots, \pi\left(a_{k}\right)\right)
$$

[Consider two cases, $b=\pi\left(a_{i}\right)$ for some i, and $b \notin\left\{\pi\left(a_{1}\right), \pi\left(a_{2}\right), \ldots \pi\left(a_{k}\right)\right\}$. Explain why this breakdown into two cases makes sense.]
(b) Show that the conjugation of any $\sigma \in S_{n}$ by π has the same signature as σ.

Exercises 2.7.15. Conjugacy is an equivalence relation.
(a) Let G be a group and define a relation on G by a is related to b if there is some g such that $b=g a g^{-1}$. Show that the relation of conjugacy defines an equivalence relation on G.
(b) Let $C(a)=\{g \in G: g a=a g\}$ be the centralizer of a. Show that $|G / C(a)|$ is the number of elements of G conjugate to a.

2.8 Normality and the First Isomorphism Theorem

Let's pause for a moment to think about homomorphisms, particularly the special cases: injective homomorphisms (one-to-one) and surjective homomorphisms (onto).

Suppose H is a subgroup of G. There is a injective function from H to G, which is called the inclusion map, that simply takes $h \in H$ to itself, as an element of G. Since H is a subgroup of G (it's multiplication is the same as the one on G), the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that $\varphi: H \longrightarrow G$ is an injective homomorpism. Proposition 2.3.15 shows that $\varphi(H)$ is a subgroup of G. Thus $\varphi: H \longrightarrow \varphi(H)$ is a bijective homomorphism. This shows that the image of an injective homomorphism $\varphi: H \longrightarrow G$ is a subgroup that is
isomorphic to H. Thus, the study of injective homomorphisms is essentially the study of subgroups.

This section and the next are devoted to surjective homomorphisms, which are intimately related to subgroups that have a special property, treated in the next proposition.

Theorem 2.8.1 (Normal Subgroups). Let N be a subgroup of G. The following are equivalent.

$$
\begin{aligned}
& \text { (1) } N a=a N \text { for all } a \in G \text {. } \\
& \text { (2) } a N b N=a b N \text { for all } a, b \in G \text {. } \\
& \text { (3) } a N a^{-1} \subseteq N \text { for all } a \in G \text {. } \\
& \text { (4) } a N a^{-1}=N \text { for all } a \in G \text {. }
\end{aligned}
$$

Proof. We prove a series of implications that shows the conditions are equivalent. $(1) \Longrightarrow(2): a N b N=a b N N=a b N$.
(2) $\Longrightarrow(3)$: Set $b=a^{-1}$. Then $a N a^{-1} N=a a^{-1} N=e N$. In particular, this shows that $a N a^{-1} \subseteq N$.
$(3) \Longrightarrow(4)$: For any $a \in G$, applying (3) to a^{-1}, we have that $a^{-1} N a \subseteq N$. Conjugating by a, we get

$$
a\left(a^{-1} N a\right) a^{-1} \subseteq a N a^{-1}
$$

The left hand side is N. Thus, assuming (3) we have both $a N a^{-1} \subseteq N$ and $N \subseteq a N a^{-1}$, which proves (4).
$(4) \Longrightarrow(1)$: Multiplying $a N a^{-1}=N$ on the right by a gives (1).
These arguments may seem slippery since they deal with computations with sets. The proofs can also be done elementwise. Consider (4) \Longrightarrow (1). Let $a \in G$. Given any $n \in N$, we know $a n a^{-1} \in N$, say $a n a^{-1}=n^{\prime}$. Then $a n=n^{\prime} a \in N a$. Since n was arbitrary, $a N \subseteq N a$. The reverse containment is proven analogously, using $a^{-1} n a \in N$.

Definition 2.8.2. A group satisfying the conditions of the theorem is called normal. We write $N \unlhd G$ for N a normal subgroup of G.

Exercises 2.8.3.

(a) Let H be a subgroup of a group G such that for any $a \in G$ there is a b in G such that $a H=H b$. (Every left coset is also a right coset, but not necessarily defined by the same element of G.) Prove that H is normal in G.

Let N be normal in G. Suppose $a N=b N$ and $r N=s N$. Then $a \in b N$ and $r \in s N$, so $a r \in b N s N=b s N$. By Lemma 2.7.5, $a r N=b s N$. Consequently, there is a well-defined operation on cosets of N in G that takes the pair ($a N, b N$) to $a b N$ (it doesn't matter which element we choose to represent each coset). The next theorem shows that this gives a group structure on the cosets of N in G.

Theorem 2.8.4. Let N be a normal subgroup of G. Let G / N be the set of cosets of N in G with the binary operation by $a N * b N=a b N$. Then G / N is a group.

Proof. We have proven above that the product $a N b N$ is well defined and equal to $a b N$. Associativity is inherited from associativity of $*_{G}$ (check!). The identity is $e N$. The inverse of $a N$ is $a^{-1} N$.

We call G / N the quotient of G by N and the homomorphism $G \longrightarrow G / N$ is called the quotient map. Some sources call G / N a factor group.

Exercises 2.8.5.

(a) Let N be a normal subgroup of G. For any subgroup H of $G, H \cap N$ is a normal subgroup of H.
(b) If $\varphi: G \longrightarrow H$ is a homomorphism and N is normal in H, then $\varphi^{-1}(N)$ is normal in G.
(c) The center of G is the set of elements in G that commute with all elements of $G, Z(G)=\{a \in G: a g=g a$ for all $g \in G\}$. Any subgroup of the center of G, including $Z(G)$ itself, is normal in G.
(d) Find all normal subgroups of D_{4} and D_{5}.
(e) Show that any subgroup of index 2 is normal.

Isomorphism and Factor Theorems

Theorem 2.8.6 (First Isomorphism). Let $\varphi: G \longrightarrow H$ be a surjective homomorphism with kernel K. Then G / K is isomorphic to H.

Proof. Let $g \in a K$, so $g=a k$ for some $k \in K$. Then $\varphi(g)=\varphi(a) \varphi(k)=\varphi(a)$. Consequently, there is a well defined map $\tilde{\varphi}: G / K \rightarrow H$ taking $a K$ to $\varphi(a)$. To show $\tilde{\varphi}$ is a homomorphism, let $g K$ and $a K$ be elements of G / K. Observe that $\tilde{\varphi}(g K a K)=\tilde{\varphi}(g a K)=\varphi(g a)$ by the definition of multiplication in G / K and the definition of $\tilde{\varphi}$. Since φ is a homomorphism, $\varphi(g a)=\varphi(g) \varphi(a)=\tilde{\varphi}(g K) \tilde{\varphi}(g K)$. thus $\tilde{\varphi}(g K a K)=\tilde{\varphi}(g K) \tilde{\varphi}(g K)$.

For any $h \in H$ there is some $a \in G$ such that $\varphi(a)=h$. Then $\tilde{\varphi}(a K)=h$, so $\tilde{\varphi}$ is surjective.

To show that $\tilde{\varphi}$ is injective, suppose $\tilde{\varphi}(a K)=e_{H}$. Then $\varphi(a)=e_{H}$ so $a \in K$ and $a K=e_{G} K$. Thus the kernel of $\tilde{\varphi}$ just contains just the identity element of G / K.

Here is a typical snappy use of the First Isomorphism theorem.
Theorem 2.8.7. Let $G_{1}, G_{2}, \ldots G_{r}$ be groups and let $N_{1}, N_{2}, \ldots, N_{r}$ be normal subgroups, $N_{i} \unlhd G_{i}$. There is a well defined map

$$
\begin{aligned}
\left(G_{1} \times G_{2} \times \cdots \times G_{r}\right) /\left(N_{1} \times N_{2} \times \cdots \times N_{r}\right) & \longrightarrow\left(G_{1} / N_{1}\right) \times\left(G_{2} / N_{2}\right) \times \cdots \times\left(G_{r} / N_{r}\right) \\
\left(g_{1}, g_{2}, \ldots, g_{r}\right)\left(N_{1} \times N_{2} \times \cdots \times N_{r}\right) & \longmapsto\left(g_{1} N_{1}, g_{2} N_{2}, \ldots g_{r} N_{r}\right)
\end{aligned}
$$

and it is an isomorphism.
Proof. By the Direct Product Theorem 2.4.2, the projection of $G_{1} \times G_{2} \times \cdots \times G_{r}$ onto G_{i} is a homomorphism. Composing this with the quotient map $G_{i} \longrightarrow$ G_{i} / N_{i}, we get maps $G_{1} \times G_{2} \times \cdots \times G_{r} \longrightarrow G_{i} / N$. Proposition 2.4 .3 then gives a homomorphism

$$
G_{1} \times G_{2} \times \cdots \times G_{r} \xrightarrow{\varphi}\left(G_{1} / N_{1}\right) \times\left(G_{2} / N_{2}\right) \times \cdots \times\left(G_{r} / N_{r}\right),
$$

To be specific, let us show that φ respects products. $\left(g_{1}, g_{2}, \ldots, g_{r}\right)$ and $\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{r}^{\prime}\right)$ be elements of $G_{1} \times G_{2} \times \cdots \times G_{r}$. Then

$$
\begin{aligned}
\varphi\left(\left(g_{1}, g_{2}, \ldots, g_{r}\right) *\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{r}^{\prime}\right)\right) & =\varphi\left(\left(g_{1} g_{1}^{\prime}, g_{2}, g_{2}^{\prime}, \ldots, g_{r} g_{r}^{\prime}\right)\right) \\
& =\left(g_{1} g_{1}^{\prime} N_{1}, g_{2} g_{2}^{\prime} N, \ldots, g_{r} g_{r}^{\prime} N_{r}\right) \\
& =\left(g_{1} N_{1}, g_{2} N_{2}, \ldots, g_{r} N_{r}\right) *\left(g_{1}^{\prime} N_{1}, g_{2}^{\prime} N_{2}, \ldots, g_{r}^{\prime} N_{r}\right) \\
& =\varphi\left(g_{1}, g_{2}, \ldots, g_{r}\right) * \varphi\left(g_{1}^{\prime}, g_{2}^{\prime}, \ldots, g_{r}^{\prime}\right)
\end{aligned}
$$

We used, in order, the definition of multiplication in $G_{1} \times G_{2} \times \cdots \times G_{r}$, the definition of φ, the definition of multiplication in $G_{1} / N_{1} \times G_{2} / N / 2 \times \cdots \times G_{r} / N_{r}$ (and the N_{i} being normal), and finally, the definition of φ.

The kernel of φ is the set of $\left(g_{1}, \ldots, g_{r}\right)$ such that $g_{1} N_{1}, g_{2} N_{2}, \ldots, g_{r} N_{r}=$ $N_{1} \times N_{2} \times \cdots \times N_{r}$. Each g_{i} must be in N_{i}. So, the kernel is $e_{1} N_{1} \times e_{2} N_{2} \times \cdots \times$ $e_{r} N_{r}$. Surjectivity is easy to check, so the first isomorphism theorem now gives the result.

A generalization of the first isomorphism theorem that we will often use treats the case when φ is not necessarily injective.

Theorem 2.8.8 (Factor). Let $\varphi: G \longrightarrow H$ be a homomorphism of groups with kernel K. Let N be a normal subgroup of G that is contained in K. Then φ can be factored into the canonical surjective homomorphism $\pi: G \longrightarrow G / N$ followed by a homomorphism $\bar{\varphi}: G / N \longrightarrow H$.

By letting $N=K$ we conclude that any homomorphism can be factored into into a surjective homomorphism followed by an injective homomorphism.

Proof. Define $\tilde{\varphi}$ by $g N \longmapsto \varphi(g)$. This is well defined because N is contained in the kernel of φ so for any $n \in N, \varphi(g n)=\varphi(g) \varphi(n)=\varphi(g) e_{H}=\varphi(g)$. From this definition it is immediate that $\tilde{\varphi} \circ \pi=\varphi$.

The proof that $\tilde{\varphi}$ is a homomorphism is similar to the proof of the First Isomorphism Theorem.

When $N=K$, we want to show that $\tilde{\varphi}$ is injective. Suppose $\varphi(\tilde{g} N)=e_{H}$. By the definition of $\tilde{\varphi}$, we have $\varphi(g)=e_{H}$. Thus $g \in K$, and therefore $g K=e K$, the identity element of G / K.

An earlier exercise showed that every group of index 2 is normal. Here is a generalization due to Lam [MAA Monthly Mar. 2004 p. 256].

Theorem 2.8.9. Let H be a subgroup of G with $[G: H]=p$ a prime number. The following are equivalent.
(1) H is normal in G.
(2) For any $a \in G \backslash H, a^{p} \in H$.
(3) For any $a \in G \backslash H, a^{n} \in H$ for some positive integer n that has no prime divisor less than p.
(4) For any $a \in G-H, a^{2}, a^{3}, \ldots, a^{p-1} \notin H$.

Exercises 2.8.10.

(a) Prove Lam's theorem by showing $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4) \Longrightarrow(1)$. The last step is the one requiring some cleverness.
(b) Show that Lam's theorem implies that any group whose index is the smallest prime dividing $|G|$ is normal in G.

2.9 More Examples of Groups

Groups from Familiar Number Systems

Example 2.9.1. We have already treated the additive group of the integers, \mathbb{Z} as well as its subgroups $n \mathbb{Z}$. We have also used the integers modulo n, which we can
now identify as the quotient group of \mathbb{Z} by its subgroup $n \mathbb{Z}$. We can also consider the additive group of the rational numbers \mathbb{Q}, the real numbers \mathbb{R}, and the complex numbers \mathbb{C}. The next exercise shows that the quotient \mathbb{Q} / \mathbb{Z} is interesting.

Exercises 2.9.2.

(a) Consider the group \mathbb{Q} / \mathbb{Z}. Show that every element has finite order.
(b) On a number line, sketch a region that contains one element for each equivalence class of \mathbb{Q} / \mathbb{Z}.
(c) Show that for any integer n there is an element of order n in \mathbb{Q} / \mathbb{Z}.
(d) How many elements of order n are there in \mathbb{Q} / \mathbb{Z} ?
(e) Show that for any finite set $\left\{r_{1}, r_{2}, \ldots, r_{t}\right\}$ of rational numbers,

$$
\left\langle r_{1}+\mathbb{Z}, r_{2}+\mathbb{Z}, \ldots, r_{t}+\mathbb{Z}\right\rangle \neq \mathbb{Q} / \mathbb{Z}
$$

We can also consider the multiplicative groups from familiar number systems.
Example 2.9.3. We have looked at the additive structure of \mathbb{Z}_{n}, but \mathbb{Z}_{n} also has a multiplicative structure: The product of $a+n \mathbb{Z}$ and $b+n \mathbb{Z}$ in \mathbb{Z}_{n} is well defined and it is $a b+\mathbb{Z}_{n}$ Hun12, Ch 2].

For an integer a that is comprime to n there are integers u, v such that $u a+n v=$ 1 by the GCD theorem. Then u is the multiplicative inverse of a modulo n. The converse is also true, if $a+n \mathbb{Z}$ has multiplicative inverse $u+n \mathbb{Z}$ then $u a$ differs from a multiple of n by 1 , so the GCD of a and n is 1 . The set of units in \mathbb{Z}_{n}, written U_{n}, is the set of these elements with a multiplicative inverse. One can check that U_{n} is a group: 1 is the identity, every element has an inverse by definition, the product of two units is also a unit (with $(a b)^{-1}=a^{-1} b^{-1}$), and multiplication is associative and commutative.

Exercises 2.9.4.

(a) Show that for p a prime number every nonzero element of \mathbb{Z}_{p} is a unit.
(b) Prove that $\operatorname{Aut}\left(\mathbb{Z}_{n}\right) \cong U_{n}$, the group of units in \mathbb{Z}_{n}.
(c) Each group U_{n} is isomorphic to a cyclic group or a direct product of such. For each of $n=8,9,10,11,12$ find the product of cyclic groups that is isomorphic to U_{n}.

A field is a set F with two operations,$+ *$ such that $F,+$ is an abelian group and $F^{*}, *$ is also an abelian group, where $F^{*}=F \backslash 0$. The previous example and exercise show that \mathbb{Z}_{p} is a field. When considering it as a field we will write it \mathbb{F}_{p}. We will study finite fields in general in a later chapter.

Returning to the fields $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ we now consider their multiplicative groups.

Example 2.9.5. The set of elements of finite order in \mathbb{Q} and in \mathbb{R} is not terribly interesting; we have just the element -1 , which has order 2 . To get elements of order n we are, in effect, looking for solutions of $x^{n}-1$, that is nth roots of unity. These live in the complex number field \mathbb{C}.

Exercises 2.9.6.

(a) Show that there is a homomorphism from $\mathbb{Q},+$ to $\mathbb{C}^{*}, *$, namely $a \longmapsto e^{a 2 \pi i}$.
(b) Show that the image is the roots of unity.
(c) What is the kernel?

Exercises 2.9.7.

(a) Show that the positive rational numbers $\mathbb{Q}^{* *}=\{a \in \mathbb{Q}: a>0\}$ form a subgroup of \mathbb{Q}.
(b) Show that \mathbb{Q}^{*} is the direct product of $\mathbb{Q}^{* *}$ and $\{ \pm 1\}$.
(c) Extend this result to the nonzero real numbers \mathbb{R}^{*}.

Matrix Groups

We will work primarily with the fields, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ and \mathbb{F}_{p} in this section, but the general results are true for any field, so we express them for a general field F.

Definition 2.9.8. Let F be a field and let n be an integer. The set of $n \times n$ matrices over F with nonzero determinant is called the General Linear Group and is written $\mathrm{GL}_{n}(F)$. The subgroup consisting of the matrices with determinant 1 is the Special Linear Group and is written $\mathrm{SL}_{n}(F)$. The next proposition shows that these are indeed groups with the identity matrix, I_{n} as identity element.

Proposition 2.9.9. Let F be a field and let n be an integer. The set of $n \times$ n matrices over F with nonzero determinant forms a group. The determinant function

$$
\operatorname{det}: \mathrm{GL}_{n}(F) \longrightarrow F
$$

is a homomorphism, and its kernel is $\mathrm{SL}_{n}(F)$.
Proof. Matrix multiplication is associative: One can show that the i, j component of the product of $A(B C)$ and of $(A B) C$ is

$$
\sum_{s=1}^{n} \sum_{t=1}^{n} a_{i s} b_{s t} c_{t j}
$$

Thus $A(B C)=(A B) C$.

The result from linear algebra (which we assume here) that the determinant of a product of two matrices is the product of the determinant shows in particular that the product of two matrices with nonzero determinant also has nonzero determinant. So $\mathrm{GL}_{n}(F)$ is closed under multiplication. The identity matrix, I_{n}, and the usual formula for the inverse of a matrix perform the expected role to make $\mathrm{GL}_{n}(F)$ a group. The determinant function respects products, so it gives a homomorphism to F. The kernel is the subgroup of matrices with determinant 1, that is $\mathrm{SL}_{n}(F)$.

There are many interesting subgroups of the general linear group.

Exercises 2.9.10.

(a) Show that the general linear group has these subgroups:

- The diagonal matrices with nonzero entries.
- The matrices of the form $a I_{n}$ for $a \in F$, called the constant diagonal matrices. Call this group $F I_{n}$. Show that $F I_{n}$ is the center of $\mathrm{GL}_{n}(F)$
- The upper triangular matrices.
- The orthogonal group $\mathrm{O}(n, F)$ is the group of matrices Q such that Q^{-1} is the transpose of Q.
(b) For any subgroup H of F^{*} the set of all matrices with determinant in H is a subgroup of GL (n, F).

There are two other matrix groups of particular interest. In the exercises above, it is claimed that the constant diagonal matrices, $F I_{n}$ form the center of $\mathrm{GL}_{n}(F)$. In particular $F I_{n}$ is normal in $\mathrm{GL}_{n}(F)$.

Definition 2.9.11. The quotient group $\mathrm{GL}_{n}(F) / F I_{n}$ is called the Projective General Linear Group and is written $\mathrm{PGL}_{n}(F)$. The quotient group $\mathrm{SL}_{n}(F) /\left(F I_{n} \cap\right.$ $\left.\mathrm{SL}_{n}(F)\right)$ is called the Projective Special Linear Group and is written $\mathrm{PSL}_{n}(F)$.

Exercises 2.9.12.

(a) Show that the subgroup of upper triangular 2×2 matrices is conjugate to the group of lower triangular matrices. [Hint: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.]
(b) Show that the set of matrices with nonzero determinant of the form $\left[\begin{array}{ll}0 & a \\ b & c\end{array}\right]$ is a coset of the upper triangular matrices.

Example 2.9.13. In $\mathrm{GL}(2, \mathbb{C})$ consider the matrices

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & i \\
i & 0
\end{array}\right]
$$

The set of matrices $Q=\{ \pm I, \pm A, \pm B, \pm C\}$ is called the quaternion group.

Exercises 2.9.14.

(a) Show by brute force that the quaternions are indeed a group.
(b) Find the order of each element of Q.
(c) Show that no two of the groups $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{8}, D_{4}$, and Q are isomorphic. [Investigate the number of elements of order 4.]

Exercises 2.9.15.

(a) Show that D_{4} is isomorphic to the matrix group with elements $\{ \pm I, \pm A, \pm B, \pm C\}$ where

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \quad B=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad C=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(b) Draw the lattice diagram for this matrix group (it looks just like D_{4}, but use the elements here).
(c) More generally find a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$ that is isomorphic to D_{n}. (Remember your trigonometry.)

2.10 Structure in the Quotient Group: The Third Isomorphism Theorem and the Correspondence Theorem

The next step is to understand the structure of a quotient group. The two main results - the third isomorphism theorem and the correspondence theorem-have fairly simple statements, which obscure some subtle issues. The proof of the third isomorphism theorem is an easy consequence of the first isomorphism theorem.

Theorem 2.10.1 (Third Isomorphism). Let N and K be normal subgroups of G with $K \leq N$. Then $G / N \cong(G / K) /(N / K)$.

Proof. We have two well defined quotient groups: G / K and G / N. I claim that there is a well defined function from G / K to G / N taking $g K$ to $g N$. To prove this, we have to check that if two cosets $a K$ and $b K$ are equal then the cosets $a N$
and $b N$ are also equal. Suppose $a K=b K$. Then $a^{-1} b \in K$ and since $K \subseteq N$ we have $a^{-1} b \in N$. Consequently $a N=b N$.

It is easy to check that the function $\varphi: G / K \longrightarrow G / N$ defined above is surjective and a homomorphism. Given any $g N$ there is an element, namely $g K$, that clearly maps to it, $\varphi(g K)=g N$, so we get surjectivity. Finally, φ respects multiplication: $\varphi\left(g K * g^{\prime} K\right)=\varphi\left(g g^{\prime} K\right)=g g^{\prime} N=g N * g^{\prime} N=\varphi(g K) * \varphi\left(g^{\prime} K\right)$

The kernel of φ is $\{g K: g N=e N\}$. But $g N=e N$ if and only if $g \in N$. So the kernel is N / K. The result follows from the first isomorphism theorem.

Add examples! $\mathbb{Z} / n \mathbb{Z}_{4} \times \mathbb{Z} / 4$ The more powerful theorem is the correspondence theorem, which we prove independently of the Third Isomorphism Theorem.

Theorem 2.10.2 (Correspondence). Let $\varphi: G \longrightarrow H$ be a surjective homomorphism with kernel K. There is a one-to-one correspondence, given by φ, between subgroups of G / K and subgroups of G containing K.

$$
\begin{aligned}
G & \longleftrightarrow H \\
A & \longleftrightarrow \varphi(A) \\
\varphi^{-1}(B) & \longleftrightarrow B
\end{aligned}
$$

The correspondence respects containment, normality, and quotients as follows. For A, A^{\prime} containing K,

- $K \leq A \leq A^{\prime}$ if and only if $\varphi(A) \leq \varphi\left(A^{\prime}\right)$.
- A is normal in G if and only if $\varphi(A)$ is normal in H.
- When A is normal in G, the map φ induces an isomorphism $G / A \cong H / \varphi(A)$.

Proof. As a starting point, recall some simple facts about functions. Let $f: X \rightarrow$ Y and let $A \subseteq X$ and $B \subseteq Y$. Then $A \subseteq f^{-1}(f(A))$ and $f\left(f^{-1}(B)\right) \subseteq B$. On the other hand, if f is surjective then for each $b \in B$ there is some $x \in X$ such that $f(x)=b$. Thus for f surjective, $f\left(f^{-1}(B)\right)=B$. Respecting containment is also immediate: If $A \subseteq A^{\prime} \subseteq X$ then $f(A) \subseteq f\left(A^{\prime}\right)$ and similarly if $B \subseteq B^{\prime} \subseteq Y$ then $f^{-1}(B) \subseteq f^{-1}\left(B^{\prime}\right)$.

Let A be a subgroup of G containing K and let B be a subgroup of H. From Proposition 2.3.15 we know that $\varphi(A)$ is a subgroup of H and $\varphi^{-1}(B)$ is a subgroup of G. Based on the above discussion, we know $\varphi\left(\varphi^{-1}(B)\right)=B$ and $A \subseteq \varphi^{-1}(\varphi(A)$ so we need to show that $\varphi^{-1}(\varphi(A)) \subseteq A$ to get the one-to-one correspondence. Let $g \in \varphi^{-1}(\varphi(A))$. Then $\varphi(g)=\varphi(a)$ for some $a \in A$. Consequently, $\varphi\left(g a^{-1}\right)=e_{H}$ and therefore $g a^{-1} \in \operatorname{ker}(\varphi)=K$. Since $K \subseteq A, g a^{-1} \in A$ so $g \in A$. Thus $\varphi^{-1}(\varphi(A))=A$. Thus, we have established the one-to-one correspondence.

We have also shown in a problem in Section 2.8 that if B is normal then $\varphi^{-1}(B)$ is normal. These results are true for an arbitrary homomorphism. Let's now show that when φ is surjective, if A is normal in G then $\varphi(A)$ is normal in H.

Let $h \in H$. We need to show $h \varphi(A) h^{-1}=\varphi(A)$, or equivalently, $h \varphi(a) h^{-1} \in$ $\varphi(A)$ for all $a \in A$. Since φ is surjective, there is some $g \in G$ such that $\varphi(g)=h$.

$$
h \varphi(a) h^{-1}=\varphi(g) \varphi(a) \varphi(g)^{-1}=\varphi\left(g a g^{-1}\right) \in \varphi(A)
$$

The last step holds because A is normal in G, so $\mathrm{gag}^{-1} \in A$.
Now we apply the first isomorphism theorem. Let B be normal in H. We have a composition of surjective homomorphisms

$$
G \longrightarrow H \longrightarrow H / B
$$

whose kernel is $\varphi^{-1}(B)$. Letting $A=\varphi^{-1}(B)$, the first isomorphism theorem says that $G / A \cong H / \varphi(A)$.

We can derive the Third Isomorphism Theorem as a corollary.
Corollary 2.10.3 (Third Isomorphism Theorem). Let $K N$ and N be normal subgroups of G with $K \leq N$. Then $G / N \cong(G / K) /(N / K)$.

Proof. Apply the correspondence theorem to $G \longrightarrow G / K$. The subgroup N of G corresponds to the subgroup N / K of G / K. Thus $G / N \cong(G / K) /(N / K)$.

2.11 Problems

Exercises 2.11.1. Some subgroups of abelian groups. Let A be an abelian group and let m be an integer.
(a) Show that multiplication by m gives a homomorphism of A. If A is a finite group that has no elements of order m then multiplication by m gives an isomorphism.
(b) Let $m A=\{m a: a \in A\}$. Show that $m A$ is a subgroup of A.
(c) Let $A[m]=\{a \in A: m a=0\}$. Show that $A[m]$ is a subgroup of A.
(d) If m and n are coprime show that $A[m] \cap A[n]=\{0\}$.

Exercises 2.11.2. The torsion subgroup of an abelian group. Let A be an infinite abelian group. Let $\operatorname{Tor}(A)$ be the set of elements with finite order, which is called the torsion subgroup of A.
(a) Show that $\operatorname{Tor}(A)$ is, indeed, a normal subgroup of A.
(b) Show that $\operatorname{Tor}(A)=\bigcup_{m \in \mathbb{N}} A[m]$. (Note that, even inside an abelian group, the union of subgroups is not usually a group!)
(c) Show that $\operatorname{Tor}(A / \operatorname{Tor}(A))$ is trivial. That is, letting $T=\operatorname{Tor}(A)$, the only element of finite order in A / T is the identity element, $e+T$.
(d) Give an example of a finitely generated abelian group in which the identity element together with the elements of infinite order do not form a subgroup. (As opposed to the torsion subgroup.)

Exercises 2.11.3. "Almost" abelian groups. A group is metabelian when it has a normal subgroup N such that N and G / N are both abelian. A group is metacyclic when it has a normal subgroup N such that N and G / N are both cyclic.
(a) Show that S_{3} is metacyclic.
(b) Show that A_{4} is metabelian but not metacyclic.
(c) Prove that any subgroup of a metabelian group is also metabelian.
(d) Prove that any quotient group of a metabelian group is metabelian. [Look carefully at the proof of the 2nd isomorphism theorem and adapt it to this question.]

Exercises 2.11.4. A matrix group. Let G be the group of all matrices of the form with $a, b, c \in \mathbb{Q}$.

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

(a) Find the center C of G and show that C is isomorphic to the additive group \mathbb{Q}.
(b) Show that G / C is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.
(c) Conclude that G is metabelian.

Exercises 2.11.5. Some normal subgroups
(a) Show that the intersection of two normal subgroups of G is normal in G.
(b) Let G be a group, possibly infinite. Let I be some indexing set and for each $i \in I$ let H_{i} be a subgroup of G. Prove that for any $a \in G$,

$$
a\left(\bigcap_{i \in I} H_{i}\right) a^{-1}=\bigcap_{i \in I} a H_{i} a^{-1}
$$

(c) Let H be a subgroup of G and let $N=\bigcap_{g \in G} g^{-1} H g$. Prove that N is normal in G.
(d) Let $n \in \mathbb{N}$ and let K be the intersection of all subgroups of G of order n. Prove that K is normal in G.

Exercises 2.11.6. The normalizer and centralizer of a subgroup. Let K be a subgroup of G and define

$$
\begin{aligned}
& N_{G}(K)=\left\{g \in G: g K g^{-1}=K\right\} \\
& C_{G}(K)=\left\{g \in G: g k g^{-1}=k \text { for all } k \in K\right\}
\end{aligned}
$$

These are called the normalizer of K in G and the centralizer of K in G.
(a) Show that $N_{G}(K)$ is a subgroup of G.
(b) Show that K is a normal subgroup of $N_{G}(K)$.
(c) If $H \leq G$ and K is a normal subgroup of H show that $H \leq N_{G}(H)$. So, $N_{G}(K)$ is the largest subgroup of G in which K is normal.
(d) Show that $C_{G}(K)$ is a normal subgroup of $N_{G}(K)$.
(e) Show that $N_{G}(K) / C_{G}(K)$ is isomorphic to a subgroup of $\operatorname{Aut}(K)$.

Exercises 2.11.7. The commutator subgroup. In a group G, the commutator of a, b is $a b a^{-1} b^{-1}$. Notice that this is e_{G} iff a and b commute. The commutator subgroup of a group G is the group G^{\prime} generated by the commutators.

$$
G^{\prime}=\left\langle a b a^{-} b^{-1}: a, b \in G\right\rangle
$$

(a) Compute the commutator subgroup of D_{n} (two cases: n odd and n even). Think of D_{n} as generated by r, t with $r^{n}=t^{2}=e$ and $t r=r^{n-1} t$.
(b) Write down the commutator of the conjugation of a by x and the conjugation of b by x.
(c) Prove that G^{\prime} is a normal subgroup of G. It is enough to show that the conjugation of any commutator is another commutator.
(d) Prove that G / G^{\prime} is abelian.
(e) Prove that G / N abelian implies $G^{\prime} \leq N$. So, the commutator subgroup of G is the smallest normal subgroup N group such that the quotient G / N is abelian.

Exercises 2.11.8. Let G be a group. For $a, b \in G$ define the commutator $[a, b]:=$ $a b a^{-1} b^{-1}$ of a and b. For arbitrary subgroups U, V of G define $[U, V]:=\langle[u, v]|$ $u \in U, v \in V\rangle$. Now show the following:
(a) If U, V are normal subgroups of G, then so is $[U, V]$.
(b) $[G, G]$ is the smallest normal subgroup of G for which the quotient group is abelian.
(c) Setting $G^{(0)}:=G$ and $G^{(i)}:=\left[G^{(i-1)}, G^{(i-1)}\right]$ for all $i \in \mathbb{N}$, we find that G is solvable if and only if there exists $n \in \mathbb{N}$ such that $G^{(n)}=\{1\}$.
(d) For $n \geq 5$ let U be a subgroup of S_{n} and N a normal subgroup of U for which U / N is abelian. Show that if U contains all 3-cycles of S_{n}, then also N will contain these.
Hint: If $a, b, c, d, e \in\{1, \ldots, n\}$ are distinct elements, then there holds the equation

$$
(a, b, c)=(a, b, d)(c, e, a)(d, b, a)(a, e, c) .
$$

(e) Show that this implies that the symmetric group S_{n} is not solvable for $n \geq 5$.

Exercises 2.11.9. Inner automorphisms of a group. For $a \in G$ let φ_{a} be the inner automorphism defined by a and consider the function $\varphi: a \longmapsto \varphi_{a}$.

$$
\begin{array}{rlrl}
\varphi_{a}: G & \longrightarrow G & \varphi: G & \longrightarrow \operatorname{Aut}(G) \\
g & \longmapsto a g a^{-1} & a & \longmapsto \varphi_{a}
\end{array}
$$

Clearly $\operatorname{im}(\varphi)=\operatorname{Inn}(G)$.
(a) Show that $\operatorname{Inn}(G)$ is a normal subgroup of $\operatorname{Aut}(G)$.
(b) Show that φ is a homomorphism and that $\operatorname{im}(\varphi) \cong G / Z(G)$.

Exercises 2.11.10. Lattice diagrams.
(a) Draw the lattice diagram for D_{4} and the lattice diagram for A_{4}.
(b) Using the lattice diagram, comment on the 3rd isomorphism theorem for each normal subgroup of D_{4}. Repeat for A_{4}.
(c) Find the intersection of A_{4} and D_{4} and identify it in the diagrams for each.

Exercises 2.11.11. Symmetries of a solid.
(a) Enumerate the faces of a tetrahedron as follows. Each rigid motion from the tetrahedron to itself defines a permutation of the vertices. There are 12 such permutations. Write them down in an organized fashion, and briefly describe each.
(b) Enumerate the faces of a cube as follows. Each rigid motion from the cube to itself defines a permutation of the vertices. There are 24 such permutations. Write them down in an organized fashion, and briefly describe each.

Exercises 2.11.12. Counting in S_{n}.
(a) How many k-cycles are there in S_{n} ?
(b) How many product of disjoint transpositions are there in S_{n} ?

Exercises 2.11.13. Computing some simple automorphism groups.
(a) Compute $\operatorname{Aut}(Q)$ for Q the quaternions.
(b) Show that $\operatorname{Aut}\left(D_{4}\right) \cong D_{4}$

Exercises 2.11.14.

(a) Let $A_{1}, A_{2}, B_{1}, B_{2}$ be normal subgroups of a group G with $B_{1} \leq A_{1}$ and $B_{2} \leq A_{2}$ and finally $A_{1} \cap A_{2}=\{1\}$. Then $B_{1} B_{2}$ is normal subgroup in $A_{1} A_{2}$ and there holds

$$
\left(A_{1} A_{2}\right) /\left(B_{1} B_{2}\right) \cong\left(A_{1} / B_{1}\right) \oplus\left(A_{2} / B_{2}\right)
$$

Exercises 2.11.15. Automorphism group of \mathbb{Z} / p^{n}.
(a) Prove that $\operatorname{Aut}\left(\mathbb{F}_{p}^{2}\right) \cong \mathrm{GL}\left(2, \mathbb{F}_{p}\right)$ for p prime.
(b) Find an element of $\operatorname{Aut}\left(\mathbb{F}_{4} \times \mathbb{F}_{4}\right)$ that is not in $\operatorname{GL}\left(2, \mathbb{F}_{4}\right)$.

Exercises 2.11.16. Upper triangular matrices.
(a) Let F be a field and let F^{*} be its multiplicative group. Show that there is a homomorphism

$$
\begin{aligned}
\{\text { upper triangular matrices in } \mathrm{GL}(2, F)\} & \longrightarrow\left(F^{*}\right)^{2} \\
{\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] } & \longmapsto(a, c)
\end{aligned}
$$

(b) Show that kernel is isomorphic to $(F,+)$ the additive group of F.

Exercises 2.11.17. General linear group.
(a) Which has more elements, unit group of $\operatorname{Mat}(2, \mathbb{Z} / 4)$ or $\operatorname{GL}\left(2, \mathbb{F}_{4}\right)$? Find the number of elements in each and characterize $U\left(\operatorname{Mat}\left(2, \mathbb{Z}_{4}\right)\right.$.
(b) Try to generalize: How many elements are there in $\operatorname{GL}\left(n, \mathbb{F}_{p}\right)$? $\operatorname{In} \operatorname{SL}\left(n, \mathbb{F}_{p}\right)$?

Exercises 2.11.18. Let $\left(U_{n}, *\right)$ be the group of invertible elements of \mathbb{Z}_{n}. Find all n such that $\left(U_{n}, *\right)$ is isomorphic to
(a) $\left(\mathbb{Z}_{2},+\right)$.
(b) $\left(\mathbb{Z}_{4},+\right)$.
(c) $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$.

Exercises 2.11.19. Define a hemigroup to be a set G with an operation * that is associative, has an identity element, and such that each element has a right inverse.
(a) Show that the right of a is also a left inverse of a, so that a hemigroup is actually a group.

Chapter 3

Classification and Structure of Groups

3.1 Interaction between Two Subgroups: The Second Isomorphism Theorem

We now consider two subgroups of a group G and prove several results about the interaction between them. At first we make no additional assumptions on the two subgroups groups, then we assume that one is normal in G, and finally that both are. The main result is the second isomorphism theorem. But,we also get two key corollaries that introduce the notion of an internal direct product (as opposed to the external direct product that we have been using), and the more general notion of a semi-direct product (both internal and external).

Lemma 3.1.1. Let K, H be subgroups of G. The following are equivalent:
(1) $G=K H$ and $K \cap H=\left\{e_{G}\right\}$
(2) Every element of G can be uniquely written as $k h$ for $k \in K$ and $h \in H$.

Proof. $G=K H$ is equivalent to saying that every element of G can be written in the form $k h$.

We'll next show $K \cap H=\left\{e_{G}\right\}$ if and only if any expression for $g \in G$ as a product $k h$, with $k \in K$ and $h \in H$, is unique. Suppose $K \cap H=\left\{e_{G}\right\}$ and $k_{1} h_{1}=k_{2} h_{2}$. Then $k_{1}^{-1} k_{2}=h_{1} h_{2}^{-1}$. Since this is in both K and in H, it must be the identity. Therefore, $h_{1}=h_{2}$ and $k_{1}=k_{2}$, which proves uniqueness.

Now suppose that, $K \cap H \neq e_{G}$; say $g \in K \cap H$ is not equal to e_{G}. Setting $h=g$ and $k=e_{G}$ or $h=e_{G}$ and $k=g$ gives two different ways to express g in the form $k h$. Thus we have non-uniqueness.

As another prelude to the second isomorphism theorem we have the following lemma. We will use a concise argument to prove a subset B of a group G is a subgroup. We show that $B^{-1} \subseteq B$ (closure under inversion) and $B B \subseteq B$ (closure under products).

Lemma 3.1.2 ([A] 1.3.6). Let H, K be subgroups of G.

$$
H K=K H \quad \Longleftrightarrow K H \text { is a subgroup of } G
$$

Proof. Suppose $H K=K H$ we will show $K H$ is a subgroup of G. We see $K H$ is closed under inversion: $(k h)^{-1}=h^{-1} k^{-1} \in H K=K H$.
$K H$ is also closed under products. This can be shown element-wise but we can simply observe that $K H K H=K K H H=K H$. Since $K H$ is closed under inversion and under products, it is a subgroup of G.

Suppose $K H$ is a subgroup of G. Since $K H$ is closed under inversion, $K H=$ $(K H)^{-1}=H^{-1} K^{-1}=H K$. This gives the reverse implication of the lemma.

Suppose now that H, N are subgroups of G with N normal in G. We can conclude the following.

- $H N=N H$ since $g N=N g$ for any $g \in G$.
- $N H$ is therefore a subgroup of G by the lemma.
- N is normal in $N H$, since it is normal in any subgroup of G that contains it.

Theorem 3.1.3 (Second Isomorphism). Let N be normal in G and H a subgroup of G. Then $N \cap H$ is normal in H and $H /(N \cap H) \cong N H / N$.

When these groups are finite we may take cardinalities to get

$$
|N||H|=|N H||N \cap H|
$$

Proof. Consider $G \xrightarrow{\pi} G / N$ restricted to the subgroup H, call the homomorphism $\pi^{\prime}: H \longrightarrow G / N$. The kernel is $H \cap N \cap H$. The image is $N H / N=\{N h: h \in H\}$. By the first isomorphism theorem, $H /(N \cap H) \cong N H / N$.

The following special case is of interest.
Corollary 3.1.4. Let $H \leq G$ and $N \unlhd G$. If $G=N H$ and $N \cap H=\left\{e_{G}\right\}$ then $G / N \cong H$.

Definition 3.1.5. In the situation of the corollary we say that G is the internal semi-direct product of N by H and we write $G \cong N \rtimes H$.

Note that the order is important: $N \rtimes H$ and $H \rtimes N$ mean two different things. The first assumes N is normal in G and the second assumes H is normal in G.

If both H and N are normal then the two semidirect products are isomorphic to each other and to the direct product, as the following corollary shows.

Corollary 3.1.6. Suppose $K \unlhd G$ and $N \unlhd G$ and $G=K N$ and $K \cap N=\left\{e_{G}\right\}$. Then elements of K and N commute: for any $k \in K$ and $n \in N$, $k n=n k$. Furthermore, $G \cong K \times N$.

Proof. To prove that elements of K and N commute with each other it is sufficient to show that $k n k^{-1} n^{-1}=e$. Since N is normal, $k n k^{-1} \in N$ and therefore $k n k^{-1} n^{-1} \in N$. Similarly, since K is normal, $n k^{-1} n^{-1} \in K$ so $k n k^{-1} n^{-1} \in K$. Now $K \cap N=\{e\}$ gives the result.

Consider the map $K \times N \xrightarrow{\varphi} G$ defined by $(k, n) \longmapsto k n$. The map is well defined. It is injective since $k n=e$ gives $k=n^{-1} \in K \cap N=\{e\}$. It is surjective since $G=K N$. It respects multiplication (so is a homomorphism):

$$
\begin{aligned}
\varphi\left(\left(k_{1}, n_{1}\right)\left(k_{2}, n_{2}\right)\right) & =\varphi\left(\left(k_{1} k_{2}, n_{1} n_{2}\right)\right) \\
& =k_{1} k_{2} n_{1} n_{2}=k_{1} n_{1} k_{2} n_{2} \\
& =\varphi\left(\left(k_{1}, n_{1}\right)\right) \varphi\left(\left(k_{2}, n_{2}\right)\right)
\end{aligned}
$$

Thus φ is an isomorphism.
Definition 3.1.7. In the situation of the last corollary, G is often called the internal direct product of K and N.

The distinction between internal direct product and the usual (external) direct product of two arbitrary groups G and H is subtle as the next examples show.
Example 3.1.8. Let G and H be two groups and consider the external direct product $G \times H$. Let $\bar{G}=G \times\left\{e_{H}\right\}$ and similarly $\bar{H}=\left\{e_{G}\right\} \times H$. The interesection of \bar{G} and \bar{H} is the identity element of $G \times H$ and it is easy to see that every element of $G \times H$ may be written as a product of something in \bar{G} and \bar{H}. Thus $G \times H$ is the internal direct product of \bar{G} and \bar{H}.

Example 3.1.9. Consider \mathbb{Z}_{6}. The two subgroups $K=\{0,3\}$ and $N=\{0,2,4\}$ have trivial intersection and it can be seen that everything in \mathbb{Z}_{6} can be written as a sum of something in K and something in N. Thus \mathbb{Z}_{6} is the internal direct product of H and K. Of course, in \mathbb{Z}_{6}, the subgroup $\{0,3\}$ is isomorphic to \mathbb{Z}_{2}, and $\{0,2,4\}$ is isomorphic to \mathbb{Z}_{3} and we know that \mathbb{Z}_{6} is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$. More generally, for m and n coprime, $\mathbb{Z}_{m n}$ is the internal direct product of $\langle m\rangle$ and $\langle n\rangle$.

One can also define the external semi-direct product of of two groups.
Definition 3.1.10. Let N, H be two groups and let $\varphi: H \longrightarrow \operatorname{Aut}(N)$ be a homomorphism. Write $\varphi(h)$ as φ_{h}. Define a new group with elements $N \times H$ and multiplication defined by

$$
\left(n_{1}, h_{1}\right) *\left(n_{2}, h_{2}\right)=\left(n_{1} \varphi_{h_{1}}\left(n_{2}\right), h_{1}, h_{2}\right)
$$

This is the external semi-direct product of N and H defined by φ and is written $N \rtimes_{\varphi} H$.

The relationship between the internal and external semi-direct product is even more subtle than for the internal and external direct product. Consider a group G with two subgroups N, H with N normal and H not normal and such that $N H=G$ and $N \cap H=\{e\}$. There is a bijective map from the Cartesian product $N \times H$ to G taking (n, h) to $n h$. It is not a homomorphism. But it is true that in G,

$$
\begin{aligned}
n_{1} h_{1} n_{2} h_{2} & =n_{1} h_{1} n_{2} h_{1}^{-1} h_{1} h_{2} \\
& =n_{1} \varphi_{h_{1}}\left(n_{2}\right) h_{1} h_{2}
\end{aligned}
$$

Where $\varphi_{h_{1}}$ is conjugation by h_{1}. Because N is normal in G, φ_{h} is an automorphism of N and, indeed, we have a homomorphism $\varphi: H \longrightarrow \operatorname{Aut}(N)$ that takes h to φ_{h}. Thus, if we use φ to to define the external semi-direct product $N \unlhd_{\varphi} H$ we get an isomorphism with G.

Exercises 3.1.11. The definition of external semi-direct product makes sense!
(a) Verify that $\left(e_{H}, e_{K}\right)$ is the identity element.
(b) Show that each element does have an inverse.
(c) Show that the associative law holds.
(d) Show that the multiplication is completely determined by the relation $h n=$ $\varphi_{h}(n) h$.

Exercises 3.1.12. Verify the following are semi-direct products
(a) $D_{n} \cong C_{n} \rtimes_{\varphi} C_{2}$ where $\varphi: C_{2} \longrightarrow \operatorname{Aut}\left(C_{n}\right)$ takes the non-identity element of C_{2} to the automorphism of C_{n} taking n to n^{-1}.
(b) $S_{n}=A_{n} \rtimes\langle(1,2)\rangle$. What is the map φ ?
(c) $S_{4}=V \rtimes S_{3}$ where V is Klein-4 subgroup with elements of the form $(a, b)(c, d)$ with a, b, c, d distinct elements of $\{1,2,3,4\}$. What is the map φ ?
(d) $\operatorname{In} \mathrm{GL}_{n}(F)$, for F a field, let T be the upper triangular matrices with nonzeros on the diagonal; let U be the upper triangular matrices with 1's on the diagonal and let D be the diagonal matrices with nonzero elements on the diagonal. For $n=2$, show that $T=U \rtimes D$. Describe the map $\varphi: D \longrightarrow$ $\operatorname{Aut}(U)$.
(e) Do the previous problem for arbitrary n.

Proposition 3.1.13. Suppose that N is normal in G and $H \cong G / N$. Suppose also that there is a map $\alpha: H \longrightarrow G$ such that $\theta \circ \alpha$ is the identity on H. Then G is the internal direct product $N \rtimes \alpha(H)$.

Proof. We have $\alpha(H)$ is a subgroup of G. Suppose $g \in \alpha(H) \cap N$. Then $g=\alpha(h)$ for some $h \in H$ and $\theta(g)=e_{H}$. Consequently $h=\theta \circ \alpha(h)=\theta(g)=e_{H}$. Thus $\alpha(H) \cap N=\alpha\left(e_{H}\right)=e_{G}$.

We next show that $\alpha(H) N=G$. Let $g \in G$ and let $g^{\prime}=\alpha(\theta(g))$. Then $g^{\prime} \in \alpha(H)$. We also have

$$
\theta\left(g^{-1} g^{\prime}\right)=\theta(g)^{-1} \theta(\alpha(\theta(g)))=\theta(g)^{-1} \theta(g)=e_{H}
$$

Then $g^{-1} g^{\prime} \in N$. Setting $g^{-1} g^{\prime}=n \in N$, we get $g=g^{\prime} n^{-1}$. Thus an arbitrary element of G is in $\alpha(H) N$ as was to be shown.

Here is another problem, I haven't checked whether it is a semi-direct product.
Exercises 3.1.14. Let $H=H(F)$ be the set of 3 by 3 upper triangular matrices over a field F with 1s on the diagonal.
(a) Give a brief explanation of why this is indeed a subgroup of GL $(3, F)$.
(b) Show that the following 3 types of matrices generate this group.

$$
\left[\begin{array}{lll}
1 & a & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right]
$$

(c) Let $F=\mathbb{F}_{p}$. Explain why H is then generated by 3 matrices, those in the form above with $a=b=c=1$.
(d) Show that $H\left(\mathbb{F}_{2}\right) \cong D_{4}$.
(e) Show that the center $Z(H)$ consists of all matrices of the form $\left[\begin{array}{lll}1 & 0 & c \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Furthermore $Z(H) \cong(F,+)$.
(f) Show that $H / Z(H)$ is isomorphic to $F \times F$.
(g) Conclude that H is metabelian.

Exercises 3.1.15. Let F be a field. Let $\left.\mathrm{GL}_{n}(F)\right)$ be the general linear group: $n \times n$ matrices over F with nonzero determinant. Let $\left.\mathrm{SL}_{n}(F)\right)$ be the special linear group: matrices with determinant 1 . Let $F^{*} I$ be the nonzero multiples of the identity matrix. In this problem we investigate the finite fields F and values of n for which $\mathrm{GL}_{n}(F) \cong \mathrm{SL}_{n}(F) \times F^{*} I$.
(a) For the fields $F=\mathbb{F}_{3}$ and $F=\mathbb{F}_{5}$, show that $\mathrm{GL}_{n}(F)$ is a direct product as above for n odd, but not for n even.
(b) For the field $F=\mathbb{F}_{7}$, show that $\mathrm{GL}_{n}(F)$ is a direct product as above for n coprime to 6 , and is not otherwise.
(c) (Challenge) For which fields \mathbb{F}_{q} and which n is $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ a direct product as above?

Exercises 3.1.16.

(a) Use the definition of external semi-direct product to create the other nonabelian group of order 12 (besides D_{6} and A_{4}), $\mathbb{Z}_{3} \rtimes_{\varphi} \mathbb{Z}_{4}$ where φ is the only possible map $\mathbb{Z}_{4} \longrightarrow \operatorname{Aut}\left(\mathbb{Z}_{3}\right)$ that is not trivial. Let a be the generator for \mathbb{Z}_{3} and b the generator for \mathbb{Z}_{4}. Show the following:
(1) Every element can be represented uniquely as $a^{i} b^{j}$ for $i \in\{0,1,2\}$ and $b \in\{0,1,2,3\}$
(2) The group can be presented as $\left\langle a, b \mid a^{3}=b^{4}=1, b a=a^{2} b\right\rangle$
(3) Find the inverse of $a^{i} b^{j}$.
(4) Find a general formula for $a^{i} b^{j} * a^{m} b^{n}$. You can break this into cases if you want.
(b) Use the definition of external semi-direct product to create the only nonabelian group of order 21 (the smallest non-abelian group of odd order), $\mathbb{Z}_{7} \rtimes \mathbb{Z}_{3}$. Let a be the generator for \mathbb{Z}_{7} and b the generator for \mathbb{Z}_{3}. Show how to represent, invert, and multiply elements of this group as you did in the previous problem.
(c) (Challenge Problem) Use the definition of external semi-direct product to construct semi-direct products $\mathbb{Z}_{m} \rtimes \mathbb{Z}_{n}$. You will need to start with a homomorphism $\varphi: \mathbb{Z}_{n} \longrightarrow \operatorname{Aut}\left(\mathbb{Z}_{m}\right)$. See how many of the small non-abelian groups you can find in the table of small abelian groups on Wikipedia.

3.2 Finitely Generated Abelian Groups

In this section we show that the structure of finitely generated abelian groups is fairly simple. Any abelian group is isomorphic to a direct product of cyclic groups
that can put in a standard, uniquely determined, format. We proceed in several steps, each subsection below gives a complete story about a particular class of abelian groups; each extends the result of the previous subsection to a broader class of abelian groups.

Our first step is to show that a direct product of cyclic groups can be put into a standard format that elucidates its structure. There are actually two such formats, one using elementary divisors and the other using invariant factors. In particular, two groups are isomorphic if and only if their standard formats are the same. Our next step is to show that any finite abelian group is actually a direct product of cyclic groups, and it therefore can be placed in the two standard formats. This result has one very technical lemma. Finally, state the more general result that any finitely generated abelian group can be written as a direct product of a finite group (with standard formats above) and a group that is isomorphic to \mathbb{Z}^{r} for some integer r.

We will write the group operation additively. For A an abelian group, $a \in A$, and m an integer, we write $m A$ for $a+\cdots+a$ with m summands. Think of $m a$ as repeated addition, not multiplication. The order of a is the smallest positive integer m such that $m a=0$. One can check that $m a+n a=(m+n) a$ and $(m n) a=m(n a)$. If B is a subgroup of A (it is normal since A is abelian we write a cose as $a+B$ and the identity element of A / B is $0+B$.

Products of Cyclic Groups

Let's start with abelian groups that we understand well.
Theorem 3.2.1. Let m_{1}, \ldots, m_{t} be positive integers and $A=\mathbb{Z} / m_{1} \times \cdots \times \mathbb{Z} / m_{t}$. Let $P=\left\{p_{1}, \ldots, p_{s}\right\}$ be the set of all primes dividing $m_{1} m_{2} \cdots m_{t}$ and let the m_{j} have factorizations $m_{j}=\prod_{i=1}^{s} p_{i}^{e_{i j}}$ (allowing some $e_{i j}=0$). Then

$$
A \cong A_{1} \times \cdots \times A_{s}
$$

where $A_{i}=\mathbb{Z} / p_{i}^{e_{i 1}} \times \mathbb{Z} / p_{i}^{e_{i 2}} \times \cdots \mathbb{Z} / p_{i}^{e_{i t}}$.
Furthermore $\left|A_{i}\right|=p^{e_{i}}$ where $e_{i}=\sum_{j=1}^{t} e_{i j}$.
Proof. We know that $\mathbb{Z} / m_{j} \cong \mathbb{Z} / p_{1}^{e_{1 j}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s j}}$. Thus

$$
\begin{aligned}
A= & \mathbb{Z} / m_{1} \times \cdots \times \mathbb{Z} / m_{t} \\
\cong & \mathbb{Z} / p_{1}^{e_{11}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s 1}} \\
& \times \mathbb{Z} / p_{1}^{e_{12}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s 2}} \\
& \quad \cdots \\
& \times \mathbb{Z} / p_{1}^{e_{1 t}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s t}}
\end{aligned}
$$

Rearranging terms we have

$$
\begin{aligned}
& \cong \mathbb{Z} / p_{1}^{e_{11}} \times \cdots \times \mathbb{Z} / p_{1}^{e_{1 t}} \\
& \quad \times \mathbb{Z} / p_{2}^{e_{21}} \times \cdots \times \mathbb{Z} / p_{2}^{e_{2 t}} \\
& \quad \cdots \\
& \quad \times \mathbb{Z} / p_{s}^{e_{s 1}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s t}} \\
& \cong \times A_{1} \times \cdots \times A_{s}
\end{aligned}
$$

The cardinality of A_{i} is just the product of the cardinalities of its factors. So, letting $e_{i}=\sum_{j=1}^{t} e_{i j}$, we have $\left|A_{i}\right|=p^{e_{i}}$.
Definition 3.2.2. The multiset $\left\{p_{i}^{e_{i j}}: i=1, \ldots, s\right.$; and $\left.j=1, \ldots t\right\}$ is the set of elementary divisors of A.

Theorem 3.2.3. With the notation of the previous theorem, for each i let $f_{i 1} \geq$ $f_{i 2} \cdots \geq f_{i t}$ be a permutation of the exponents $e_{i 1}, \ldots e_{i t}$ putting them in decreasing order. For $j=1, \ldots, t$, let $n_{j}=\prod_{i=1}^{s} p_{i}^{f_{i j}}$. Then $n_{t}\left|n_{t-1}\right| \cdots \mid n_{1}$ and $A \cong$ $\mathbb{Z} / n_{1} \times \cdots \times \mathbb{Z} / n_{t}$.

Proof. The fact that $n_{j} \mid n_{j-1}$ follows from $f_{i j} \leq f_{i, j-1}$. Revisiting the previous proof, we enter after the point where we rearranged the factors. In each line we then permute the $e_{i j}$ to have them in decreasing order $\left(f_{i 1}, \ldots, f_{i t}\right)$. The final step is to rearrange again by combining all the largest prime power factors to create
$\mathbb{Z}_{n_{1}}$ and proceeding iteratively with the next largest prime power factors.

$$
\begin{aligned}
& A= \mathbb{Z} / m_{1} \times \cdots \times \mathbb{Z} / m_{t} \\
& \cong \mathbb{Z} / p_{1}^{e_{11}} \times \cdots \times \mathbb{Z} / p_{1}^{e_{1 t}} \\
& \times \mathbb{Z} / p_{2}^{e_{21}} \times \cdots \times \mathbb{Z} / p_{2}^{e_{2 t}} \\
& \cdots \\
& \times \mathbb{Z} / p_{s}^{e_{s 1}} \times \cdots \times \mathbb{Z} / p_{s}^{e_{s t}} \\
& \cong \mathbb{Z} / p_{1}^{f_{11}} \times \cdots \times \mathbb{Z} / p_{1}^{f_{1 t}} \\
& \times \mathbb{Z} / p_{2}^{f_{21}} \times \cdots \times \mathbb{Z} / p_{2}^{f_{2 t}} \\
& \cdots \\
& \times \mathbb{Z} / p_{s}^{f_{s 1}} \times \cdots \times \mathbb{Z} / p_{1}^{f_{s t}} \\
& \cong \mathbb{Z} / p_{1}^{f_{11}} \times \cdots \times \mathbb{Z} / p_{s}^{f_{s 1}} \\
& \times \mathbb{Z} / p_{1}^{f_{12}} \times \cdots \times \mathbb{Z} / p_{s}^{f_{s 2}} \\
& \cdots \\
& \times \mathbb{Z} / p_{1}^{f_{1 t}} \times \cdots \times \mathbb{Z} / p_{s}^{f_{s t}} \\
& \cong \mathbb{Z} / n_{1} \times \cdots \times \mathbb{Z} / n_{t}
\end{aligned}
$$

Definition 3.2.4. The n_{j} (that are not 1) in the previous theorem are called the invariant factors of A.

Exercises 3.2.5.

(a) Find the elementary divisors and the invariant factors for $\mathbb{Z} / 50 \times \mathbb{Z} / 75 \times$ $\mathbb{Z} / 136 \times \mathbb{Z} / 21000$.
(b) Let $n_{1}, n_{2}, \ldots, n_{r}$ be integers larger than 1 . Under what conditions with $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}} \times \cdots \times \mathbb{Z}_{n_{r}}$ have r invariant factors?

Exercises 3.2.6. There is a well defined homomorphism $\mathbb{Z}_{2400} \longrightarrow \mathbb{Z}_{d}$ that takes $[1]_{2400}$ to $[1]_{d}$ for any d that divides 2400 . Given several divisors of 2400 we can use the universal property of a direct product 2.4 .3 to get a homomorphism into the direct product of several such groups, for example

$$
\mathbb{Z}_{2400} \longrightarrow \mathbb{Z}_{40} \longrightarrow \mathbb{Z}_{30} \longrightarrow \mathbb{Z}_{16}
$$

(a) What is the kernel?
(b) Find the elementary divisors of the kernel, \mathbb{Z}_{2400} and $\mathbb{Z}_{40} \longrightarrow \mathbb{Z}_{30} \longrightarrow \mathbb{Z}_{16}$

Finite Abelian Groups

In the previous section we showed that a product of cyclic groups can be written in two different forms that illuminate the structure better. One form uses cyclic groups of prime power order (and gives the elementary divisors of the group) and the other uses a format that identifies the largest cyclic component and, after splitting off that component, the next largest cyclic component, and so forth. This gives the invariant factors of the group. We now want to show that this classification applies to any finite abelian group.

The first step is to split a group into pieces that are, in a sense, coprime. We then apply induction to write the group as a direct product of groups that have prime power order. The difficult step is to show that a group of prime power order is actually a product of cyclic groups (whose orders are a power of the same prime).

Definition 3.2.7. Let A be an abelian group. For $m \in \mathbb{N}$ let

$$
\begin{aligned}
m A & =\{m a: a \in A\} \\
A[m] & =\{a: m a=0\}
\end{aligned}
$$

For p a prime define the p torsion subgroup of A to be

$$
A(p)=\left\{a \in A: \operatorname{ord}(a)=p^{k} \text { for some } k\right\}
$$

An abelian group such that $A=A(p)$ is called a p-group.

Exercises 3.2.8.

(a) Prove that $m A, A[n]$ and $A(p)$ are all subgroups of A.
(b) Prove that $A(p)=\cup_{i=0}^{\infty} A\left[p^{i}\right]$, and that, for A finite, $A(p)=A\left[p^{k}\right]$ for some large enough k.
Proposition 3.2.9. Suppose that A is abelian with $|A|=m n$ and m, n coprime. Then
(1) $m A=A[n]$
(2) A is the internal direct product of $A[m]$ and $A[n]$

Proof. Let $u, v \in \mathbb{Z}$ be such that $u m+v n=1$. Let $a \in A[n]$. Then $a=(u m+$ $v n) a=u(m a)+v(n a)=m(u a)$, since we assume $n a=0$. This shows that $A[n] \subseteq m A$. On the other hand, an arbitrary element of $m A$ can be written $m a$ for $a \in A$. Since $|A|=m n, n(m a)=(n m) a=0$, and this shows $m A \subseteq A[n]$.

For the second claim of the proposition, we show that $A[m] \cap A[n]=\{0\}$ and that $A[m]+A[n]=A$. Then, by Corollary 3.1.6, $A \cong A[m] \times A[n]$.

Let $a \in A$. Since $a=(m u+n v) a=m(u a)+n(v a)$ we see that $a \in m A+n A$, which by the previous paragraph is equal to $A[n]+A[m]$. Thus $A[m]+A[n]=A$. On the other hand, if $a \in A[m] \cap A[n]$ then and $a=(u m+v n) a=u(m a)+v(n a)=$ $0+0$. Thus $A[m] \cap A[n]=\{0\}$. We have shown that A is the internal direct product of $A[m]$ and $A[n]$.

The next proposition shows that our decomposition is uniquely determined.
Proposition 3.2.10. Let A_{1}, A_{2}, B_{1} and B_{2} be finite groups. Suppose that $A_{1} \times$ $B_{1} \cong A_{2} \times B_{2}$ where everything in A_{i} has order dividing m and everything in B_{i} has order dividing n, with m and n coprime. Then $A_{1} \cong A_{2}$ and $B_{1} \cong B_{2}$.

Proof. Assume $A_{1} \times B_{1} \cong A_{2} \times B_{2}$.

$$
\begin{aligned}
m\left(A_{i} \times B_{i}\right) & =m A_{i} \times m B_{i} \\
& =\left\{(0, m b): b \in B_{i}\right\} \\
& =\{0\} \times B_{i}
\end{aligned}
$$

The first step because $m(a, b)=(m a, m b)$ and the last step because multiplication by m (coprime to n) gives an automorphism of B_{i}. Since $m\left(A_{1} \times B_{1}\right) \cong m\left(A_{2} \times B_{2}\right)$ we get $B_{1} \cong B_{2}$. Similarly we show $A_{1} \cong A_{2}$.

Corollary 3.2.11. Let $|A|=p_{1}^{e_{1}} \ldots p_{s}^{e_{2}}$ then

$$
A \cong A\left[p_{1}^{e_{1}}\right] \times \cdots \times A\left[p_{s}^{e_{s}}\right]=A\left(p_{1}\right) \times \cdots \times A\left(p_{s}\right)
$$

This factorization is unique up to reordering.
Proof. Apply induction using the previous propositions.
The previous theorem is the first step in the classification of finite abelian groups. The next step is to classify p-groups. The key lemma follows. Its proof is quite technical and not very illuminating, so I sketch the proof in [Hungerford Sec 8.2].

Lemma 3.2.12. Let A be a p-group and let a be an element of maximal order. Then $A=K+\langle a\rangle$ and $K \cap\langle a\rangle=\{0\}$ for some subgroup K of A. Thus A is isomorphic to the direct product of K and $\langle a\rangle$.

Proof. Let K be as large as possible such that $K \cap\langle a\rangle=\{0\}$. We want to show that $K+\langle a\rangle=A$. Then Corollary 3.1.6 says that $A \cong K \times\langle a\rangle$.

Suppose $b \in A \backslash(K+\langle a\rangle)$. Do some tricks to show:
(1) There is a $c \in A \backslash(K+\langle a\rangle)$ such that $p c \in K+\langle a\rangle$. [Take the minimal r such that $p^{r} b \in K+\langle a\rangle$, then let $c=p^{r-1} b$.]
(2) There is a $d \in A \backslash(K+\langle a\rangle)$ such that $p d \in K$. [Let $p c=k+m a$, argue that $m=p m^{\prime}$, for some integer m^{\prime} using that a has maximal degree in A and $K \cap\langle a\rangle=\{0\}$. Then set $d=c-m^{\prime} a$.]
By assumption on $K,(K+\langle d\rangle) \cap\langle a\rangle \neq\{0\}$, so there is some $k \in K$, and nonzero $r, s \in \mathbb{Z}$ such that $k+r d=s a$.

Now we consider two cases: If $p \mid r$ then $r d \in K$ and consequently $s a \in K$. This contradicts $K \cap\langle a\rangle=\{0\}$. If $p \nmid r$ then there are u, v such that $u p+v r=1$. Then $d=u(p d)+v(r d)$. The first term is in K and the second in $K+\langle a\rangle$, so $d \in K+\langle a\rangle$, which is a contradiction.

Theorem 3.2.13. Let $A=A(p)$ be a p-group. Then A is the direct product of cyclic groups each of which has order a power of p. Consequently, the order of A is also a power of p.

The decomposition is unique (up to reordering). Put another way, two p-groups are isomorphic iff their decompositions have the same number of factors for each power of p.

Proof. We take as induction hypothesis that the result is true for all groups of order p^{t}. The case $t=1$ is immediate since a group of prime order is cyclic. Assume the result is true for t and let $|A|=p^{t+1}$. Using the lemma we can write A as a direct sum $A=K+\langle a\rangle$ with $K \cap\langle a\rangle=\{0\}$. The subgroup $\langle a\rangle$ is cyclic of order p^{s} for some $s>0$ and $|K| \leq p^{t}$. Applying the induction hypothesis to K gives the result that A is the direct product of cyclic groups of order a power of p.

Since A is the direct product of groups of order a power of p, A itself must have order a power of p.

To prove uniqueness (up to reordering) we note first that if two groups have the same number of factors for each power of p they are isomorphic. We will write factorizations by writing the factors in increasing powers of p as follows

$$
A \cong(\mathbb{Z} / p)^{k_{1}} \times\left(\mathbb{Z} / p^{2}\right)^{k_{2}} \times \cdots \times\left(\mathbb{Z} / p^{r}\right)^{k_{r}}
$$

We now show that we can recover the k_{i} by operating on A. In other words, two factorizations, one with $k_{1}, k_{2} \ldots$ and one with $m-1, m_{2}, \ldots$ are isomorphic if and only if $k_{i}=m_{i}$.

We can recover the k_{i} iteratively. Since $\log _{p}\left(\left|\mathbb{Z} / p^{n}\right|\right)=n$, we have $\log _{p}(|A|)=$ $\sum_{i=1}^{r} i k_{i}$. Notice that $p^{n-1} \mathbb{Z} / p^{n} \cong \mathbb{Z} / p$ and $p^{k} \mathbb{Z} / p^{n}$ is trivial for $k \geq n$. Thus the subgroup $p^{r-1} A$ is isomorphic to

$$
p^{r-1} A \cong(\mathbb{Z} / p)^{k_{r}}
$$

Thus we have $\log _{p}\left(\left|p^{r-1} A\right|\right)=k_{r}$. Similar computations for $p^{i} A$ with $i=r-2, r-$ $3, \ldots, 1$ allows one to recover the other k_{i}. (Try it as an exercise!)

From the two previous theorems we obtain the fundamental theorem.
Theorem 3.2.14 (Fundamental Theorem of Finite Abelian Groups). Let A be an abelian group of order $p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$. Then A is a direct product of cyclic groups, each having order a power of one of the p_{i}. If we write

$$
A\left(p_{i}\right) \cong \mathbb{Z} / p_{i}^{e_{i, 1}} \times \mathbb{Z} / p_{i}^{e_{i, 2}} \times \ldots \mathbb{Z} / p_{i}^{e_{i, s_{i}}}
$$

then for each $i, \sum_{\ell=1}^{s_{i}} e_{i, \ell}=e_{i}$. The decomposition is unique, up to reordering.
Exercises 3.2.15. Consider the following problems for $n=72000$ and $n=$ 84000.
(a) Classify all abelian groups of order 84,000 .
(b) Let $n=72,000$. How many abelian groups are there of order n ?
(c) How many of these abelian groups have 2 invariant factors?
(d) How many abelian groups are there of order $p^{6} q^{5} r^{4}$ where p, q, r are distinct primes?
(e) How many have k invariant factors, for $k=1,2,3,4,5,6$? Check your answer against the response to the previous question.
Exercises 3.2.16. Let p, q and r be prime and let $n=p^{6} q^{2} r^{3}$.
(a) How many abelian groups are there of order n ?
(b) How many of these groups have exactly two invariant factors?

Exercises 3.2.17. Here is another approach to proving uniqueness in the classification of finite abelian groups.
(a) Show that $p^{k} \mathbb{Z}_{p^{n}} \cong \mathbb{Z}_{p^{n-k}}$ for $k \leq n$. Seen another way, there is an exact sequence

$$
0 \longrightarrow \mathbb{Z}_{p^{m}} \xrightarrow{\cdot p^{k}} \mathbb{Z}_{p^{k+m}} \longrightarrow \mathbb{Z}_{p^{k}} \longrightarrow 0
$$

(b) Show that $p^{k-1} \mathbb{Z}_{p^{n}} / p^{k} \mathbb{Z}_{p^{n}} \cong \mathbb{Z}_{p}$ for $k \leq n$.
(c) Suppose that $A \cong\left(\mathbb{Z}_{p}\right)^{k_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{k_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{k_{n}}$. Show that $p^{t-1} A / p^{t} A \cong$ $\left(\mathbb{Z}_{p}\right)^{k_{t}+\cdots+k_{n}}$.
(d) Conclude the uniqueness part of the classification of finite abelian groups: If

$$
\left(\mathbb{Z}_{p}\right)^{k_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{k_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{k_{n}} \cong\left(\mathbb{Z}_{p}\right)^{m_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{m_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{m_{n}}
$$

then $k_{i}=m_{i}$.

Finitely Generated Abelian Groups

Now to generalize the previous result to finitely generated abelian groups. The strategy is simple. Let A be a finitely generated group. The torsion subgroup of A is the set of elements of finite order. The first proposition below shows that it is indeed a subgroup of A. The next big step is to show that A has a subgroup that is isomorphic to \mathbb{Z}^{r}. the quotient of The torsion subgroup has to be a finite group, since it is finitely generated, so it is classified by the results above. We show that the torsion free part is actually isomorphic to \mathbb{Z}^{r} for some (unique!) integer r. Thus a finitely generated abelian group is isomorphic to a finite direct product of cyclic groups that are either infinite of prime power order.

Proposition 3.2.18. Let A be an abelian group. Let

$$
\operatorname{Tor}(A)=\{a \in A: a \text { has finite order }\}
$$

(1) $\operatorname{Tor}(A)$ is a normal subgroup of A.
(2) All elements of $A / \operatorname{Tor}(A)$ (except the identity) have infinite order.

Proof. This was Exercise 2.11.2. If $a \in A$ has order m then so does $-a=(m-1) a$. If b is another element in A and it has order n then $a+b$ has order at most $m n$ since

$$
m n(a+b)=(m n) a+(m n) b=n(m a)+n(m b)=0
$$

Thus $\operatorname{Tor}(a)$ is closed under inversion and multiplication, so it is a subgroup of A. Normality is immediate since A is abelian.

If $b+\operatorname{Tor}(A)$ has finite order m in $A / \operatorname{Tor}(A)$ then

$$
m b+\operatorname{Tor}(A)=m(b+\operatorname{Tor}(A))=0+\operatorname{Tor}(A)
$$

This shows that $m b \in \operatorname{Tor}(A)$, so $m b$ has some finite order n in A. Then $(n m) b=$ $n(m b)=0$, so b itself has finite order. Thus $b \in \operatorname{Tor}(A)$ and $b+\operatorname{Tor}(A)=0+\operatorname{Tor}(A)$. So the only element of finite order in $A / \operatorname{Tor}(A)$ is the identity element.

Definition 3.2.19. A group that has no elements of finite order, other than the identity is said to be torsion free.

Let A be an abelian group and let $S=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ be a set of elements in A. We say that the elements of S are independent when for any integers $m_{1}, \ldots m_{r}$ that are not all zero, $m_{1} a_{1}+m_{2} a_{2}+\cdots+m_{r} a_{r} \neq 0$.

A free abelian group of rank r is a group that is isomorphic to \mathbb{Z}^{r}. It will have r elements that are independent and also generate A. We will generally use e_{i} for the element of \mathbb{Z}^{r} that is 1 in the i th component and 0 elsewhere. Borrowing from the language of vector spaces, we say that the e_{i} are the standard basis for \mathbb{Z}^{r}.

Proposition 3.2.20. The rank of a finitely generated free abelian group is unique.
Proof. Let $A \cong \mathbb{Z}^{r}$. Then $A / 2 A \cong \mathbb{Z}^{r} /\left(2 \mathbb{Z}^{r}\right) \cong(\mathbb{Z} / 2 \mathbb{Z})^{r}$. The final isomorphism comes from Theorem 2.8.7 and the observation that $2 \mathbb{Z}^{r}=2 \mathbb{Z} \times 2 \mathbb{Z} \times \cdots \times 2 \mathbb{Z}$ (both containments are easy to show). Since $(\mathbb{Z} / 2 \mathbb{Z})^{r}$ has 2^{r} elements, we may recover the rank by computing $\log _{2}(|A / 2 A|)$.

Exercises 3.2.21.

(a) Let A be an abelian group. Suppose $f: A \rightarrow \mathbb{Z}$ is a surjective homomorphism with kernel K. Show that A has an element a such that A is the internal direct product $K \times\langle a\rangle$.
(b) In the previous problem, suppose f is not surjective but $f(A)=n \mathbb{Z}$ for some $n \in \mathbb{N}$. Show that it still holds that there is an element $a \in A$ such that A is the internal direct product $K \times\langle a\rangle$.
(c) Suppose that A is torsion free and $m A \cong \mathbb{Z}^{r}$. Show that $A \cong \mathbb{Z}^{r}$.

We need two results before proving that a finitely generated torsion free abelian group is actually isomorphic to \mathbb{Z}^{r} for some r.

Proposition 3.2.22. Let $A \leq \mathbb{Z}^{r}$. Then A is isomorphic to \mathbb{Z}^{s} for some integer $s \leq r$.

Proof. We proceed by induction on r. For $r=1$ we already know the subgroups of \mathbb{Z}. They are the trivial group ($\operatorname{rank} 0$) and $n \mathbb{Z}$, which is isomorphic to \mathbb{Z}.

Assume the statement of the theorem is true for integers less than r. Let $A \leq \mathbb{Z}^{r}$ and let e_{i} be the element of \mathbb{Z}^{r} that is 1 in the i th component and 0 elsewhere. Consider projection onto the r th component $\mathbb{Z}^{r} \xrightarrow{\pi} \mathbb{Z}$. The kernel of this map is \mathbb{Z}^{r-1} with generators $\left\{e_{1}, \ldots, e_{r-1}\right\}$. Let $A \xrightarrow{\iota} \mathbb{Z}^{r}$ be the embedding of A in \mathbb{Z}^{r} and consider the composite $\pi \circ \iota$. The kernel of this map is $B=A \cap \mathbb{Z}^{r-1}$. By the induction hypothesis, B is isomorphic to \mathbb{Z}^{s} for some integer $s \leq r-1$.

If $B=A$ we are done. Otherwise, $\pi \circ \iota$ has image $n \mathbb{Z}$ for some $n>0$. Let $a \in A$ be a preimage of n. By Exercise 3.2 .21 (b) we have $A \cong B \times\langle a\rangle$.

Proposition 3.2.23. Let A be a finitely generated, torsion-free abelian group. Then A is a free abelian group of finite rank.

Proof. Let b_{1}, \ldots, b_{r} be a maximal independent set in A. These elements are independent and there is no set of $r+1$ elements in A that is independent.

Let B be the subgroup of A generated by b_{1}, \ldots, b_{r}, that is $B=\left\{\sum_{i=1}^{r} m_{i} b_{i}: m_{i} \in \mathbb{Z}\right\}$. Consider A / B. I claim that it is a torsion group; every element has finite order.

For any $a \in A$, there integers m_{0}, \ldots, m_{r} such that $m_{0} a+m_{1} b_{1}+m_{2} b_{2}+\cdots+$ $m_{r} b_{r}=0$, for otherwise $\left\{a, b_{1}, \ldots b_{r}\right\}$ would be an independent set, contradicting
maximality of $\left\{b_{1}, \ldots b_{r}\right\}$. Furthermore m_{0} is not zero, since $\left\{b_{1}, \ldots b_{r}\right\}$ is independent, so $m_{0} a$ is a nonzero element of B. Thus for any $a \in A$ there is an m_{0} such that $m_{0}(a+B)=m_{0} a+B=0+B$.

We have shown every element of A / B has finite order. Since it is also finitely generated it is a finite group. Thus there is some m (the lcm of the orders of elements of $A / B)$ such that $m(A / B)$ is the trivial subgroup $\{0+B\}$ in side A / B. This shows $m A$ is a subgroup of the free abelian group B. Thus by Proposition $3.2 .22 m A$ is free abelian of rank $s \leq r$, where r is the rank of B. Applying Exercise 3.2 .21 (c) we have that A itself is free of rank s. This concludes the proof.

It is worth noting that, since $B \leq A$, Proposition 3.2 .22 says that the rank of B is at most the rank of A, so $r \leq s$. We already showed $s \leq r$, so A and B have the same rank.

The proof of the following theorem is similar to Proposition 3.1.13. Exercise 3.2.21 (a) was a special case (with $r=1$).

Proposition 3.2.24. Let A be a finitely generated abelian group. and let $\varphi: A \longrightarrow$ \mathbb{Z}^{r} be a surjective homomorphism with kernel K. There exists a subgroup $B \leq A$ such that φ restricted to B is an isomorphism. Furthermore $A=K \times B$ (We use $=$ rather than \cong because A is the internal direct product of two subgroups).

Proof. Let $b_{1}, \ldots, b_{r} \in A$ map to the elements e_{i} of \mathbb{Z}^{r}. Let $B=\left\langle b_{1}, \ldots, b_{r}\right\rangle=$ $\left\{m_{1} b_{1}+\cdots+m_{r} b_{r}: m+i \in \mathbb{Z}\right\}$. We know that the b_{i} are independent, because their images in \mathbb{Z}^{r} are independent. In other words, since φ is a homomorphism, $\sum_{i=1}^{r} m_{i} b_{i}=0$ would imply that $\sum_{i=1}^{r} m_{i} e_{i}=0$. The latter is only true if all m_{i} are zero. Thus $\left.\varphi\right|_{B}$ is injective. Furthermore $\varphi: B \longrightarrow \mathbb{Z}^{r}$ is surjective since the e_{i} are in the image and they generate \mathbb{Z}^{r}. Thus $\left.\varphi\right|_{B}$ is an isomorphism.

The conclusion that now follows from Proposition 3.1.13, but we will prove it directly by using Corollary 3.1.6. The argument above shows that $K \cap B=\{0\}$. We will show $K+B=A$, which gives $A \cong K \times B$

Let $a \in A$ and let $\varphi(a)=\sum_{i=1}^{r} m_{i} e_{i}$. Let $b=\sum_{i=1}^{r} m_{i} b_{i}$ and consider $a-b$. It is easy to see that $\varphi(a-b)=0$ so $a-b=k$ for some $k \in K$. Thus $a \in K+B$. Since a was arbitrary $A=K+B$.

Theorem 3.2.25. Let A be a finitely generated abelian group. There is a unique integer $r \geq 0$ such that A has a subgroup B that is a free abelian group of rank r. For any such B, A is the internal direct product of $\operatorname{Tor}(A)$ and B. Furthermore $\operatorname{Tor}(A)$ is a finite abelian group, so it is the direct product of cyclic groups of prime power order.

Proof. Proposition 3.2 .18 shows that $A / \operatorname{Tor}(A)$ is torsion free. Proposition 3.2.23 shows that $A / \operatorname{Tor}(A)$ must then be free of some uniquely defined rank r. Proposition 3.2.24 shows that A has a subgroup B that maps isomorphically to $A / \operatorname{Tor}(A)$ and that $A=\operatorname{Tor}(A) \times B$.

Finally, we note that A is finitely generated and the quotient group A / B is isomorphic to $\operatorname{Tor}(A)$. Thus $\operatorname{Tor}(A)$ is finitely generated and a torsion group. Therefore it is finite and is classified by Theorem 3.2.14. $\operatorname{Tor}(A)$ is also finitely generated.

Exercises 3.2.26. Infinitely generated abelian groups can be more complicated than finite ones. Consider the group \mathbb{Q} / \mathbb{Z}.
(a) On a number line, sketch a region that contains exactly one element for each equivalence class of \mathbb{Q} / \mathbb{Z}.
(b) Show that for any integer n there is an element of order n in \mathbb{Q} / \mathbb{Z}.
(c) How many elements of order n are there in \mathbb{Q} / \mathbb{Z} ?
(d) Show that every element has finite order.
(e) Show that every nontrivial cyclic subgroup is generated by $\frac{1}{n}$ for some integer $n>1$.
(f) Show that \mathbb{Q} / \mathbb{Z} is not finitely generated as an abelian group.
(g) Show that \mathbb{Q} / \mathbb{Z} cannot be written as a direct product of $\langle a\rangle$ and another group H for any nonzero $a \in \mathbb{Q} / \mathbb{Z}$.

3.3 Simple Groups and the Classification of Finite Groups

In the previous section we saw that finite abelian groups have a very simple structure; they are direct products of cyclic groups, each having order a power of a prime. In this section we take steps to understand the the classification of arbitrary finite groups.

The model for classification is unique factorization of integers: Every positive integer is the product of prime numbers in a unique way. Finite abelian groups have a somewhat more complicated factorization because the constituents of the unique factorization may involve $\mathbb{Z}_{p^{r}}$ for arbitrary r. So, $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $\mathbb{Z}_{p^{2}}$ are distinct even though they have the same number of elements.

The classification of finite groups is vastly more complicated than the classification of finite abelian groups. We would like to say that every finite group is "built" from a set of groups that are analogous to the prime numbers, indivisible themselves. The "building" process is much more complicated then simply forming a direct product. As we have seen, for example, S_{3} is the semi-direct product $\mathbb{Z}_{3} \rtimes \mathbb{Z}_{2}$ (with the action of \mathbb{Z}_{2} on \mathbb{Z}_{3} being $a \mapsto-a$), while \mathbb{Z}_{6} is the direct product
$\mathbb{Z}_{3} \times \mathbb{Z}_{2}$. We will consider S_{3} as built from the groups \mathbb{Z}_{2} and \mathbb{Z}_{3}, just in a different way than \mathbb{Z}_{6} is built, so S_{3} and \mathbb{Z}_{6} have the same constituent parts, but a different pasting together of the parts.

As another example consider the quaternion group Q, which is not even a semi-direct product. We will say that it is built from 3 copies of \mathbb{Z}_{2} (as are all groups of order 8). The reasoning is this: $Q=\{ \pm 1, \pm i, \pm j, \pm k\}$ has a normal subgroup generated by i with 4 elements. The quotient $Q /\langle i\rangle$ is isomorphic to \mathbb{Z}_{2}. That normal subgroup generated by i is isomorphic to \mathbb{Z}_{4}, and has a proper normal subgroup generated by i^{2} that is isomorphic to \mathbb{Z}_{2}. The quotient $\langle i\rangle /\left\langle i^{2}\right\rangle$ is isomorphic to \mathbb{Z}_{2}. We have what is called a composition series

$$
\langle 1\rangle \triangleleft\left\langle i^{2}\right\rangle \triangleleft\langle i\rangle \triangleleft Q
$$

Each subgroup is normal in the next in the sequence. Furthermore, the quotients in this case are \mathbb{Z}_{2} at each step, and \mathbb{Z}_{2} is a group that has no normal subgroup except for the group itself and the trivial group.

Definition 3.3.1. A group G is simple when the only normal subgroups of G are $\left\langle e_{G}\right\rangle$ and G.

A composition series for a group G is a sequence of subgroups $G_{0}=\left\langle e_{G}\right\rangle, G_{1}, G_{2}, \ldots, G_{n}=G$ such that G_{i} is a normal subgroup of G_{i+1} and G_{i+1} / G_{i} is simple. The simple quotients are called composition factors of G. We will write

$$
G=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft \ldots G_{n-1} \triangleleft G_{n}=G
$$

The length of the composition series is n.
Proposition 3.3.2. The only simple finite abelian groups are \mathbb{Z}_{p} for p prime.
Proof. We have already shown that every finite abelian group is isomorphic to the direct product of cyclic groups of prime power order. But $\mathbb{Z}_{p^{r}}$ is not simple. It is contructed from r copies of \mathbb{Z}_{p}. There is in fact a unique composition series

$$
\langle 0\rangle \triangleleft\left\langle p^{r-1}\right\rangle \triangleleft\left\langle p^{r-2}\right\rangle \triangleleft \ldots\left\langle p^{2}\right\rangle \triangleleft\langle p\rangle \triangleleft\langle 1\rangle=\mathbb{Z}_{p^{r}}
$$

Here are the two big theorems on classifying finite groups. The first is essentially a uniqueness theorem about the composition factors of a group.

Theorem 3.3.3 (Jordan Holder). Suppose G has two composition series

$$
\begin{aligned}
& \left\langle e_{G}\right\rangle=G_{0} \triangleleft G_{1} \triangleleft G_{2} \triangleleft G_{3} \ldots G_{n-1} \triangleleft G_{n}=G \\
& \left\langle e_{G}\right\rangle=G_{0}^{\prime} \triangleleft G_{1}^{\prime} \triangleleft G_{2}^{\prime} \triangleleft G_{3}^{\prime} \ldots G_{m-1}^{\prime} \triangleleft G_{m}^{\prime}=G
\end{aligned}
$$

Then $m=n$ and the lists of simple groups from the two series, $G_{1} / G_{0}, \ldots, G_{n} / G_{n-1}$ and $G_{1}^{\prime} / G_{0}^{\prime}, \ldots, G_{m}^{\prime} / G_{m-1}^{\prime}$ are the same up to reordering.

The proof takes several steps and is a bit technical, so we skip it here.
The second big theorem identifies all the simple groups. It was a massive project in the late 20th century. See the Wikipedia article.
Theorem 3.3.4 (Finite Simple Groups). Every finite simple group is isomorphic to one of the following:
(1) a cyclic group of prime order, \mathbb{Z}_{p},
(2) an alternating group A_{n}, for $n \geq 5$,
(3) a group of Lie type,
(4) one of 27 "sporadic groups" (including the Tits group).

We have already shown that \mathbb{Z}_{p} is simple. In the rest of this section we get halfway through the identification of simple groups ;-) by proving that A_{n} is simple for $n \geq 5$. We start with two simple lemmas, then prove A_{5} is simple, then extend by induction to A_{n} for $n>5$.
Lemma 3.3.5. If $N \unlhd A_{n}$ for $n \geq 4$ and N contains a 3-cycle then $N=A_{n}$.
Proof. Suppose for simplicity $(1,2,3) \in N$. Let $a \in\{4, \ldots, n\}$. Conjugate with $(1,2)(3, a)$ to get another element of N.

$$
(1,2)(3, a)(1,2,3)(1,2)(3, a)=(2,1, a) \in N
$$

Now for $b \neq 1,2, a$ conjugate with $(1, a)(2, b)$

$$
(1, a)(2, b)(1, a, 2)(1, a)(2, b)=(a, 1, b) \in N
$$

Finally, the same trick can be used to give an arbitrary $(a, b, c) \in N$. We know from Exercise 2.5 .16 that the 3 -cycles generate A_{n}, so $N=A_{n}$.

Lemma 3.3.6. Let $N \unlhd A_{n}$ with $n \geq 5$. If N contains a product of two distinct transpositions then $N=A_{n}$.
Proof. Let $\sigma=\tau_{1} \tau_{2} \in N$. If τ_{1} and τ_{2} do not have disjoint support then their product is a 3 -cycle, and we can apply the last lemma. Suppose they have disjoint support, $\sigma=(a, b)(c, d)$. Since $n \geq 5$ there is another element in $\{1, \ldots, n\}$, call it x. Since N is normal, conjugating gives another element of N,

$$
\begin{aligned}
(a, b, x)((a, b)(c, d))(a, x, b) & =(x, a)(c, d) \in N, \\
((a, b)(c, d))(x, a)(c, d)) & =(a, x, b) \in N
\end{aligned}
$$

Since N has a 3 -cycle, $N=A_{n}$ by the previous lemma.

Proposition 3.3.7. A_{5} is simple.
Proof. Let N be a non-trivial normal subgroup in A_{5}. Let σ be an element of N that is not the identity and consider its signature. The possibilities are $2,2,1$ or $3,1,1$ or 5 . In the lemmas above, we have shown that if σ is a product of disjoint transpositions, or if it is a 3 -cycle, then $N=A_{n}$. Suppose the 5 -cycle $\sigma=(a, b, c, d, f)$ is in N and let $\delta=(a, b, c)$. Note that $\sigma^{-1}\left(\delta \sigma \delta^{-1}\right) \in N$ because the conjugation of σ by an element of A_{n} lands in N, and N is closed under multiplication. On the other hand,

$$
\begin{aligned}
\left(\sigma^{-1} \delta \sigma\right) \delta^{-1} & =(b, c, d)(c, b, a) \\
& =(a, d, b)
\end{aligned}
$$

This shows N contains a 3 -cycle, so $N=A_{n}$.
Theorem 3.3.8. A_{n} is simple for $n>5$.
Proof. We proceed by induction, the case $n=5$ has been established. Assume that A_{i} is simple for $i<n$; we'll prove for $i=n$. We start with several observations about $G_{i}=\left\{\sigma \in A_{n}: \sigma(i)=i\right\}$. First, G_{i} is a subgroup and $G_{i} \cong A_{n-1}$. Second, the G_{i} are all conjugate subgroups in A_{n} since $G_{i}=(1, i, 2) G_{1}(1,2, i)$ (check!). Finally, we show in the next paragraph that $A_{n}=\left\langle G_{1}, \ldots, G_{n}\right\rangle$.

Any $\sigma \in A_{n}$ can be written as a product of an even number of transpositions. Since $n \geq 5$, the product of a pair of transpositions must fix some i, and is therefore in G_{i}. For example $(1,2)(3,4) \in G_{5}$. Pairing off consecutive terms in the factorization of σ we see that σ can be written as a product of elements in the groups G_{i}. Thus $A_{n}=\left\langle G_{1}, \ldots, G_{n}\right\rangle$.

Let N be normal in A_{n} with $N \neq\{\mathrm{id}\}$. We will show that $N=A_{n}$. Suppose first that $N \cap G_{i} \neq\{\mathrm{id}\}$ for some i. By the induction hypothesis each G_{i} is simple, so $N \cap G_{i}=G_{i}$. We noted above that the G_{i} are conjugate, so for any j there is some $\pi \in A_{n}$ such that $G_{j}=\pi G_{i} \pi^{-1}$. But then

$$
\begin{aligned}
G_{j} & =\pi G_{i} \pi^{-1} \\
& =\pi\left(N \cap G_{i}\right) \pi^{-1} \\
& =\left(\pi N \pi^{-1}\right) \cap\left(\pi G_{i} \pi^{-1}\right) \\
& =N \cap G_{j}
\end{aligned}
$$

Since $N \cap G_{j}=G_{j}$ for all j and the G_{j} generate A_{n} we have $N=A_{n}$.
Suppose now that N contains an element σ whose cycle decomposition has a cycle of length at least 3 ; say $\sigma(a)=b, \sigma(b)=c$ with a, b, c distinct. Let d, f be different from a, b, c (we are using $n \geq 5$) and let $\tau=(a, d, f)$. Then
$\left(\tau \sigma \tau^{-1}\right) \sigma^{-1} \in N$ and straightforward computation shows $\tau \sigma \tau^{-1} \sigma^{-1}(c)=c$. This shows that $N \cap G_{c} \neq\{\mathrm{id}\}$ and therefore, by the previous paragraph, that $N=A_{n}$.

If N contains no element whose cycle decomposition has a cycle of length at least 3, then all elements of N are products of disjoint transpositions. Suppose σ is such a nontrivial element of N. We may assume that σ doesn't fix anything, for we have already shown this would imply $A_{n}=G$. We are assuming $n \geq 6$, so σ has at least 3 transpositions $\sigma=(a, b)(c, d)(f, g) \cdots$. Conjugate by $\tau=(a, b)(c, f)$ and multiply by σ^{-1} and we have $\left(\tau \sigma \tau^{-1}\right) \sigma^{-1} \in N$ and $\tau \sigma \tau^{-1} \sigma^{-1}(b)=b$. As above this implies that $N=A_{n}$.

Thus for $n \geq 5$, any normal subgroup of A_{n} is either trivial or A_{n} itself.
Exercises 3.3.9. This problem fleshes out some details in the proof of Theorem 3.3.8: A_{n} is simple for $n>\geq 5$.
(a) Within the alternating group A_{n} for each $i=1, \ldots, n$, let $G_{i}=\left\{\sigma \in A_{n}: \sigma(i)=i\right\}$. Show that G_{i} is a subgroup of A_{n}.
(b) Find a $\pi \in A_{n}$ such that each $G_{i}=\pi G_{j} \pi^{-1}$.
(c) Justify the statement in the fourth paragraph of the proof of 3.3.8 "Then $\left(\tau \sigma \tau^{-1}\right) \sigma^{-1} \in N$ and straightforward computation shows $\tau \sigma \tau^{-1} \sigma^{-1}(c)=c$."
(d) Justify the statement in the fifth paragraph of the proof of 3.3.8 " $\left(\tau \sigma \tau^{-1}\right) \sigma^{-1} \in$ N and $\tau \sigma \tau^{-1} \sigma^{-1}(b)=b$."

Chapter 4

Rings

4.1 Rings

Definition 4.1.1. A ring is a set R, with two operations + and $*$ that satisfy the following properties.
(1) + and $*$ are both associative. That is $(a+b)+c=a+(b+c)$ and $a *(b * c)=$ $(a * b) * c$.
(2) + and $*$ are both commutative. That is $a+b=b+a$ and $a * b=b * a$.
(3) + and $*$ both have identity elements. There is some element in R, that we call 0 , such that $a+0=a$, and there is an element, that we call 1 , such that $a * 1=a$.
(4) + admits inverses. That is, for each $a \in R$ there is some other element, that we write $-a$, such that $a+(-a)=0$.
(5) $*$ distributes over + . That is $a *(b+c)=a * b+a * c$.

A few comments are in order. Strictly speaking, the definition above is for a commutative ring with identity. The modifier "commutative" is referring to commutativity of multiplication, and "with identity" is referring to the multiplicative identity. There is a rich study of rings where multiplication is noncommutative (for example the ring of $n \times n$ matrices over \mathbb{R}, see Section 4.3), but treating the subject would spread our efforts too thinly. A ring for us is assumed to be commutative and have an identity.

One may also say that a ring R is a commutative group under + and that $R^{*}=R \backslash\{0\}$ is a commutative monoid (look it up!) under *, with the additional property that $*$ distributes over + .

One can show by induction that a sum of several terms (or a product of several terms) may be computed in any order and that $r *\left(a_{1}+a_{2}+\cdots+a_{n}\right)=r * a_{1}+$ $r * a_{2}+\cdots+r * a_{n}$.

There are a bunch of little results one should verify. Since any $\operatorname{ring} R$ is a group under + we already know that the additive identity 0 is unique and that the additive inverse of $r \in R$ is unique (we write it as $-r$). We know that $-(-r)=r$ and that for $s \in R,-(r+s)=(-r)+(-s)$ (using commutativity of +). Additionally we have the following properties. Proofs are left as an exercise.

Proposition 4.1.2. Let R be a ring and $r, s \in R$
(1) For an integer m, we can make sense of $m r$ via

$$
(\underbrace{1+1+\cdots+1}_{m \text { terms }}) * r=\underbrace{r+r+\cdots+r}_{m \text { terms }}
$$

(2) For any $r \in R, r * 0=0$.
(3) The multiplicative identity element 1 is unique.
(4) The additive inverse and multiplication operate as expected.

- $r *(-s)=-(r * s)$
- $(-r) *(-s)=r * s$

We haven't excluded the possibility that $1=0$. In this case for any $r \in R$, $r=r * 1=r * 0=0$. Thus we have a unique situation, a ring that has just one element. We call it the trivial ring.

We will write the product without the multiplication symbol when there is no concern about ambiguity, that is $r s$ instead of $r * s$. But for clarity and emphasis on the basic properties of a ring, we will continue to explicitly show the product symbol in this section.

There are three special types of elements in a ring, and, based on their existence or not, three special types of rings.

Definition 4.1.3. An element u of a ring R is a unit when there is another element v such that $u * v=1$. An element a of a ring R is a zero-divisor when $a \neq 0$ and there is some $b \neq 0$ in R such that $a * b=0$. An element a of a ring R is nilpotent when $a \neq 0$ and there exists some positive integer n such that $a^{n}=0$.

Definition 4.1.4. A field is a nontrivial ring in which every nonzero element is a unit. An integral domain is a nontrivial ring that has no zero-divisors. A nontrivial ring is reduced if it has no nilpotent elements.

Exercises 4.1.5. Prove the results in Proposition 4.1.2, and in addition prove the following.
(a) The inverse of a unit is unique.
(b) The inverse of a unit is also a unit.
(c) A unit cannot be a zero divisor.
(d) A nilpotent element is a zero-divisor.

Exercises 4.1.6.

(a) Let R be an integral domain that is finite. Show that R is a field. (For a nonzero $a \in R$, consider the function $R \longrightarrow R$ that takes r to $a * r$.)

The Integers and $F[x]$ for F a Field

We can now fully appreciate the integers \mathbb{Z}, having ignored multiplication when we studied the integers as a group. The integers, the number system we learn in elementary school, form the first example of a ring. One of the key properties of the integers (used in solving a quadratic equation!) is that $a b=0$ implies $a=0$ or $b=0$. In terms defined above, \mathbb{Z} has no zero-divisors, so it is an integral domain.

Let us now turn to modular arithmetic, which we introduced in Section 1.1. We will use $[a]_{n}$ for the equivalence class of a modulo n and we will omit the subscript n when the modulus is obvious. The following expands on Exercise 1.3.9

Theorem 4.1.7 (Units, Zero Divisors in \mathbb{Z} / n). Let $n \geq 2$ be an integer and let a be an integer.
(1) $[a]_{n}$ is a unit iff $\operatorname{gcd}(a, n)=1$.
(2) $[a]_{n}$ is a zero divisor iff $1<\operatorname{gcd}(a, n)<n$.

In particular, an element of \mathbb{Z} / n is either 0 , or a unit, or a zero-divisor, and these are mutually exclusive.

Proof. Let $d=\operatorname{gcd}(a, n)$. There are three mutually exclusive cases, $d=1, d=n$ and $1<d<n$.

If $d=1$ then, by the GCD Theorem 1.1.2 there are integers u, v such that $u a+v n=1$. Reducing modulo n we have

$$
\begin{aligned}
{[u]_{n} *[a]_{n}+[v]_{n} *[n]_{n} } & =[1]_{n} \\
{[u]_{n} *[a]_{n} } & =[1]_{n}
\end{aligned}
$$

so $[u]_{n}$ is the multiplicative inverse of $[a]_{n}$ and $[a]_{n}$ is a unit in \mathbb{Z} / n.
If $d=n$, then $[a]_{n}=[0]_{n}$.

If $1<d<n$ then $a=d b$ and $n=d c$ for some integers b and c with $c<n$. Then $[c]_{n} *[a]_{n}=[c]_{n} *[d b]_{n}=[c d]_{n} *[b]_{b}=[n]_{n} *[b]_{n}=[0]_{n}$. But $[a]_{n} \neq[0]_{n}$ and, since $c<n,[c]_{n} \neq[0]_{n}$. Thus $[a]_{n}$ is a zero divisor.

We are particularly interested in the following special case, to which we will return in depth later.

Corollary 4.1.8. Let p be a prime number. Then \mathbb{Z} / p is a field; every nonzero element has an inverse.

When working with the integers modulo a prime we usually use the notation \mathbb{F}_{p} instead of \mathbb{Z} / p to emphasize that we have a field.

A general theme emphasized in these notes is the similarity between the integers and a polynomial ring over a field $F[x]$. We have similar results when working modulo a polynomial as we did for modular arithmetic.

Theorem 4.1.9 (Units, Zero Divisors in $F[x] / m(x))$. Let F be a field and let $m(x)$ be a polyomial of degree $\delta>0$. Let $a(x) \in F(x)$ and let $[a(x)]$ be its congruence class modulo $m(x)$.
(1) $[a(x)]$ is a unit iff $\operatorname{gcd}(a(x), m(x))=1$.
(2) $[a(x)]$ is a zero divisor iff $\operatorname{gcd}(a(x), m(x))$ has degree greater than 0 and less than d.

In particular, an element of $F[x] / m(x)$ is either 0 , or a unit, or a zero-divisor, and these are mutually exclusive.

Proof. Let $d(x)=\operatorname{gcd}(a(x), m(x))$. There are three mutually exclusive cases, $d(x)=1, d(x)=m(x)$ and $0<\operatorname{deg}(d(x))<\operatorname{deg}(m(x))$. These lead to $[a(x)]$ a unit, $[a(x)]=[0]$ and $[a(x)]$ a zero divisor, respectively. The proof for each case is entirely similar to that for the integers.

As with the integers, the following case is of special interest and we will return to it in depth later.

Corollary 4.1.10. Let $m(x)$ be an irreducible polynomial in $F[x]$ for F a field. Then every nonzero element in $F[x] / m(x)$ has an inverse, so $F[x] / m(x)$ is a field. Conversely, if $m(x)$ is reducible, $F[x] / m(x)$ is not even an integral domain.

Exercises 4.1.11.

(a) Find the nilpotent elements of $\mathbb{Z} / 8$, of $\mathbb{Z} / 12$, and of $\mathbb{Z} / 30$.
(b) Under what conditions on n does \mathbb{Z} / n have nilpotent elements?
(c) Identify the nilpotent elements of \mathbb{Z} / n using the unique factorization of n.
(d) Let F be a field and $m(x) \in F[x]$. Under what conditions on $m(x)$ does $F[x] / m(x)$ have nilpotent elements? Identify the nilpotents $a(x) \in F[x] / m(x)$ using unique factorization into irreducibles of $m(x)$ and $a(x)$.

4.2 Homomorphisms

Definition 4.2.1. Let R be a ring. A subset $T \subseteq R$ is a subring of R when T is an additive subgroup of R, T is closed under multiplication, and T contains 1_{R}.

Example 4.2.2. The ring of integers \mathbb{Z} is a subring of \mathbb{Q}. The rings \mathbb{Z} / n have no subrings because of the requirement that the unitary element, 1 , be contained in a subring. Adding 1 to itself will give all of \mathbb{Z}_{n}.

The polynomial ring $F[x]$ for F a field has many subrings: F itself, any subring of F, and subrings generated by a polynomial. For example $F\left[x^{2}\right]$ would be all polynomials in which each term has even degree. One can check that it is indeed a ring.

Exercises 4.2.3. Suppose R, S are subrings of a ring T.
(a) Show that $R \cap S$ is also a subring of T.
(b) If R and S are integral domains, show that $R \cap S$ is also an integral domain.
(c) If R and S are fields, show that $R \cap S$ is also a field.
(d) More generally, show that for any subset A of T, that the intersection of all rings containing A is a subring of T.
(e) Similarly, show that for any subset A of T, that the intersection of all fields containing A is a subring of T.
(f) Give an example to show that $R \cup S$ may not be a ring.

Definition 4.2.4. Let R, S be rings. A funtion $\varphi: R \longrightarrow S$ is a ring homomorphism when
(1) φ is a homomorphism of the additive groups $R,+_{R}$ and $S,+_{S}$, and
(2) $\varphi\left(1_{R}\right)=1_{S}$, and
(3) for $r_{1}, r_{2} \in R$,

$$
\varphi\left(r_{1} *_{R} r_{2}\right)=\varphi\left(r_{1}\right) *_{S} \varphi\left(r_{2}\right)
$$

Notice that the operation on the left-hand side is in R and the operation $*$ on the right-hand side is in S. When we want to be careful we specify the ring for the
operation as we did here, but generally this is left to the reader to infer. We say φ respects addition, multiplication and the identity element. That is, it respects the ring structure. Recall from group theory that it is sufficient to check that a function φ respects the group operation to ensure that φ is a homomorphism. Thus to check if $\varphi: R \longrightarrow S$ is a ring homomorphism one verifies that $\varphi\left(1_{R}\right)=1_{S}$, $\varphi\left(r_{1}+_{R} r_{2}\right)=\varphi\left(r_{1}\right)+_{S} \varphi\left(r_{2}\right)$, and $\varphi\left(r_{1} *_{R} r_{2}\right)=\varphi\left(r_{1}\right) *_{S} \varphi\left(r_{2}\right)$.

If S is a subring of R then there is a homomorphism, the inclusion homomorphism, from S to R.
Proposition 4.2.5. Let R, S, T be rings. If $\varphi: R \longrightarrow S$ and $\theta: S \longrightarrow T$ are ring homomorphisms then the composition $\theta \circ \varphi$ is also a ring homomorphism.

The proof is left as an exercise.
Definition 4.2.6. The kernel of a ring homomorphism $\varphi: R \longrightarrow S$ is the preimage of 0_{S}; that is $\left\{r \in R: \varphi(r)=0_{S}\right\}$. A homomorphism that is injective is called an embedding. A homomorphism that is a bijection (injective and surjective) is called an isomorphism.

From group theory we know that the kernel is a normal subgroup (since addition in rings is commutative any subgroup is normal). The kernel has an additional important property, which is item (3) in the following theorem.
Theorem 4.2.7. Let $\varphi: R \longrightarrow S$ be a homomorphism of rings and let K be the kernel.
(1) The image of R is a subring of S.
(2) φ is injective if and only if $K=\left\{0_{R}\right\}$.
(3) For any $r \in R$ and any $k \in K, r k \in K$.

Proof. We know that $\varphi(R)$ is a subgroup of S. From the requirement that $\varphi\left(1_{R}\right)=$ 1_{S} we have $1_{S} \in \varphi(R)$. To show that $\varphi(R)$ is closed under multiplication, let $\varphi\left(r_{1}\right)$ and $\varphi\left(r_{2}\right)$ be arbitrary elements of $\varphi(R)$. Then $\varphi\left(r_{1}\right) *_{S} \varphi\left(r_{2}\right)=\varphi\left(r_{1} *_{R} r_{2}\right)$, and this is in $\varphi(R)$.

For the properties of the kernel, note first that if φ is injective there can only be one element that maps to 0_{S}, and that is 0_{R}. Conversely, suppose $K=\left\{0_{R}\right\}$, and suppose $\varphi(r)=\varphi\left(r^{\prime}\right)$. Then $\varphi\left(r-r^{\prime}\right)=\varphi(r)-\varphi\left(r^{\prime}\right)=0_{S}$. Since the kernel is trivial, $r-r^{\prime}=0_{R}$ so $r=r^{\prime}$. This establishes injectivity.

Let $k \in K$ and $r \in R$. We have

$$
\varphi\left(r *_{R} k\right)=\varphi(r) *_{S} \varphi(k)=\varphi(r) *_{S} 0_{S}=0_{S}
$$

Thus $r *_{R} k \in K$.

As with isomorphisms of groups, the isomorphisms between rings set up an equivalence relation. Every ring is clearly isomorphic to itself via the identity map. The following theorem establishes symmetry and transitivity.

Theorem 4.2.8. If $\varphi: R \longrightarrow S$ is an isomorphism then φ^{-1} is also an isomorphism. The composition of two isomorphisms is an isomorphism.
Proof. Let $\varphi: R \longrightarrow S$ be an isomorphism of rings. Then φ is a bijection, so φ^{-1} is also a bijection from S to R. We must show it is a homomorphism. Since φ is a homomorphism, $\varphi\left(1_{R}\right)=1_{S}$ and therefore $\varphi^{-1}\left(1_{S}\right)=1_{R}$ (since φ is injective, this is the sole preimage).

To show φ^{-1} respects addition and multiplication, let s, s^{\prime} be arbitrary elements of S. Since φ is a bijection, there are unique $r, r^{\prime} \in R$ such that $\varphi(r)=s$ and $\varphi\left(r^{\prime}\right)=s^{\prime}$.

$$
\begin{aligned}
\varphi^{-1}\left(s *_{S} s^{\prime}\right) & =\varphi^{-1}\left(\varphi(r) *_{S} \varphi\left(r^{\prime}\right)\right) \\
& =\varphi^{-1}\left(\varphi\left(r *_{R} r^{\prime}\right)\right) \\
& =r *_{R} r^{\prime} \\
& =\varphi^{-1}(s) *_{R} \varphi^{-1}\left(s^{\prime}\right)
\end{aligned}
$$

This shows φ^{-1} respects multiplication. A completely analogous proof is used for addition.

Definition 4.2.9. Two rings R, S are isomorphic if there is an isomorphism from R to S (and therefore, by the theorem, also an isomorphism from S to R).

Exercises 4.2.10. Let $\varphi: R \longrightarrow S$ be a ring homomorphism.
(a) Show that for any subring R^{\prime} in R, the image $\varphi\left(R^{\prime}\right)$ is a subring of S.
(b) Show that any subring S^{\prime} of S, the preimage $\varphi^{-1}\left(S^{\prime}\right)$ is a subring of R.

The Integers and $F[x]$ for F a Field

The following theorem shows that the Integers are the "original (or initial) ring."
Theorem 4.2.11 (The Initial Ring). For any ring R there is a unique homomorphism from \mathbb{Z} to R. The kernel is the set of multiples of some integer m. If $m=0$ then R has a subring isomorphic to \mathbb{Z}. If $m>0$, there is an isomorphism of \mathbb{Z} / m with a subring of R.

Proof. A homomorphism $\varphi: \mathbb{Z} \longrightarrow R$, if it exists, would have to take $1_{\mathbb{Z}}$ to 1_{R}. Applying the requirement that a homomorphism respects addition we see
inductively that we must have, for $m>0$,

$$
\varphi(m)=\varphi(\underbrace{1_{\mathbb{Z}}+\cdots+1_{\mathbb{Z}}}_{m \text { terms }})=\underbrace{1_{R}+\cdots+1_{R}}_{m \text { terms }}=m 1_{R}
$$

We also must have $\varphi(-m)=-\varphi(m)$. Thus, there is at most one way to define a homomorphism from \mathbb{Z} to R. This function respects addition:

$$
\begin{aligned}
\varphi(m+n) & =(m+n) 1_{R} \\
& =\underbrace{1_{R}+1_{R}+\cdots+1_{R}}_{m+n \text { terms }} \\
& =\underbrace{1_{R}+\cdots+1_{R}}_{m \text { terms }}+\underbrace{1_{R}+\cdots+1_{R}}_{n \text { terms }} \\
& =m 1_{R}+n 1_{R} \\
& =\varphi(m)+\varphi(n)
\end{aligned}
$$

It also respects multiplication:

$$
\begin{aligned}
\varphi(m n) & =m n 1_{R} \\
& =\varphi(\underbrace{1_{R}+1_{R}+\cdots+1_{R}}_{m n \text { terms }}) \\
& =(\underbrace{1_{R}+\cdots+1_{R}}_{m \text { terms }}) *_{R}(\underbrace{1_{R}+\cdots+1_{R}}_{n \text { terms }}) \\
& =\left(m 1_{R}\right) *\left(n 1_{R}\right) \\
& =\varphi(m) *_{R} \varphi(n)
\end{aligned}
$$

If m generates the kernel the first isomorphism theorem for groups says that \mathbb{Z} / m is isomorphic to a subgroup of R. Since multiplication is just repeated addition, this is also an isomorphism of rings.

The integer m in the theorem is called the characteristic of R.
The Arithmetic Mod n Theorem shows that the function taking $a \in \mathbb{Z}$ to $[a]_{n} \in \mathbb{Z} / n$ is a homomorphism. We actually define addition and multiplication in \mathbb{Z} / n via addition and multiplication in \mathbb{Z}, so it is an immediate consequence that the map is a homomorphism.

If d divides m there is a well-defined function from $[a]_{m}$ to $[a]_{d}$ - this is because $d \mid m$ and $m \mid(b-a)$ implies $d \mid(b-a)$-so any two integers that are congruent modulo m are also congruent modulo d. On the other hand if $d \backslash m$, there is no well-defined function from \mathbb{Z} / m to \mathbb{Z} / d. Since the arithmetic on \mathbb{Z} / m is "inherited" from \mathbb{Z}, we have:

Theorem 4.2.12 (Homomorphism $\bmod m$). The function $\mathbb{Z} \longrightarrow \mathbb{Z} / n$ taking a to $[a]_{n}$ is a homomorphism.

There is a homomorphism from \mathbb{Z} / m to \mathbb{Z} / d iff d divides m. The homomomorphism is unique (since it takes $[1]_{m}$ to $[1]_{d}$).

We have a similar result for polynomial rings.
Theorem 4.2.13 (Homomorphism $\bmod m(x))$. Let F be a field and $m(x) \in F[x]$ The function $F[x] \longrightarrow F[x] / m(x)$ taking $a(x)$ to its equivalence class $[a(x)]$ is a homomorphism.

There is a homomorphism from $F[x] / m(x)$ to $F[x] / r(x)$ iff $r(x)$ divides $m(x)$.

4.3 Constructions

In this section we introduce three ways to construct new rings: using direct products, using an indeterminate to create a polynomial ring, and using matrices to create a noncommutative ring.

Direct Products

In Section 2.4 we showed that the Cartesian product of groups has the structure of a group. Not surprisingly, we have the same situation with rings, but there is one subtle difference, discussed below.

Definition 4.3.1. Let R and S be rings. The Cartesian product $R \times S$, along with the operations below form the direct product of R and S.

$$
\begin{aligned}
-(r, s) & =(-r,-s) \\
\left(r_{1}, s_{1}\right)+_{R \times S}\left(r_{2}, s_{2}\right) & =\left(r_{1}+_{R} r_{2}, s_{1}+_{S} s_{2}\right) \\
\left(r_{1}, s_{1}\right) *_{R \times S}\left(r_{2}, s_{2}\right) & =\left(r_{1} *_{R} r_{2}, s_{1} *_{S} s_{2}\right)
\end{aligned}
$$

The additive identity and multiplicative identies are of course $\left(0_{R}, 0_{S}\right)$ and $\left(1_{R}, 1_{S}\right)$. The following proposition shows that the direct product of rings is in fact a ring and gives other important properties.

Proposition 4.3.2 (Direct Product). Let R and S be rings.
(1) The above definition does, indeed, make $R \times S$ a ring.
(2) The associative law for products of several rings holds: $R_{1} \times\left(R_{2} \times R_{3}\right) \cong$ $\left(R_{1} \times R_{2}\right) \times R_{3}$.
(3) If R^{\prime} is a subring of R and S^{\prime} is a subring of S then $R^{\prime} \times S^{\prime}$ is a subring of $R \times S$.
(4) The projection maps $p_{R}: R \times S \longrightarrow R$ and $p_{S}: R \times S \longrightarrow S$ are surjective homomorphisms.
(5) The construction and the observations above can be generalized to the direct product of any set of rings $\left\{R_{i}: i \in I\right\}$ indexed by a finite set I. (It extends with some modification due to subtle issues when I is infinite.)

The subtle difference between the product of groups and the product of rings is that there does not exist a natural homomorphism $R \longrightarrow R \times S$. The choice that one might expect would be to send r to $(r, 0)$ but this violates the requirement that the multiplicative identity on R should map to the multiplicative identity on $R \times S$.

Exercises 4.3.3. Let R and S be rings and consider $R \times S$.
(a) Identify all the units in $R \times S$.
(b) Identify all of the zero-divisors in $R \times S$.

Exercises 4.3.4. An element e in a ring R is idempotent when $a^{2}=a$. Evidently, both 0_{R} and 1_{R} are idempotents. If R and S are rings, then $R \times S$ has two additional idempotents $(1,0)$ and $(0,1)$.
(a) let R be a ring with an idempotent e.
(1) Prove that the set $R e=\{r e: r \in R\}$ with the operations inherited from R has the structure of a ring, with identity e.
(2) Prove that $(1-e)$ is also an idempotent in R.
(3) Prove that every element in R may be uniquely expressed as the sum of an element in $R e$ and an element in $R(1-e)$.
(b) Find the idempotents in $\mathbb{Z} / 12$ and comment on the decomposition above.
(c) Find the idempotents in $\mathbb{Z} / 30$ and comment on the decomposition above.

Polynomial Rings

We have already discussed polynomial rings that have coefficients in a field, such as $\mathbb{Q}[x], \mathbb{F}_{p}[x]$. The construction generalizes to any ring. For R a ring, the polynomial ring $R[x]$ is the set of elements of the form

$$
a_{o}+a_{a} x+a_{2} x^{2}+\cdots+a_{\delta} x^{\delta}
$$

with the $a_{i} \in R$. The sum of two elements and product of two elements are familiar formulas. For example,

$$
\begin{aligned}
& \left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)+\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}\right) \\
& \quad=\left(a_{0}+b_{0}\right)+\left(a_{1}+b_{1}\right) x+\left(a_{2}+b_{2}\right) x^{2}+\left(a_{3}+b_{3}\right) x^{3} \\
& \left(a_{0}+a_{1} x+a_{2} x^{2}\right)\left(b_{0}+b_{1} x+b_{2} x^{2}\right) \\
& \quad=a_{0} b_{0}+\left(a_{1} b_{0}+a_{0} b_{1}\right) x+\left(a_{2} b_{0}+a_{1} b_{1}+a_{0} b_{2}\right) x^{2}
\end{aligned}
$$

Some care is in order to stipulate that, for example, $a_{0}+a_{1} x=a_{0}+a_{1} x+0 x^{2}$. I'll introduce the following formal definition, but your instincts should be your guide.

Definition 4.3.5. Let R be a ring. A polynomial in x over R is a sum $a(x)=$ $\sum_{i=0}^{\infty} a_{i} x^{i}$ in which only a finite number of the a_{i} are nonzero. The support of $a(x)$ is the set of powers of x for the nonzero terms $\left\{x^{i}: a_{i} \neq 0\right\}$, or depending on the context, the indices of those terms, $\left\{i: a_{i} \neq 0\right\}$. For $a(x)$ nonzero, the degree is the maximal index with a nonzero term, $\operatorname{deg}(a(x))=\max _{i \in \mathbb{N} \geq 0}\left\{i: a_{i} \neq 0\right\}$. We set the degree of the 0 polynomial to be $-\infty$.

The polynomial ring over R with indeterminate x is the set of all polynomials.

$$
\left\{\sum_{i=0}^{\infty} a_{i} x^{i}: a_{i} \in R, \text { and }\left\{i: a_{i} \neq 0\right\} \text { is finite }\right\}
$$

The additive inverse of $\sum_{i=0}^{\infty} a_{i} x^{i}$ is $\sum_{i=0}^{\infty}\left(-a_{i}\right) x^{i}$. The sum is defined by

$$
\sum_{i=0}^{\infty} a_{i} x^{i}+\sum_{i=0}^{\infty} b_{i} x^{i}=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}
$$

and the product is defined by $\left(a x^{i}\right) *\left(b x^{j}\right)=a b x^{i+j}$ and applying distributivity. Consequently,

$$
\left(\sum_{i=0}^{\infty} a_{i} x^{i}\right)\left(\sum_{j=0}^{\infty} b_{j} x^{j}\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i} b_{j} x^{i+j}
$$

and we can rearrange the sum using $k=i+j$ and gathering terms in x^{k},

$$
=\sum_{k} x^{k} \sum_{i=0}^{k}\left(a_{i} b_{k-i}\right)
$$

As an aside, if we don't require the support to be finite we still get a valid ring, which is called the ring of formal power series.

One should check that all the properties of a ring hold, a somewhat tedious exercise that one should, on principle, do once.

Proposition 4.3.6. For any ring R and $a(x), b(x) \in R$,

$$
\operatorname{deg}(a(x) b(x)) \leq \operatorname{deg}(a(x))+\operatorname{deg}(b(x))
$$

If R is an integral domain then equality holds, the degree of a product of polynomials is the sum of the degrees of the factors:

$$
\operatorname{deg}(a(x) b(x))=\operatorname{deg}(a(x))+\operatorname{deg}(b(x))
$$

In particular, if R is an integral domain, then $R[x]$ is also an integral domain.
Proof. Let $\gamma=\operatorname{deg}(a(x))$ and $\delta=\operatorname{deg}(b(x))$. From the formula for the product the degree k term in $a(x) b(x)$ is $\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right)$. When $k>\gamma+\delta$, the k th term will be 0 because for $i>\gamma, a_{i}=0$, and for $i \leq \gamma, k-i>\delta$ so $b_{k-i}=0$. For $k=\gamma+\delta$ the k th term in the product is $a_{\gamma} b_{\delta}$. This may be 0 in a ring with zero-divisors, hence the degree of a product may be less than the sum of the degrees of the factors in a general ring.

In an integral domain, $a_{\gamma} b_{\delta} \neq 0$ since we assume a_{γ} and b_{δ} are nonzero. In particular, a product of nonzero polynomials over an integral domain cannot be zero. This proves the proposition.

The key lemma (1.3.1) that was used to prove the Quotient Remainder Theorem 1.3.2) in $F[x]$ does not apply over an arbitrary ring.

Exercises 4.3.7.

(a) Give an example of two polynomials of degree 2 in $\mathbb{Z} / 8[x]$ such that their product has degree 1 . Show that this is not possible in $\mathbb{Z} / 4[x]$ and $\mathbb{Z} / 6[x]$.
(b) Give an example to show the analogue of Lemma 1.3.1 does not hold in the polynomial ring over $\mathbb{Z} / 4$.
Here is an additional result about polynomial rings that will be useful. It is similar to The Initial Ring Theorem 4.2.11 for the integers.
Theorem 4.3.8 (Universal property of polynomial rings). Let R, S be rings and let $\varphi: R \longrightarrow S$ be a ring homomorphism. For any $s \in S$ there is a unique homomorphism from $R[x]$ to S that agrees with φ on R and takes x to s, namely

$$
\begin{aligned}
\bar{\varphi}: R[x] & \longrightarrow S \\
\left(\sum_{i} r_{i} x^{i}\right) & \longmapsto \sum_{i} \varphi\left(r_{i}\right) s^{i}
\end{aligned}
$$

Proof. If there is a homomorphism $\bar{\varphi}$ taking x to s and agreeing with φ on R then we must have

$$
\bar{\varphi}\left(\sum_{i} r_{i} x^{i}\right)=\sum_{i} \bar{\varphi}\left(r_{i} x^{i}\right)=\sum_{i} \bar{\varphi}\left(r_{i}\right) \bar{\varphi}(x)^{i}=\sum_{i} \varphi\left(r_{i}\right) s^{i}
$$

So there is only one possible way to define $\bar{\varphi}$. The key observation is that $\bar{\varphi}$ is well defined because there is a unique way to write each element of $R[x]$ and we have used this unique formulation to define $\bar{\varphi}$. We also note that the sums are all finite sums.

To show this function is indeed a homomorphism we check that it respects the operations. Here we check just products. As we saw above commutativity, associativity and distributivity in the polynomial ring give

$$
\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{j} r_{j} x^{j}\right)=\sum_{k} x^{k} \sum_{i=0}^{k}\left(a_{i} r_{k-i}\right)
$$

A similar derivation shows that for $b_{i}, t_{i} \in S$

$$
\left(\sum_{i} b_{i} s^{i}\right)\left(\sum_{i} t_{i} s^{i}\right)=\sum_{k} s^{k} \sum_{i=0}^{k}\left(b_{i} t_{k-i}\right)
$$

Thus we have

$$
\begin{aligned}
\bar{\varphi}\left(\left(\sum_{i} a_{i} x^{i}\right)\left(\sum_{i} b_{i} x^{i}\right)\right) & =\bar{\varphi}\left(\sum_{k} x^{k}\left(\sum_{i=0}^{k} a_{i} b_{k-i}\right)\right) \\
& =\sum_{k} s^{k}\left(\sum_{i=0}^{k} \varphi\left(a_{i} b_{k-i}\right)\right) \\
& =\left(\sum_{i} \varphi\left(a_{i}\right) s^{i}\right)\left(\sum_{j} \varphi\left(b_{j}\right) s^{j}\right) \\
& =\bar{\varphi}\left(\sum_{i} a_{i} x^{i}\right) \bar{\varphi}\left(\sum_{i} b_{i} x^{i}\right)
\end{aligned}
$$

This shows $\bar{\varphi}$ respects products.
In the first encounter a student has with polynomials they are treated as functions. For a polynomial over \mathbb{Q}, one substitutes a rational number for x and computes a rational number as output. Up to this point we have treated polynomials algebraically by adding and multiplying. The previous theorem has applications in which we treat polynomials as functions.

Exercises 4.3.9.

(a) Consider $R=S=\mathbb{Q}$ and $s=0$. Explain how to apply the theorem to show that evaluating all polynomials in $\mathbb{Q}[x]$ at 0 yields a homomorphism from $\mathbb{Q}[x]$ to \mathbb{Q}.
(b) More generally, apply the theorem to the situation where $S=R$ and s is some particular element of R. Interpret the theorem for this situation as saying that "evaluating at a fixed $s \in R$ " is a homomorphism.
(c) Let's apply the theorem to the situation where $S=R[x]$ and the particular element $s(x) \in R[x]$. The theorem says that there is a homomorphism

$$
\begin{aligned}
\varphi: R[x] & \longrightarrow R[x] \\
x & \longrightarrow s(x)
\end{aligned}
$$

Show that an arbitrary $f(x) \in R[x]$ maps to $f(s(x))$. Show that, as a function this is the composition of the function defined by $f(x)$ and the function defined by $s(x)$.

By iteratively applying the polynomial ring construction we can create a polynomial ring in several indeterminates over a ring R.

Definition 4.3.10. The polynomial ring over the ring R in indeterminates $x_{1}, x_{2}, \ldots, x_{n}$, which we write as $R\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]$, is defined inductively as $R\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]$. An element $x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$ is called a monomial. We will say that ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$) is the multidegree of this monomial. The elements of $R\left[x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right]$ are finite sums of terms of the form $a x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \cdots x_{n}^{\alpha_{n}}$.

This has the following important property.
Theorem 4.3.11 (Universal property of polynomial rings). Let R, S be rings and let $\varphi: R \longrightarrow S$ be a ring homomorphism. For any $s_{1}, \ldots, s_{n} \in S$ there is a unique homomorphism from $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ to S that agrees with φ on R and takes x_{i} to s_{i}.

Matrix Rings

Although we are focusing on rings that are commutative, and moreover, have defined a ring to be commutative, it is worth presenting one very important example of a noncommutative ring.

Definition 4.3.12. Let R be a ring and let n be a positive integer. The $n \times n$ matrix ring over R, written $M_{n}(R)$, is the set of $n \times n$ matrices using the usual formulas for addition and multiplication.

Even for a field, the matrix ring is noncommutative, as you may recall from your experience with linear algebra.

Exercises 4.3.13. Consider $M_{2}(\mathbb{Q})$ and recall the various spaces associated to a matrix (e.g. rowspace, nullspace).
(a) Show that $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$ is a zero divisor in $M_{2}(\mathbb{Q})$. Find a B such that $A B=0$ (the zero matrix). Find a C such that $C A=0$.
(b) What characterizes the zero divisors in $M_{2}(\mathbb{Q})$?
(c) Show that every nonzero element of $M_{2}(\mathbb{Q})$ (or more broadly $M_{n}(F)$ for F a field) is either a zero divisor or a unit.

In linear algebra, matrices over a field arise as functions that map one vector space to another. A square matrix maps a vector space to itself. Matrices over a ring can also be treated as functions: an $m \times n$ matrix over R maps a "vector" of length n over R to a "vector" of length m over R, using the familiar formulas for the product of a matrix and vector. I put vector in quotes because R^{n} is not a vector space when R is not a field. Yet, R^{n}, with rules for addition and scalar multiplication analogous to those for vector spaces, is an interesting object to study. Modules over a ring are the generalization of vector spaces. The subject is a bit more complex because not every nonzero element is a unit, and, even more challenging, there may be zero-divisors in the ring.

4.4 Ideals and Quotient Rings

Definition 4.4.1. An ideal of a ring R is a nonempty subset $I \subseteq R$ which is closed under addition and closed under multiplication by an arbitrary element of R :

$$
\begin{align*}
a+b \in I & \text { if } a, b \in I \tag{4.1}\\
r a \in I & \text { if } a \in I \text { and } r \in R \tag{4.2}
\end{align*}
$$

We will say that I absorbs products.
Proposition 4.4.2. Let R be a ring.
If an ideal I of R contains a unit, then $I=R$.
For any $a_{1}, a_{2}, \ldots, a_{n} \in R$, the following set is an ideal of R.

$$
I=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}: r_{i} \in R\right\}
$$

Proof. Let R be a ring. Let u be a unit in R with inverse v. If I is an ideal containing u then $u v=1$ is also in I since I absorbs products. Again, since I absorbs products, for any $r \in R, r 1=r \in R$. Thus $I=R$.

Let a_{1}, \ldots, a_{n} be arbitrary elements of r. We want to show

$$
I=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}: r_{i} \in R\right\}
$$

is an ideal of R. We have I is closed under addition because

$$
\begin{aligned}
& \left(r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}\right)+\left(s_{1} a_{1}+s_{2} a_{2}+\cdots+s_{n} a_{n}\right) \\
& \quad=r_{1} a_{1}+s_{1} a_{1}+r_{2} a_{2}+s_{2} a_{2}+\cdots+r_{n} a_{n}+s_{n} a_{n} \\
& \quad=\left(r_{1}+s_{1}\right) a_{1}+\left(r_{2}+s_{2}\right) a_{2}+\cdots+\left(r_{n}+s_{n}\right) a_{n}
\end{aligned}
$$

The first step repeatedly uses commutativity and associativity of addition. The last step uses distributivity. The final expression is in a form that shows it is an element of I.

The product of any $t \in R$ with $r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}$ is

$$
t\left(r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}\right)=\left(t r_{1}\right) a_{1}+\left(t r_{2}\right) a_{2}+\cdots+\left(t r_{n}\right) a_{n}
$$

using distributivity and associativity of multiplication. The result is in a form to show it is in I.

Definition 4.4.3. The ideal I is principal if there exists some $a \in I$ such that $I=\{r a: r \in R\}$. We say I is generated by $a_{1}, a_{2}, \ldots, a_{s}$ if $I=\left\{r_{1} a_{1}+r_{2} a_{2}+\right.$ $\left.\cdots+r_{n} a_{n}: r_{i} \in R\right\}$. We write $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$.

Proposition 4.4.4. Every ideal in \mathbb{Z} is principal. Every ideal in $F[x]$ for F a field is principal.

Proof. Let I be an ideal of \mathbb{Z}. If $I=\{0\}$, there is nothing to prove. Otherwise, let a be the smallest positive integer in I. Let b be any other nonzero element of I. Then, by the properties of ideals, any linear combination of a and b is in I. Therefore $\operatorname{gcd}(a, b) \in I$. But the gcd of a and b is positive and less than or equal to a. Since a is the smallest positive element of I, we must have $\operatorname{gcd}(a, b)=a$. In other words, an arbitrary element of I is divisible by a, so $I=\langle a\rangle$ is principal.

The same proof applies to $F[x]$ with minor modification. For I a nonzero ideal of $F[x]$, one uses the monic polynomial of lowest degree in I.

From the proof we see that the ideals of \mathbb{Z} are in one correspondence with the nonnegative integers. Similarly, the principal ideals, other than the 0 -ideal, of $F[x]$ are in one to one correspondence with the monic polynomials.

Exercises 4.4.5.

(a) Let R be a subring of a ring S. Let I be an ideal in S. Show that $I \cap R$ is an ideal in R.

Exercises 4.4.6. Let R and S be rings and consider $R \times S$.
(a) Let I be an ideal in R and J and ideal in S. Show that $I \times J$ is an ideal in $R \times S$.
(b) Show that all ideals in $R \times S$ are of the form $I \times J$.

Quotient Rings

A ring R is an abelian group under addition, so for any subgroup we can form the quotient group of R by that subgroup. It is natural, when we take the multiplicative structure of R into account, to want the quotient group to also have a multiplicative structure. The necessary property to make this work is the "absorbs products" requirement in the definition of ideal. We have actually seen this appear in Proposition 4.2.7 which said that the kernel of a homomorphism is closed under multiplication by an arbitrary element of R.

We will write cosets of an ideal I in R in the same form as we did for abelian groups. For any $r \in R$, its coset is $r+I$. The coset $r+I$ may be written in other ways; for any $a \in I$, the cosets defined by r and by $r+a$ are the same. For $s \in R$, and $b \in I$ the cosets defined by s and $s+b$ are also the same. We would like to define multiplication of cosets, but for that to work, the product should be independent of the way we name the coset (as $r+I$ or as $(r+a)+I$). In other words we want the products $r s$ and $(r+a)(s+b)$ to define the same cosets. We have

$$
(r+a)(s+b)=r s+a s+r b+a b
$$

Since $a, b \in I$ and I absorbs products, $a s+r b+a b \in I$. Thus $r s+I=(r+a)(s+$ $b)+I$, and we have a well-defined product for cosets of I.

The following proposition summarizes this discussion, and we note that multiplication of cosets is determined by multiplication in R so we get a homomorphism from R to R / I.

Proposition 4.4.7. Let R be a ring and let I be a proper ideal in R (that is $I \neq R$). Let $R / I=\{b+I: b \in R\}$. Then R / I is a ring, with additive structure defined by R / I as the quotient of the abelian group R by its subgroup I, and multiplicative structure defined by

$$
(r+I)(s+I)=r s+I
$$

The additive identity is $0+I$ and the multiplicative identity is $1+I$.
The function $R \longrightarrow R / I$ that takes r to $r+I$ is a homomorphism of rings.

Example 4.4.8. In \mathbb{Z}, the subgroups $\langle n\rangle$ are also ideals, because multiplication is simply repeated addition, and a subgroup is closed under addition. Thus the quotient of \mathbb{Z} by its subgroup $\langle n\rangle$ is a ring.
Example 4.4.9. Let F be a field. We have seen that any ideal in $F[x]$ is principal, generated by some $m(x) \in F[x]$. Every polynomial is congruent modulo $m(x)$ to its remainder upon division by $m(x)$.

We have already seen two familiar examples of quotient rings in Chapter 1, the integers modulo n and, for F a field, $F[x]$ modulo $m(x)$. The treatment of these in Chapter 1 is from a modular arithmetic perspective and we used brackets to define the equivalence class for elements. We now see them each as a quotients of a ring (\mathbb{Z} or $F[x]$ repectively) and we now write the equivalence classes as cosets rather than using brackets. One convenient aspect of working with these quotient rings is that each element can be uniquely represented by the remainder upon division by the modulus. One can use $\{0,1, \ldots, n-1\}$ as the elements of \mathbb{Z} / n and omit the brackets or coset notation when the context makes clear that we are working in \mathbb{Z} / n rather than \mathbb{Z}. Similarly one can use polynomials of degree less than $\operatorname{deg}(m(x))$ as the elements of $F[x] / m(x)$.

Definition 4.4.10. Let R be a ring and I an ideal in R. A system of representatives for R / I is a set $S \subseteq R$ such that each $r \in R$ is congruent modulo I to exactly one element of S.

It can be more challenging to find a system or representatives for R / I in other rings, even in $F[x, y]$ with F a field. In polynomial rings over a field, monomial ideals and principal ideals admit a clear system or representatives, but things get much more complicated when there are several polynomial generators or when the base ring is not a field.

Definition 4.4.11. In a polynomial ring $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, a monomial ideal is an ideal generated by monomials.

For the following two examples it is helpful to think of $F[x, y]$ as a vector space over F with basis $x^{i} y^{j}$ for $i, j \geq 0$.
Example 4.4.12. Consider a field F and $F[x, y] /\left\langle x^{\alpha} y^{\beta}\right\rangle$. Since an ideal is closed under multiplication, every monomial $a x^{\alpha^{\prime}} y^{\beta^{\prime}}$ with $\alpha^{\prime} \geq \alpha$ and $\beta^{\prime} \geq \beta$ is in $\left\langle x^{\alpha} y^{\beta}\right\rangle$. Since an ideal is closed under addition, and any sum of monomials with x-degree at least α and y-degree at least β is in $\left\langle x^{\alpha} y^{\beta}\right\rangle$. Conversely, any multiple of $x^{\alpha} y^{\beta}$ must be a polynomial whose terms all have x-degree at least α and y-degree at least β. The multidegrees of the monomials in $\left\langle x^{\alpha} y^{\beta}\right\rangle$ are those in the region marked Γ shown in Figure 4.4.

Figure 4.1:

Given any polynomial we may subtract off the monomials that are multiples of $x^{\alpha} y^{\beta}$ and be left with a polynomial that has terms that have x-degree less than α or y-degree less than β. The multidegrees of these monomials are in the region marked Δ in Figure 4.4. These monomials are a basis for the quotient ring $F[x, y] /\left\langle x^{\alpha} y^{\beta}\right\rangle$. A set of representatives for $F[x, y] /\left\langle x^{\alpha} y^{\beta}\right\rangle$ is all polynomials whose terms have multidegree in Δ.

Example 4.4.13. Consider a field F and $F[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle$. A monomial that is in $\left\langle x^{3}, x y, y^{2}\right\rangle$ has multidegree that is in the region marked Γ in Figure 4.4. As in the previous example any polynomial whose terms involve just monomials with multidegree in Γ will be in $\left\langle x^{3} x y, y^{2}\right\rangle$. Given any other polynomial we may subtract off elements of $\left\langle x^{3}, x y, y^{2}\right\rangle$ and be left with a polynomial all of whose terms are in the set Δ in Figure 4.4. The monomials with multidegree in Δ form a basis for a set of representatives for $F[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle$. The set of representatives is all polynomials whose terms have multidegree in Δ.

Example 4.4.14. Consider now a principal ideal that is non-monomial, $F[x, y] /\left\langle y^{2}+x^{3}\right\rangle$. In this quotient ring $y^{2}=-x^{3}$. Given an arbitary polynomial we can replace y^{2} with $-x^{3}$ and get a polynomial that is equivalent modulo $y^{2}+x^{3}$ and has terms that are at most degree 1 in y. Thus $\left\{x^{i}: i \in \mathbb{N}_{0}\right\} \cup\left\{x^{i} y: i \in \mathbb{N}_{0}\right\}$ is a basis for $F[x, y] /\left\langle y^{2}+x^{3}\right\rangle$. (It should be clear that no sum of these monomials can be a multiple of $y^{2}+x^{3}$.) Alternatively, we could replace each occurence of x^{3} with $-y^{2}$

Figure 4.2:
and obtain a basis $\left\{y^{j}: j \in \mathbb{N}_{0}\right\} \cup\left\{x y^{j}: j \in \mathbb{N}_{0}\right\} \cup\left\{x^{2} y^{j}: j \in \mathbb{N}_{0}\right\}$.
We have emphasized the strong relationship between the ring integers of \mathbb{Z} and polynomial rings $F[x]$ for F a field. We have seen a couple of examples in $F[x, y]$. There are analogous examples for $\mathbb{Z}[y]$. We substitute a prime, say 2 , for x and consider something analogous to a monomial ideal.
Example 4.4.15. Consider the ideal $\left\langle 4 y^{3}, 8 y^{2}\right\rangle$ in $\mathbb{Z}[y]$. The multiples of $4 y^{3}$ will all have degree at least 4 (in y) and will have coefficient a multiple of 4 . A set of representatives for $\mathbb{Z}[y] /\left\langle 4 y^{3}, 8 y^{2}\right\rangle$ is $a_{0}+a_{1} y+a_{2} y^{2}+a_{3} y^{3}+\ldots$ in which $a_{k} \in\{0,1,2,3\}$ for $k \geq 3$ and $a_{2} \in\{0,1,2,3,4,5,6,7\}$ and $a_{0}, a_{1} \in \mathbb{Z}$.

Exercises 4.4.16.

(a) Find the nilpotents, zero divisors, and units in $F[x, y] /\left\langle x^{3} y^{2}\right\rangle$.
(b) Find the nilpotents, zero divisors, and units in $F[x, y] /\left\langle x^{3}, y^{2}\right\rangle$.
(c) Find the nilpotents, zero divisors, and units in $F[x, y] /\left\langle x^{3}, x y, y^{2}\right\rangle$.
(d) Find the nilpotents, zero divisors, and units in $F[x, y] /\left\langle y^{2}-x^{3}\right\rangle$.

Exercises 4.4.17.

(a) We were careful in the last example to use powers of 2 as the coefficients in the ideal in $\mathbb{Z}[y]$. Find a system of representatives for $\mathbb{Z}[y] /\left\langle 4 y^{3}, 7 y^{2}\right\rangle$.
(b) Find a system of representatives for $\mathbb{Z}[y] /\left\langle a y^{5}, b y^{4}, c y^{2}, d y\right\rangle$.

Isomorphism Theorems

Theorem 4.4.18 (First Isomorphism and Factor Theorems). Let $\varphi: R \longrightarrow S$ be a ring homomorphism and let K be the kernel. For any ideal J contained in K there is a ring homomorphism $\tilde{\varphi}: R / J \longrightarrow S$ defined by $r+J \longrightarrow \varphi(r)$ such that $\tilde{\varphi} \circ \pi=\varphi$.

If $J=K$ then $\tilde{\varphi}$ is injective.
If φ is surjective then so is $\tilde{\varphi}$. If J is also equal to K then $\tilde{\varphi}$ is an isomorphism.
Proof. Let $\varphi: R \longrightarrow S$ be a ring homomorphism with kernel K and J an ideal contained in K. By the Factor Theorem for groups 2.8.8, we know there is well defined group homomorphism $\tilde{\varphi}: R / J \longrightarrow S$. This is because for any $r \in R$ and $j \in J$ we have $\varphi(r+j)=\varphi(r)$, so we can define $\tilde{\varphi}(r+J)=\varphi(r)$ unambiguously. The map is a group homomorphism because

$$
\tilde{\varphi}\left(r_{1}+r_{2}+J\right)=\varphi\left(r_{1}+r_{2}\right)=\varphi\left(r_{1}\right)+\varphi\left(r_{2}\right)=\tilde{\varphi}\left(r_{1}+J\right)+\tilde{\varphi}\left(r_{2}+J\right)
$$

Similarly the map respects multiplication because

$$
\tilde{\varphi}\left(r_{1} r_{2}+J\right)=\varphi\left(r_{1} r_{2}\right)=\varphi\left(r_{1}\right) \varphi\left(r_{2}\right)=\tilde{\varphi}\left(r_{1}+J\right) * \tilde{\varphi}\left(r_{2}+J\right)
$$

Finally, $\tilde{\varphi}\left(1_{R}+J\right)=\varphi\left(1_{R}\right)=1_{S}$, so $\tilde{\varphi}$ is a homomorphism of rings.
The kernel of $\tilde{\varphi}$ is $\{r+J: \varphi(r)=0\}$. This is clearly $K / J=\{k+J: k \in K\}$. When $J=K, \tilde{\varphi}$ is injective since $\{k+K: k \in K\}=\{0+K\}$.

Suppose φ is surjective. For any $s \in S$, there is some $\in R$ such that $\varphi(r)=s$. Then $\tilde{\varphi}(r+J)=\varphi(r)=s$, so $\tilde{\varphi}$ is also surjective. If $J=K$ and φ is surjective we have an isomorphism $\tilde{\varphi}: R / K \longrightarrow S$.

Theorem 4.4.19. Let R be a ring with ideals K and I such that $K \subseteq I$. Then I / K is an ideal of R / K and $(R / K) /(I / K) \cong R / I$.

Proof. I claim there is a well defined function from R / K to R / I defined by $\varphi(r+$ $K)=r+I$. We need only check that if $r_{1}+K=r_{2}+K$ then $r_{1}+I=r_{2}+I$. This is clearly true because if $r_{1}+K=r_{2}+K$ then $r_{1}-r_{2} \in K$. Since $K \subseteq I$ we
have $r_{1}=r_{2} \in I$ so $r_{1}+I=r_{2}+I$. We clearly also have

$$
\begin{aligned}
\varphi\left(\left(r_{1}+K\right)+\left(r_{2}+K\right)\right) & =\varphi\left(r_{1}+r_{2}+K\right) \\
& =r_{1}+r_{2}+I \\
& =\left(r_{1}+I\right)+\left(r_{2}+I\right) \\
& =\varphi\left(r_{1}+I\right)+\varphi\left(r_{2}+I\right)
\end{aligned}
$$

and a similar computation holds for multiplication. Thus φ is a homomorphism and it is surjective.

The kernel is $\{r+K: r+I=0+I\}$, but this is $\{r+K: r \in I\}=I / K$. So by the first isomorphism theorem, $(R / K) /(I / K) \cong R / I$.

From Theorem 4.4.18 any surjective homomorphism $R \longrightarrow S$ gives rise to an isomorphism between R / K and S where K is the kernel of $R \longrightarrow S$. A strengthening of Theorem 4.4.19 is the following.

Theorem 4.4.20 (Correspondence). Let $R \longrightarrow S$ be a surjective homomorphism of rings with kernel K. There is a one-to-one correspondence, given by φ, between ideals of S and ideals of R containing K.

$$
\begin{aligned}
R & \longleftrightarrow S \\
I & \longleftrightarrow \varphi(I) \\
\varphi^{-1}(J) & \longleftrightarrow J
\end{aligned}
$$

The correspondence respects containment, and quotients as follows. For I, I^{\prime} containing K,

- $K \leq I \leq I^{\prime}$ if and only if $\varphi(I) \leq \varphi\left(I^{\prime}\right)$.
- The map φ induces an isomorphism $R / I \cong S / \varphi(I)$.

Theorem 4.4.21 (Second Isomorphism). Let S be a subring of R and let J be an ideal in R.
(1) $S+J$ is a subring of R.
(2) $S \cap J$ is an ideal in S.
(3) $S /(S \cap J) \cong(S+J) / J$.

Proof. The first two items are left as exercises. Consider the homomorphism φ : $S \longrightarrow R / J$, which is the composition of the inclusion map : $S \longrightarrow R$ and the quotient map $R \longrightarrow R / J$. The image of φ is $\{s+J: s \in S\}$ and it is the quotient of the subring $S+J$ in R by the ideal J. The kernel of φ is $S \cap J$. By the first isomorphism theorem, $S /(S \cap J) \cong(S+J) / J$.

Exercises 4.4.22.

(a) Prove (1) and (2) of the Second Isomorphism Theorem.

Exercises 4.4.23. Let $\varphi: R \longrightarrow S$ be a homomorphism of rings, not necessarily surjective.
(a) Let J be an ideal in S. Show that $\varphi^{-1}(J)$ is an ideal in R.
(b) Give an example to show that for I an ideal in $R, \varphi(I)$ may not be an ideal in S.

Proposition 4.4.24 (Universal Property of the Product). Let R, S, T be rings, and let $\varphi: R \longrightarrow S$ and $\psi: R \longrightarrow T$ be homomorphisms. The function $\alpha:$ $R \longrightarrow S \times T$ defined by $r \longmapsto(\varphi(r), \psi(r))$ is a homomorphism. It is the unique homomorphism such that $p_{S} \circ \alpha=\varphi$ and $p_{T} \circ \alpha=\psi$.

4.5 Operations on Ideals and Properties of Ideals

Intersection, Sum and Product of Ideals

Proposition 4.5.1. Let I and J be ideals. Then $I \cap J$ is an ideal. More generally, if \mathcal{A} is a set of ideals in R then

$$
\bigcap_{I \in \mathcal{A}} I
$$

is an ideal in R.
Proof. Let $a, b \in \bigcap_{I \in \mathcal{A}} I$. Then we have $a, b \in I$ for each $I \in \mathcal{A}$. Since each I is closed under addition, $a+b \in I$ for all $I \in \mathcal{A}$. Consequently, $a+b \in \bigcap_{I \in \mathcal{A}} I$.

Similarly, we can show that $\bigcap_{I \in \mathcal{A}} I$ absorbs products. For $r \in R$ and $a \in$ $\bigcap_{I \in \mathcal{A}} I$ we have $a \in I$ for each $I \in \mathcal{A}$. Since each I absorbs products, $r a \in I$ for each $I \in \mathcal{A}$. Thus $r a \in \bigcap_{I \in \mathcal{A}} I$.

Definition 4.5.2. Let I and J be ideals. The sum of I and J is $I+J=$ $\{a+b: a \in I$ and $b \in J\}$. The product of I and J is $I J=\langle a b: a \in I$ and $b \in J\rangle$.

Similarly for ideals I_{1}, \ldots, I_{n} in R we can define

$$
\begin{aligned}
I_{1}+I_{1}+\cdots+I_{n} & =\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}: r_{k} \in R, a_{k} \in I_{k}\right\} \\
I_{1} I_{2} \ldots I_{n} & =\left\langle a_{1} a_{2} \cdots a_{n}: a_{k} \in I_{k} \text { for all } k \in\{1, \ldots, n\}\right\rangle
\end{aligned}
$$

There is a subtle, but very important, difference in the two definitions. The product of ideals I and J is defined to be generated by the set of elements $a b$ with $a \in I$ and $b \in J$. The sum of I and J is the set of all sums $a+b$ with $a \in I$ and $b \in J$. We must show that this set is in fact an ideal.

Proposition 4.5.3. Let I_{1}, \ldots, I_{n} be ideals in R. Then $I_{1}+\cdots+I_{n}$ is also an ideal.

Proof. We have to show $I_{1}+\cdots+I_{n}$ is closed under sums and that it absorbs products. Consider two arbitrary elements of $I_{1}+I_{2}+\cdots+I_{n}$, which we may write as $a_{1}+a_{2}+\cdots+a_{n}$ and $b_{1}+b_{2}+\cdots+b_{n}$ with $a_{k}, b_{k} \in I_{k}$ for $k=1, \ldots, n$. Their sum is, after rearranging using commutativity and associativity, $\left(a_{1}+b_{1}\right)+$ $\left(a_{2}+b_{2}\right)+\cdots+\left(a_{n}+b_{n}\right)$. Since each $\left(a_{k}+b_{k}\right) \in I_{k}$, the sum is an element of $I_{1}+I_{2}+\cdots+I_{n}$.

Let $r \in R$ and $a_{1}+a_{2}+\cdots+a_{n}$ with $a_{k} \in I_{k}$. Then by distributivity

$$
r\left(a_{1}+a_{2}+\cdots+a_{n}\right)=r a_{1}+r a_{2}+\cdots+r a_{n}
$$

Since each I_{k} absorbs products, each $r a_{k} \in I_{k}$. Thus

$$
r a_{1}+r a_{2}+\cdots+r a_{n} \in I_{1}+I_{2}+\cdots+I_{n}
$$

this shows $I_{1}+I_{2}+\cdots+I_{n}$ absorbs products.

Exercises 4.5.4.

(a) In the integers, show that the sum $\langle a\rangle+\langle b\rangle=\langle\operatorname{gcd}(a, b)\rangle$.
(b) In the integers, show that the intersection $\langle a\rangle \cap\langle b\rangle=\langle\operatorname{lcm}(a, b)\rangle$.
(c) Extend these results to $F[x]$ for F a field.

Proposition 4.5.5. Let I_{1}, \ldots, I_{n} be ideals. Then

$$
I_{1} I_{2} \cdots I_{n} \subseteq I_{1} \cap I_{2} \cap \cdots \cap I_{n}
$$

Proof. The product $I_{1} I_{2} \cdots I_{n}$ is generated by elements of the form $a_{1} a_{2} \cdots a_{n}$ with each $a_{k} \in I_{k}$. Since each I_{k} absorbs products, $a_{1} a_{2} \cdots a_{n} \in I_{k}$ for all k. Thus $a_{1} a_{2} \cdots a_{n} \in I_{1} \cap I_{2} \cap \cdots \cap I_{n}$. Since the generators of $I_{1} I_{2} \cdots I_{n}$ are all in $I_{1} \cap I_{2} \cap \cdots \cap I_{n}$ we have

$$
I_{1} I_{2} \cdots I_{n} \subseteq I_{1} \cap I_{2} \cap \cdots \cap I_{n}
$$

The sum of an arbitrary set of ideals in R (including an infinite set) is defined in a similar fashion, but requires care because we must restrict to finite sums.

Definition 4.5.6. Let \mathcal{A} be a set of ideals in R. The sum of these ideals is

$$
\sum_{I \in \mathcal{A}} I=\left\{\sum_{I \in \mathcal{B}} a_{I}: a_{I} \in I, \text { and } \mathcal{B} \text { is a finite subset of } \mathcal{A}\right\}
$$

Exercises 4.5.7. Let $\varphi: R \longrightarrow S$ be a homomorphism.
(a) For I and ideal in R show that $\varphi^{-1}(\varphi(I))=I+K$ where $K=\operatorname{ker} \varphi$. In particular, if I contains K, then $\varphi^{-1} \varphi(I)=I$.

Maximal, Prime and Radical Ideals

There are three key properties that ideals may have.
Definition 4.5.8. Let I be a proper ideal of R (that is $I \neq R$). An ideal I is maximal if the only ideal properly containing I is R. The ideal I is prime when $a b \in I$ implies that either $a \in I$ or $b \in I$. The ideal I is radical when $a^{n} \in I$ for $n \in \mathbb{N}$ implies $a \in I$.

In any integral domain, the zero ideal is prime. This follows directly from the definition of integral domain, $a b=0$ implies $a=0$ or $b=0$.

Let I be a nonzero ideal in the integers, and let d be its positive generator. If d is not a prime number, say $d=a b$, then I is not a prime ideal since $a b \in I$, but $a, b \notin I$. If d is a prime number then $a b \in I$ implies that $d \mid a b$, and by primality of d, either $d \mid a$ - and therefore $a \in I$-or $d \mid b$-and then $b \in I$. Consequently, I is prime. We conclude that, for the integers, an ideal is prime if and only if it is generated either by 0 or a prime integer.

Exercises 4.5.9.

(a) Show that the nonzero prime ideals in \mathbb{Z} are also maximal ideals. [Suppose p is a prime number. Try to enlarge $\langle p\rangle$ and show that you get all of \mathbb{Z}.]
(b) Let I be a nonzero ideal in \mathbb{Z}. We know I is principle; let a be the smallest positive integer in I. Show that I is radical if and only if the prime factorization of a is $a=p_{1} p_{2} \cdots p_{r}$ for distinct primes p_{i}.
(c) Extend these results to $F[x]$ for F a field.

Theorem 4.5.10. All prime ideals are radical. All maximal ideals are prime.
Proof. Let P be a prime ideal. We will show that if $a^{n} \in P$ then $a \in P$. This establishes that P is a radical ideal. Suppose $a^{n} \in P$. Let $m \leq n$ be the smallest
power of a that lies in P. If $m>1$, then we have $a * a^{m-1}=a^{m} \in P$. By primality, either a or a^{m-1} is in P. This contradicts our assumption on m. Thus $m=1$ and $a \in P$.

Let M be a maximal ideal. We will show that $a b \in M$ implies either a or b is in M. This establishes M is prime. Let $a b \in M$. Suppose that $a \notin M$. Since M is a maximal ideal $M+\langle a\rangle=R$. Consequently there is some $m \in M$ and $r \in R$ such that $m+r a=1$. Multiplying both sides by b we get $m b+r a b=b$. Since $a b \in M$, we have $b=m b+r a b \in M$. Thus if $a b \in M$ and $a \notin M$ then $b \in M$ as was to be shown.

The proof that a maximal ideal is prime echoes the proof that an irreducible integer (or polynomial in $F[x]$ for F a field) is prime, Theorem 1.1.6.

Now we show that these properties of ideals are intimately connected with properties of the quotient ring.

Theorem 4.5.11. Let R be a ring and I and ideal in R.

- I is a maximal ideal if and only if R / I is a field.
- I is a prime ideal if and only if R / I is an integral domain.
- I is a radical ideal if and only if R / I is reduced.

Proof. We will prove one direction for each claim and leave the other as an exercise.
Suppose I is maximal. Let $r+I$ be an arbitrary element of R / I with $r+I \neq$ $0+I$. Since I is maximal, $I+\langle r\rangle=R$, so there is some $a \in I$ and $s \in R$ such that $a+s r=1$. Then $s r+I=(1-a)+I=1+I$, because $a \in I$. Consequently, $s+I$ is the inverse of $r+I$. Thus an arbitrary nonzero element of R / I has an inverse, and R / I is a field.

Suppose I is a prime ideal. Let $r+I$ and $s+I$ be such that $(r+I)(s+I)=0+I$. Then $r s+I=0+I$ so $r s \in I$. Since I is prime, either $r \in I$ or $s \in I$. Thus, either $r+I=0+I$ or $s+I=0+I$. This shows R / I has no zero-divisors.

Suppose I is a radical ideal. Suppose that $r+I$ is nilpotent in R / I; that is $(r+I)^{n}=0+I$. Then $r^{n}+I=0+I$, so $r^{n} \in I$. Since I is radical, we must have $r \in I$, and consequently $r+I=0+I$. This shows that R / I has no nilpotent elements, so R / I is reduced.

Exercises 4.5.12. Let $\varphi: R \longrightarrow S$ be a homomorphism of rings and let J be an ideal in S. From Exercise 4.4.23 we know that $\varphi^{-1}(J)$ is an ideal in R.
(a) If J is a radical ideal, show that $\varphi^{-1}(J)$ is a radical ideal in R.
(b) If J is a prime ideal, show that $\varphi^{-1}(J)$ is a prime ideal in R.
(c) Using $R=\mathbb{Z}$ and $S=\mathbb{Q}$ show that $\varphi^{-1}(J)$ may not be maximal when J is maximal.

Exercises 4.5.13.

(a) Show that the intersection of two radical ideals is radical.
(b) Illustrate with an example from $F[x]$ for F a field.
(c) Given an example in $F[x]$ to show that the intersection of two prime ideals may not be prime.

Exercises 4.5.14.

(a) Let $N=\left\{a \in R: a^{n}=0\right.$ for some $\left.n \in \mathbb{N}\right\}$ be the set containing 0 and all of the nilpotent elements in a ring R. Show that N is an ideal of R. It is called the nilradical of R.
(b) Show that R / N is reduced (it has no nilpotent elements).
(c) Show that N is contained in the intersection of all prime ideals in R.
(d) Show that if $a \in N$ then $1-a$ and $1+a$ are units.

Comaximality and the Chinese Remainder Theorem

Recall that two integers a, b are coprime if they have no common factor. A consequence - the GCD Theorem 1.1.2 is that some linear combination of a and b is equal to 1 . Interpreting this in the context of ideals, the ideal $\langle a, b\rangle$ generated by the two coprime integers is all of \mathbb{Z}. We can extend this notion of coprime integers (or polynomials) to ideals in a general ring R.

For any two integers m, n we have a homomorphism $\mathbb{Z} / m n \longrightarrow \mathbb{Z} / m$ and $\mathbb{Z} / m n \longrightarrow \mathbb{Z} / n$. This gives a homomorphism into the direct product by Proposition 4.4.24: $\mathbb{Z} / m n \longrightarrow \mathbb{Z} / m \times \mathbb{Z} / n$. The Chinese Remainder Theorem says this is an isomorphism when m, n are coprime.

Theorem 4.5.15 (Chinese Remainder Theorem). Let m, n be coprime. The natural maps give an isomorphism $\mathbb{Z} / m n \longrightarrow \mathbb{Z} / m \times \mathbb{Z} / n$.

The proof is based on the GCD Theorem, which says that there are integers u and v such that $m u+n v=1$. More generally we have the property of comaximality for ideals, and a Chinese Remainder Theorem for comaximal ideals whose proof essentially mimics the proof of the Chinese Remainder Theorem for integers.

Definition 4.5.16. Two ideals I and J in a ring R are comaximal if $I+J=R$.
Theorem 4.5.17. Let I and J be proper ideals of R that are comaximal. Then $I J=I \cap J$ and $R / I J \cong R / I \times R / J$.

Proof. Since I and J are comaximal there exist $a \in I$ and $b \in J$ such that $a+b=1$. We now show that the homomorphism $R \longrightarrow R / I \times R / J$ is surjective. The image of a in R / J is $a+J=(1-b)+J=1+J$ because $b \in J$. The image of a in R / I is $a+I=0+I$ because $a \in I$. Similarly, the image of b is $1+I$ in R / I and it is $0+J$ in R / J. Thus for an arbitrary element $\left(r_{1}+I, r_{2}+J\right)$ in $R / I \times R / J$, there is a preimage, $r_{1} a+r_{2} b$.

The kernel of $R \longrightarrow R / I \times R / J$ is $I \cap J$ so the proof is complete once we show $I J=I \cap J$. We already know that $I J \subseteq I \cap J$. Let $c \in I \cap J$. Then $a c+b c=c$, but $a c$ and $b c$ are both in $I J$ so we have expressed an arbitrary element of $I \cap J$ as a sum of two elements in $I J$. Thus $I J=I \cap J$.

4.6 Fractions

Dealing with fractions is one of the big challenges for primary school students. A key reason for the difficulties is that a fraction can be written in an infinite number of equivalent ways (for example $1 / 2=2 / 4=3 / 6 \ldots$) and it is necessary to use multiple expressions for a number in order to do arithmetic with fractions. Underlying our use of fractions is an equivalence relation on ordered pairs of integers; which is not something we dare to explain to students. In this section we show that the method used to construct the rational numbers from the integers extends with little modification to an arbitrary ring.

First let's consider some examples to show that there are other rings of interest in between the integers and the rational numbers, that is, rings properly containing \mathbb{Z} but properly contained in \mathbb{Q}.
Example 4.6.1. One can verify that the following sets are in fact subrings of \mathbb{Q}.

- $R=\left\{a / 2^{i}: a \in \mathbb{Z}, i \in \mathbb{N}_{0}\right\}$.
- $S=\{a / b: a \in \mathbb{Z}$ and b is an odd integer $\}$.
- $T=\left\{a / 100^{i}: a \in \mathbb{Z}, i \in \mathbb{N}_{0}\right\}$.

Exercises 4.6.2. For the rings R, S, and T :
(a) Identify all the units in each of these rings.
(b) Show that in each of these rings every ideal is principal, generated by some nonnegative integer.
(c) In \mathbb{Z}, any two distinct positive integers generate different ideals. Show that is not true in R, S, T. For each of these rings, identify a set of integers that uniquely define all ideals.
(d) Which of these ideals are prime?

The rings in the previous example and exercise are all constructed via the process we now describe.

Definition 4.6.3. Let R be an integral domain. A subset D of $R \backslash\{0\}$ that contains 1 and is closed under multiplication is called a multiplicatively closed set.

Let D be a multiplicatively closed set in R. Define a relation on $R \times D$ by

$$
\left(a_{1}, m_{1}\right) \sim\left(a_{2}, m_{2}\right) \quad \text { when } \quad a_{1} m_{2}=a_{2} m_{1}
$$

Proposition 4.6.4. The relation above is an equivalence relation.
Proof. Exercise: Show it is reflexive, symmetric, and transitive.
Theorem 4.6.5. Let D be a multiplicatively closed set in R. Let $[a, m]$ denote the equivalence class of (a, m). The operations

- $\left[a_{1}, m_{1}\right]+\left[a_{2}, m_{2}\right]:=\left[a_{1} m_{2}+a_{2} m_{1}, m_{1} m_{2}\right]$, and
- $\left[a_{1}, m_{1}\right] \star\left[a_{2}, m_{2}\right]:=\left[a_{1} a_{2}, m_{1} m_{2}\right]$,
are well defined. The set $R \times D / \sim$ with these operations is a ring with additive identity $[0,1]$ and multiplicative identity $[1,1]$. We denote this ring $D^{-1} R$. The map $R \longrightarrow D^{-1} R$ taking r to $[r, 1]$ is an embedding.

The ring $D^{-1} R$ is often called a localization of R.

Exercises 4.6.6.

(a) Let $D=\left\{30^{i}: i \in \mathbb{N}_{0}\right\}$. Verify that D is multiplicatively closed in \mathbb{Z}. Identify all of the prime ideals in $D^{-1} \mathbb{Z}$.
(b) Let $D=\left\{\left(x^{3}-x\right)^{i}: i \in \mathbb{N}_{0}\right\}$. Verify that D is multiplicatively closed in $\mathbb{Q}[x]$. Identify all of the prime ideals in $D^{-1} \mathbb{Q}[x]$.
(c) Under what conditions on D does $D^{-1} \mathbb{Z}$ have just one maximal ideal?
(d) Let D be multiplicatively closes I be an

Exercises 4.6.7. In this exercise we characterize all localizations of \mathbb{Z}.
(a) Let $D=\left\{d_{1}, d_{2}, \ldots, d_{t}\right\} \subseteq \mathbb{Z} \backslash\{0\}$. What is the smallest multiplicatively closed subset of \mathbb{Z} containing D and 1 ? What if D is an infinite subset of $\mathbb{Z} \backslash\{0\}$? We will abuse notation and write $D^{-1} \mathbb{Z}$ for the localization due to the smallest multiplicatively closed subset of $\mathbb{Z} \backslash\{0\}$ containing D.
(b) Suppose $D \subseteq N \subseteq \mathbb{Z} \backslash\{0\}$. Show that there is an injective ring homomorphism $D^{-1} \mathbb{Z} \rightarrow N^{-1} \mathbb{Z}$.
(c) Show that any localization of \mathbb{Z} is of the form $P^{-1} \mathbb{Z}$ where P is a subset of the set of primes in \mathbb{N}. [You need to identify the set P for a given D and show that $\left.P^{-1} \mathbb{Z} \cong D^{-1} \mathbb{Z}\right]$.
(d) Let P be a subset of the prime integers. Identify all the ideals in $P^{-1} \mathbb{Z}$. Which ideals are prime?

Exercises 4.6.8. Let R be an integral domain and let D be a multiplicative subset of R. We will consider R as a subset of $D^{-1} R$ via the embedding $\varphi: R \longrightarrow D^{-1} R$ which takes r to $r / 1$.
(a) Let $D^{-1} I=\{a / s: a \in I, s \in D\}$. Show $D^{-1} I$ is an ideal in $D^{-1} R$.
(b) Show that $D^{-1} I=D^{-1} R$ iff $I \cap D \neq \emptyset$.
(c) Let J be an ideal of $D^{-1} R$. Show that $J \cap R$ is an ideal in R.

Parts a - c show we have a function from the set of ideals in $D^{-1} R$ to the set of ideals in R given by $J \mapsto J \cap R$ and a function from the set of ideals in R to the set of ideals in $D^{-1} R$ given by $I \mapsto D^{-1} I$.
(d) Show that $I \mapsto D^{-1} I$ is surjective: That is, show that every ideal in $D^{-1} R$ is $D^{-1} I$ for some ideal I in R. (Hints: If J is an ideal in $D^{-1} R$ then an element of J may be written a / s for $a \in R$ and $s \in D$. Show that $D^{-1}(J \cap R)=J$.)
(e) Show that these two maps of ideals respect intersections. For example, $D^{-1}\left(I \cap I^{\prime}\right)=D^{-1}(I) \cap D^{-1}\left(I^{\prime}\right)$.
(f) The map $I \mapsto D^{-1} I$ is not injective. Show that it is injective on prime ideals that don't meet D. Conclude that the functions $J \mapsto J \cap R$ and $I \mapsto D^{-1} I$ give a 1-1 correspondence between prime ideals of $D^{-1} R$ and prime ideals of R not meeting D.

Exercises 4.6.9. Let R be an integral domain. A multiplicatively closed set $D \subseteq R$ is saturated when

$$
x y \in D \Longleftrightarrow x \in D \text { and } y \in D .
$$

There is a theorem saying D is saturated $\mathrm{iff} R \backslash D$ is a union of prime ideals. Prove one direction of this result as follows.
(a) Let \mathcal{P} be a set of prime ideals and let $D=R \backslash\left(\cup_{P \in \mathcal{P}} P\right)$. Show that D is multiplicatively closed and saturated.

Chapter 5

Fields

5.1 First Fields and Automorphisms

Definition 5.1.1. A field is a set F with two binary operations, + and $*$, two special elements 0 and 1 , and two unary operations $a \longmapsto-a$ and-for all but the 0 element- $a \longmapsto a^{-1}$ such that

- F is an abelian group under + with identity element 0 and additive inverse $a \longmapsto-a$.
- $F^{*}=F \backslash 0$ is an abelian group under $*$ with identity element 1 and multiplicative inverse $a \longmapsto a^{-1}$.

There are a few fields that should be familiar to you; the following were discussed in the first chapter.

- The rational numbers \mathbb{Q}. This is the smallest field that contains the integers.
- The prime fields, \mathbb{F}_{p} for each prime number p. A fundamental result from modular arithmetic is that each nonzero element in \mathbb{Z}_{p}, the ring of integers modulo p, is invertible. One can compute the inverse of a nonzero element by using the extended Euclidean algorithm. This shows that \mathbb{Z}_{p} is a field. When studying fields we will write \mathbb{F}_{p} instead of \mathbb{Z}_{p}.
- The real field, \mathbb{R}.
- The field of complex numbers \mathbb{C}. The complex numbers also form a vector space of dimension 2 over \mathbb{R} with basis $\{1, i\}$ where $i=\sqrt{-1}$. That is, every element can be written in a unique way as $a+b i$ for $a, b \in \mathbb{R}$ and the properties of a vector space hold for scalar multiplication by a real number.
- Inside the field of complex numbers is the Gaussian rationals, ??

$$
\mathbb{Q}(i)=\{a+b i: a, b \in \mathbb{Q}\}
$$

This is a field, and also a two-dimensional vector space over \mathbb{Q}.
Definition 5.1.2. Let K be a field and let F be a subset of K such that F is a field using the operations $*_{K}$ and $+_{K}$. We say F is a subfield of K and K is an extension field of F. We will write $F \leq K$ and also K / F depending on whether the emphasis is on F being a subfield of K or K and extension of F.

If $F \leq K$ then K is a vector space over F. We write $[K: F$] for the dimension. It is also called the degree of the extension.

For any field F, there is a homomorphism $\mathbb{Z} \longrightarrow F$ taking 1 to 1_{F} by Theorem 4.2.11. If the kernel is trivial then F contains a subring isomorphic to the integers, and since F is a field it must contain a subfield isomorphic to the rationals, \mathbb{Q}. If the kernel is not trivial, then F contains a subring isomorphic to \mathbb{Z} / m for some integer m. Since F is a field, \mathbb{Z} / m cannot have zero-divisors, so m must be prime. Thus we have two cases, a field F either contains a copy of \mathbb{F}_{p} or \mathbb{Q}. This smallest field contained in F is called its prime field, and We say F has characteristic p, when $\mathbb{F}_{p} \leq F$ or characteristic 0 in the case $\mathbb{Q} \leq F$.

Definition 5.1.3. For fields F and K, a function $\varphi: F \longrightarrow K$ is a homomorphism when
(1) φ is a homomorphim from the group $F,+_{F}$ to $K,+_{K}$, and
(2) φ is a homomorphism from the group $F^{*}, *_{F}$ to $K^{*}, *_{K}$.

Applying Proposition 2.3.2, $\varphi: F \longrightarrow K$ is a homomorphism of fields if it respects addition and multiplication:

$$
\begin{aligned}
\varphi\left(a_{1}+_{F} a_{2}\right) & =\varphi\left(a_{1}\right)+_{K} \varphi\left(a_{2}\right), \text { and } \\
\varphi\left(a_{1} *_{F} a_{2}\right) & =\varphi\left(a_{1}\right) *_{K} \varphi\left(a_{2}\right)
\end{aligned}
$$

In these two equations I have emphasized that the addition and multiplication on the left is done in F and the addition and multiplication on the right is in K. Generally I'm going to follow standard practice and not write the subscripts on the operation signs to make the equations more legible. BUT, don't forget the distinction! We will also usually not write the multiplication sign, unless there is some important reason to use it.

It turns out that a homomorphisms of fields is always injective!

Proposition 5.1.4. Let $\varphi: F \longrightarrow K$ be a homomorphism of fields. Then $\varphi(a)=$ $\varphi(b)$ implies $a=b$, so φ is injective.

Proof. Let $\varphi: F \longrightarrow K$ be a homomorphism. Let a be a nonzero element of F. Since $a a^{-1}=1_{F}$, applying φ we get $\varphi(a) \varphi\left(a^{-1}\right)=1_{K}$. Since 0_{K} does not have a multiplicative inverse, $\varphi(a)$ cannot be 0_{K}. Thus $a \neq 0_{F}$ implies $\varphi(a) \neq 0_{K}$.

Now suppose $\varphi(a)=\varphi(b)$. Then $\varphi(a-b)=0_{K}$, and the contrapositive of what we showed in the previous paragraph gives $a-b=0$, so $a=b$.

The next proposition is completely analogous to results about the composition of homomorphisms of groups, Proposition 2.3.2, and properties of isomorphisms, Proposition 2.3.7.

Proposition 5.1.5.

(1) The composition of two field homomorphisms is a field homomorphism.
(2) The composition of two isomorphisms of fields is an isomorphism of fields.
(3) Let $\varphi: F \longrightarrow K$ be an isomorphism of fields. The inverse function φ^{-1} : $K \longrightarrow F$ is also an isomorphism of fields.

Proof. (1) We have already shown that the composition of group homomorphisms is a group homomorphism. Thus the composition of field homomorphisms $\alpha: F \longrightarrow H$ and $\beta: H \longrightarrow K$ is is both a homomorphism of the additive group $F,+_{F}$ to $K,+_{K}$ and a homomorphism of the multiplicate group $F, *_{F}$ to $K, *_{K}$. Therefore $\beta \circ \alpha$ is a field homomorphim.
(2) The composition of two bijections is a bijection and the composition of two isomorphisms is an isomorphism.
(3) We can apply the fact that the inverse of an isomorphism of groups is also an isomorphism of groups to prove the result in a similar fashion to the first item.

And now the culmination of this section!
Definition 5.1.6. Let K be a field. The automorphism group of K is the set of all isomorphisms from K to itself, with the operation of composition. It is written $\operatorname{Aut}(K)$. Let F be a subfield of K. An automorphism σ such that $\sigma(a)=a$ for all $a \in F$ is said to fix F. The set of automorphisms K that fix F is denoted $\operatorname{Aut}(K / F)$.

The previoius proposition shows that the composition of automorphisms is an automorphism and that every isomorphism has an inverse, so $\operatorname{Aut}(K)$ is a group. It is a simple exercise to show that the composition of two automorphisms that fix F also fixes F and that the inverse of an automorphism that fixes F also fixes F.

Corollary 5.1.7. For K a field, $\operatorname{Aut}(K)$ is a group under composition. If F is a subfield of K, $\operatorname{Aut}(K / F)$, the automorphisms of K that fix F, form a group under composition.

What can we say about automorphisms of the fields introduced above? First note that any automorphism has to take 1 to itself. Consider an automorphism φ of \mathbb{Q}. We must have $\varphi(1)=1$. Since φ respects addition,

$$
\varphi(\underbrace{1+\cdots+1}_{b \text { terms }})=\underbrace{\varphi(1)+\cdots+\varphi(1)}_{b \text { terms }}
$$

which shows that $\varphi(b)=b$ for each positive integer b. Since φ also respects additive inverses, $\varphi(-b)=-b$ for positive integers b, so φ is the identity map on the integers. Since φ respects multiplicative inverses, $\varphi(1 / b)=1 / \varphi(b)=1 / b$ for any integer b, and since φ respects products $\varphi(a / b)=\varphi(a) \varphi(1 / b)=a / b$. Thus we have shown that the only automorphism of \mathbb{Q} is the identity map. A similar (shorter argument) shows that the only automorphism of \mathbb{F}_{p} is the identity map.

Notice also that there can be no homomorphism from \mathbb{Q} to \mathbb{F}_{p} since any homomorphism must be injective. There can't be a homomorphism from \mathbb{F}_{p} to \mathbb{Q} since we would have to map $1_{\mathbb{F}_{p}}$ to $1_{\mathbb{Q}}$, but $\underbrace{1+\cdots+1}_{p \text { terms }}=0$ in \mathbb{F}_{p} while $\underbrace{1+\cdots+1}_{p \text { terms }} \neq 0$ in \mathbb{Q}.

The reals are vastly more complicated, so let's consider automorphims of \mathbb{C} that fix \mathbb{R}; so we consider automorphisms φ such that $\varphi(r)=r$ for $r \in \mathbb{R}$. We know that $i * i=-1$ so $\varphi(i) * \varphi(i)=\varphi(-1)=-1$. We know there are only two square roots of 1 in \mathbb{C}, so there are only two possibilities: $\varphi(i)$ is either i itself or $-i$. In the first case φ has to be the identity map, $\varphi(a+b i)=\varphi(a)+\varphi(b) \varphi(i)=a+b i$ since φ fixes the reals. In the second case φ is the conjugation map: $\varphi(a+b i)=a-b i$.

This simple example is the model for much of our work in this chapter. For a field K containing another field F, we seek to understand the automorphisms of K that fix F, and to use that knowledge to better understand the field K.

5.2 Constructing Fields

We have three main tools for constructing new fields.

Construction I: In Section 1.1 we showed that the ring of integers modulo a prime forms a field, which we write \mathbb{F}_{p}. Similarly, in Section 1.3 we showed that for F a field and $m(x)$ irreducible, $F[x] / m(x)$ is a field (see Theorem 4.1.9. More generally, for any ring R, Theorem 4.5.11 shows that R / I is a field whenever I is a maximal ideal.

Construction II: The second method is based on the construction of the rational numbers from the integers. For an integral domain R, let $D=R \backslash\{0\}$ and form the ring of fractions $D^{-1} R$ as in Section 4.6. This is a field. For the integral domain $F[x]$ over a field F, the resulting field is written $F(x)=$ $\{a(x) / b(x): a(x), b(x) \in F[x]$ with $b(x) \neq 0\}$.

Construction III: The third method is to take a subfield of a given field. We did this in Section 1.2 when we introduced the subfield of the complex numbers $\mathbb{Q}(i)$. Given any field K and a subset $S \subseteq K$ we can take the intersection of all subfields of K containing S. It is easy to verify that this is a field, and is the smallest subfield containing S (Exercise 4.2.3). We often are interested in the smallest subfield of K containing a specific subfield F and some additional set of elements $S \subseteq K \backslash F$. We write this $F(S)$. If no subfield is specificied, we know that this field must contain one of the prime fields \mathbb{Q}, or \mathbb{F}_{p}, so we may write it $\mathbb{F}_{p}(S)$ or $\mathbb{Q}(S)$ as appropriate.

With the notation of Construction III, given a subset S of K we may also take the intersection of all rings containing S and some subfield F, which we write either as $\mathbb{F}_{p}[S]$ or $\mathbb{Q}[S]$ as appropriate (see Exercise 4.2.3).

There is a relationship between Construction III and the other constructions, which we can illustrate with two examples inside the complex field. Before introducing the two examples recall Theorem 4.3.8, which we adapt here as follows.

Theorem Let F be a subfield of a field K. For any $s \in K$ there is a unique homomorphism from $F[x]$ to K that takes x to s, namely

$$
\begin{aligned}
& \bar{\varphi}: F[x] \longrightarrow K \\
& \sum_{i} a_{i} x^{i} \longmapsto \sum_{i} a_{i} s^{i}
\end{aligned}
$$

Definition 5.2.1. Continuing with the notation of the theorem, if the homomorphism is injective we say that s is transcendental over F. Otherwise s is algebraic over F. The monic generator of the kernel in the theorem is called the minimal polynomial of s.

Proposition 5.2.2. If s is algebraic over F then the minimal polynomial of s is an irreducible polynomial. Consequently, the image of φ as defined in the theorem
is a subfield of K. Thus $F[s]=F(s)$. The dimension $[F(s): F]$ is equal to the degree of the minimal polynomial.

Proof. Suppose that the monic generator of the kernel is $m(x)$ and it factors as $m(x)=f(x) g(x) \in F[x]$. Then $f(s) g(s)=0$ in K. Since K is a field either $f(s)$ or $g(s)$ is zero. Suppose the former. Then $f(x)$ is in the kernel, and is therefore a multiple of $m(x)$. Since $f(x)$ is also a factor of $m(x)$ we must have that $g(x)$ has degree 0 , so it is a constant. This shows that $m(x)$ is irreducible.

Alternatively we can prove the result by noting that $F[x]$ modulo $m(x)$ is isomorphic to its image in K, which must be an integral domain. Thus the kernel must be generated by an irreducible polynomial by Corollary 4.1.10. Moreover, the quotient of $F[x]$ by an irreducible polynomial is a field, so the image of φ is actually a subfield of K. Note that the image of φ consists of polynomials in s. Thus the smallest ring containing F and s is also the smallest field containing F and $s: F[s]=F(s)$. We note also that this is $\left\{\sum_{i=0}^{n-1} a_{i} s^{i}\right\}$ where $n=\operatorname{deg}(m(x))$, since the polynomials of degree less than n form a system of representatives for $F[x] / m(x)$. Since each element of $F[s]$ is uniquely expressed as a polynomial in s of degree less than $\operatorname{deg}(m(x))$, the degree of the extension $F(s) / F$ is equal to $\operatorname{deg}(m(x))$.

Proposition 5.2.3. If K contains some transcendental element over F then $[K$: F] is infinite. Conversely, if K is finite dimensional over F then every element of K is algebraic over F.

Proof. Suppose that $\alpha \in K$ is transcendental over F. Then $F[\alpha]$ is isomorphic to $F[x]$ since it is the image of the injective homomorphism $\varphi: F[x] \longrightarrow K$ that takes x to α and fixes F. In $F[x]$ the powers of x, x^{i}, are linearly independent so $F[x]$ and therefore $F[\alpha]$ are infinite dimensional over F. Since K contains $F[x]$ it is infinite dimensional over F.

Example 5.2.4. Consider the homomorphism $\varphi: \mathbb{Q}[x] \longrightarrow \mathbb{C}$ that takes x to $i=$ $\sqrt{-1}$. This is not injective, the kernel is $x^{2}+1$ and the image is $\mathbb{Q}[i]$, the ring of polynomials in i with rational coefficients. It is isomorphic to $\mathbb{Q}[x] /\left(x^{2}+1\right)$. This is a field because $x^{2}+1$ is irreducible. Thus the field $\mathbb{Q}(i)=\mathbb{Q}[i]$.

Similarly, $\mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}[x] /\left(x^{2}-2\right)$ and $\mathbb{Q}(\sqrt[3]{2}) \cong \mathbb{Q}[x] /\left(x^{3}-2\right)$. The latter example is subtle though. There are three cube roots of 2 in \mathbb{C}, the others are $\sqrt[3]{(2) \omega}$ and $\sqrt[3]{(2) \omega^{2}}$ where $\omega=(1-\sqrt{3} i) / 2$. Define $\varphi: \mathbb{Q}[x] \longrightarrow \mathbb{C}$ by $\varphi(x)=$ $\sqrt[3]{(2) \omega}$. This gives $\mathbb{Q}(\sqrt[3]{2} \omega) \cong \mathbb{Q}[x] /\left(x^{3}-2\right)$. We may do the same for $\sqrt[3]{2} \omega^{2}$, so there are three embeddings of $\mathbb{Q}[x] /\left(x^{3}-2\right)$ in \mathbb{C}.
Example 5.2.5. Consider the homomorphism $\varphi: \mathbb{Q}[x] \longrightarrow \mathbb{C}$ that takes x to e where e is the Euler number $e \approx 2.71$. It is not obvious, but e is transcendental,
not algebraic []. The homomorphism φ is therefore an isomorphism of $\mathbb{Q}[x]$ with its image $\mathbb{Q}[e]$. The smallest field containing $\mathbb{Q}[e]$ is

$$
\mathbb{Q}(e)=\left\{\frac{f(e)}{g(e)}: f(e), g(e) \in \mathbb{Q}[e] \text { and } g(e) \neq 0\right\}
$$

The stipulation that $g(e) \neq 0$ is simply requiring that the coeffiecients of g not all be zero, since no nonzero polynomial in $\mathbb{Q}[x]$ evaluates at e to 0 .

The number $\pi \approx 3.14$ is also transcendental [] so there is an isomorphism between $\mathbb{Q}[x]$ and $\mathbb{Q}[\pi]$ and between $\mathbb{Q}(x)$ and $\mathbb{Q}(\pi)$.

The set of algebraic numbers (the complex numbers algebraic over \mathbb{Q}) is actually countable, while the complex numbers (and therefore the transcendental numbers) are uncountable.[]

Our focus henceforth is on Construction I. Let $m(x)$ be a monic irreducible polynomial of degree $n>1$ over a field F. Let $m(x)=x^{n}+m_{n-1} x^{n-1}+\cdots+$ $m_{1} x+m_{0}$. In the quotient ring $F[x] / m(x)$ the coset $x+\langle m(x)\rangle$ satisfies

$$
\begin{aligned}
(x+ & \langle m(x)\rangle)^{n}+m_{n-1}(x+\langle m(x)\rangle)^{n-1}+m_{n-2}(x+\langle m(x)\rangle)^{n-2}+\cdots \\
& \cdots+m_{2}(x+\langle m(x)\rangle)^{2}+m_{1}(x+\langle m(x)\rangle)+m_{0} \\
& =\left(x^{n}+m_{n-1} x^{n-1}+m_{n-2} x^{n-2}+\cdots+m_{2} x^{2}+m_{1} x+m_{0}\right)+\langle m(x)\rangle \\
& =0+\langle m(x)\rangle
\end{aligned}
$$

In other words, we may think of $m(x)$ as having a root in $F[x] / m(x)$, namely the coset $x+\langle m(x)\rangle$.

It is common therefore to give this coset a new symbol, let's call it α, and to speak of the quotient ring as follows: We adjoin a root α of $m(x)$ to obtain the field $F(\alpha)$ in which $x-\alpha$ is now a factor of $m(x)$. In the polynomial ring $F(\alpha)[x]$, we can then factor $m(x)$ by dividing $m(x)$ by $x-\alpha$. A natural question is whether $m(x) /(x-\alpha)$ is now irreducible, or does it factor completely (into linear factors), or something in between?

The upcoming sections explore this question. It is clear though that if $\operatorname{deg}(m(x))=$ 2 then adjoining a root of $m(x)$ will factor $m(x)$ completely, since the quotient $m(x) /(x-\alpha)$ will be another linear factor.

More generally, over \mathbb{Q}, every extension by a root of a quadratic is isomorphic to $\mathbb{Q}(\sqrt{D})$ for some square free integer D. The exercise below steps through the proof.

Exercises 5.2.6. Let $m(x)=x^{2}+a x+b$ be an irreducible quadratic over \mathbb{Q}.
(a) Use the quadratic formula to find two distinct embeddings of $\mathbb{Q}[x] / m(x)$ into \mathbb{C}.
(b) Show that these two embeddings have the same image (although the image of $x+\langle m(x)\rangle$ itself is different in the two cases.
(c) Show that there is some square free integer D such that $\mathbb{Q}(\sqrt{D})$ is the same field as the one determined by $\mathbb{Q}[x] / m(x)$.
(d) Conclude that every degree 2 extension of \mathbb{Q} is isomorphic to $\mathbb{Q}(\sqrt{D})$ for some square free integer D.
(e) Conclude also that every degree 2 extension of \mathbb{Q} has one non-trivial automorphism.

Finally, we have this relationship between an automorphim of a field extension and the minimal polynomial of an element in the extension.

Proposition 5.2.7. Let K be an extension of F. Let $\alpha \in K$ have minimum polynomial $m(x)$ over F. For any $\sigma \in \operatorname{Aut}(F / K), \sigma(\alpha)$ is also a root of $m(x)$.

Proof. Let $m(x)=x^{d}+m_{d-1} x^{d-1}+\cdots+m_{0}$ be the mimimum polynomial for α over F. Each $m_{i} \in F$ so

$$
\begin{aligned}
\sigma(m(\alpha)) & =\sigma\left(\sum_{i=1}^{n} m_{i} \alpha\right) \\
& =\sum_{i=1}^{n} \sigma\left(m_{i} \alpha\right) \quad \text { since } \sigma \text { respects sums, } \\
& =\sum_{i=1}^{n} m_{i} \sigma(\alpha) \quad \text { since } \sigma \text { respects products and fixes elements of } F \\
& =m(\sigma(\alpha))
\end{aligned}
$$

Since $m(\alpha)=0$ we have $m(\sigma(\alpha))$ is also 0 .

5.3 Finite Fields

In this section we characterize finite fields by proving the existance and uniqueness of a field of order p^{n} for any prime p and $n \in \mathbb{N}$, and by revealing the structure of these fields and of their automorphism groups.

Theorem 5.3.1. Let K be a field with a finite number of elements.
(1) K has p^{n} elements for some prime p and $n \in \mathbb{N}$.
(2) Each element of K is a root of $x^{p^{n}}-x$, so $x^{p^{n}}-x$ factors completely, into distinct linear factors, over K.
(3) There is an element $\eta \in K$ whose powers $\eta^{1}, \eta^{2}, \ldots, \eta^{p^{n}-1}=1$ give all the nonzero elements of K. Consequently, K^{*} is cyclic of order $p^{n}-1$.
(4) K is isomorphic to $\mathbb{F}_{p}[x] / m(x)$ for some irreducible polynomial $m(x)$ of degree n over \mathbb{F}_{p}. Furthermore $m(x)$ is a factor of $x^{p^{n}}-x$.

For any prime p and any positive integer n :
(4) There exists a field with p^{n} elements.
(5) Any two fields with p^{n} elements are isomorphic.

We use $\mathbb{F}_{p^{n}}$ to denote the unique field with p^{n} elements. The automorphism group of $\mathbb{F}_{p^{n}}$ satisfies:
(6) $\operatorname{Aut}\left(\mathbb{F}_{p^{n}}\right)$ is generated by the Frobenius map, $\varphi(\beta)=\beta^{p}$ for $\beta \in \mathbb{F}_{p^{n}}$.
(7) $\operatorname{Aut}\left(\mathbb{F}_{p^{n}}\right) \cong \mathbb{Z} / n$.

As a first step we prove
Proposition 5.3.2. A finite field is a vector space over \mathbb{F}_{p} for some prime p. Consequently, the number of elements of K is a power of p.

Proof. Suppose that K is a finite field. The smallest field contained in K, its prime field, must be \mathbb{F}_{p} for some prime number p.

From the definition of a field we can see that K satisfies the properties for a vector space over \mathbb{F}_{p}. For example: if $a \in \mathbb{F}_{p}$ and $\beta, \gamma \in K$ then $a(\beta+\gamma)=$ $a \beta+a \gamma$ follows from the distributive law, but may be also considered as the property concerning scalar multiplication (by α) of a sum of vectors, $\beta+\gamma$. If the dimension of K over \mathbb{F}_{p} is n then K has a basis u_{1}, \ldots, u_{n} and the elements of K are $a_{1} u_{1}+\ldots, a_{n} u_{n}$ for $a_{i} \in \mathbb{F}_{p}$. Thus K must have p^{n} elements.

Suppose that $q=p^{n}$ is the number of elements in K. By the definition of a field, the set of nonzero elements of K is a group under multiplication. This group is denoted K^{*}. Recall that the order of an element α in a group G is the smallest positive integer r such that α^{r} is the identity, or infinity, if no such r exists. The order of an element divides the order of the group (Lagrange's theorem).

Proposition 5.3.3. Let K be a field with p^{n} elements. The polynomial $x^{p^{n}}-x$ factors completely, into distinct linear factors, over K.

$$
\begin{aligned}
x^{p^{n}-1}-1 & =\prod_{\alpha \in K^{*}}(x-\alpha) \quad \text { and, } \\
x^{p^{n}}-x & =\prod_{\alpha \in K}(x-\alpha)
\end{aligned}
$$

Proof. The multiplicative group K^{*} has $p^{n}-1$ elements, so each element $\alpha \in K^{*}$ has order dividing $p^{n}-1$. Thus each $\alpha \in K^{*}$ is a root of $x^{p^{n}-1}-1$ and each $\alpha \in K$ is a root of $x^{p^{n}}-x$. Since roots correspond to factors of a polynomial, we have p^{n} linear factors of $x^{p^{n}}-x$, one for each element of K. Their product has degree p^{n} so must be equal to $x^{p^{n}}-x$.

Recall the following properties from Theorem 2.2.3 and problems immediately following it.

Theorem Let α be an element of order r in an group G.
(1) $\alpha^{i}=\alpha^{j}$ iff $i \equiv j \bmod r$.
(2) The order of α^{i} is r / d where $d=\operatorname{gcd}(i, r)$.
(3) Let G be abelian. Let $\beta \in G$ have order s, coprime to $r=\operatorname{ord}(\alpha)$. Then $\operatorname{ord}(\alpha \beta)=r s$.
(4) Let G be abelian. If $\alpha_{1}, \ldots, \alpha_{n}$ have orders r_{1}, \ldots, r_{n} where the r_{i} are pairwise coprime, then ord $\left(\prod_{i=1}^{n} \alpha_{i}\right)=\prod_{i=1}^{n} r_{i}$.

Now we can establish item (3) of the Theorem.
Proposition 5.3.4. The multiplicative group of a finite field is cyclic.
Proof. Let K have p^{n} elements and let the prime factorization of $p^{n}-1$ be $\prod_{i=1}^{r} q_{i}^{b_{i}}$. We will show below that for each $i=1 \ldots, r$ there is an element $\eta_{i} \in K^{*}$ of order $q_{i}^{b_{i}}$. Let $\eta=\prod_{i=1}^{r} \eta_{i}$. Since the $q_{i}^{b_{i}}$ are coprime to each other, the theorem above shows that the order of η is $\prod_{i=1}^{r} q_{i}^{b_{i}}=p^{n}-1$. Thus η generates the multiplicative group of K.

Now we prove the claim. Suppose that q is prime and q^{b} appears in the prime factorization of $p^{n}-1$, so q^{b} divides $p^{n}-1$ but q^{b+1} does not. Let $t=\left(p^{n}-1\right) / q^{b}$ and consider the set $S=\left\{\alpha^{t}: \alpha \in K^{*}\right\}$. For any $\beta \in S$ the polynomial $x^{t}-\beta$ has at most t roots so there can be at most t elements of K whose t th power is β. Therefore the cardinality of S is at least $\left(p^{n}-1\right) / t=q^{b}$. On the other hand, everything in S is a root of $x^{q^{b}}-1$ since

$$
\left(\alpha^{t}\right)^{q^{b}}=\alpha^{p^{n}-1}=1
$$

There can be only q^{b} roots of $x^{q^{b}}-1$, so S has at most q^{b} elements. This shows $|S|=q^{b}$. Similarly, at most q^{b-1} of the elements in S can be roots of $x^{q^{b-1}}-1$ so there must be at least $q^{b}-q^{b-1}$ elements of S whose order in K is q^{b}. This shows what we wanted: there is some element of K of order q^{b}.

Definition 5.3.5. An element of a finite field whose powers generate the nonzero elements of the field is called primitive.

Proposition 5.3 .4 says that every finite field has a primitive element. Furthermore, from the lemma, if η is primitive in a field of p^{n} elements then η^{k} is also primitive whenever k is coprime to $p^{n}-1$. Thus there are $\varphi\left(p^{n}-1\right)$ primitive elements, where φ is the Euler totient function $(\varphi(n)$ is the number of positive integers less than n and coprime to n).

To prove item (4) of the Theorem we need to use the minimal polynomial of a primitive element.

Proposition 5.3.6. Let K be a finite field of p^{n} elements. Let η be any primitive element of K, let $\varphi: \mathbb{F}_{p}[x] \longrightarrow K$ take x to η and let $m(x)$ generate the kernel (so $m(x)$ is the minimal polynomial of η over \mathbb{F}_{p}). Then K is isomorphic to $\mathbb{F}_{p}[x] / m(x)$ and $\operatorname{deg} m(x)=n$. Furthermore, $m(x)$ divides $x^{p^{n}}-x$ and $m(x)$ factors completely in K.

Proof. From the first isomorphism theorem, φ gives rise to an isomorphism from $\mathbb{F}_{p}[x] / m(x)$ to its image in K. This image must be a field since $m(x)$ must be irreducible. But the image of φ contains η and therefore all of its powers. Thus the image is all of K and we have $K \cong \mathbb{F}_{p}[x] / m(x)$. The dimension of K is n and the dimension of $\mathbb{F}_{p}[x] / m(x)$ is $\operatorname{deg}(m(x))$ so the degree of $m(x)$ is n.

By Proposition 5.3.3, $x^{p^{n}}-x$ factors into linear factors in K and η is one of the roots. This implies that $x^{p^{n}}-x$ is in the kernel of φ, so $m(x)$ divides $x^{p^{n}}-x$. Since $x^{p^{n}}-x$ factors completely in K so to does $m(x)$.

We can now prove existence and uniqueness for fields of prime power order. We will need the "Freshman's dream":

Proposition 5.3.7. Let α, β be elements of a field of characteristic p. Then $(\alpha+\beta)^{p}=\alpha^{p}+\beta^{p}$.

Proof. Expanding $(\alpha+\beta)^{p}$ using the binomial theorem we get terms like

$$
\binom{p}{k} \alpha^{k} \beta^{p-k}
$$

The binomial coefficient really means 1 added to itself $\binom{p}{k}$ times. Since p divides the binomial coefficient when $1<k<p$ the coefficient is 0 unless $k=0$ or $k=p$. That gives the result.

Proposition 5.3.8. For any prime power there exists a unique field of that order.
Proof. Uniqueness: Let K and K^{\prime} be two fields with p^{n} elements. Let η be a primitive element in K and let $m(x)$ be its minimal polynomial over \mathbb{F}_{p}. The previous proposition showed that η is a root of $x^{p^{n}}-x$, and $m(x)$ divides $x^{p^{n}}-x$. By Proposition 5.3.6, $x^{p^{n}}-x$ factors into distinct linear factors in both K and K^{\prime} so there must be a root of $m(x)$ in K^{\prime}. Call this root η^{\prime}. Then the homomorphism from $\mathbb{F}_{p}[x]$ to K^{\prime} that takes x to η^{\prime} must have image that is a subfield of dimension n in K^{\prime}, and is therefore all of K^{\prime}. By Proposition 5.3.6, both K and K^{\prime} are isomorphic to $\mathbb{F}_{p}[x] / m(x)$ so they are isomorphic to each other.

Existence: By successively factoring $x^{p^{n}}-x$ and adjoining roots of a nonlinear irreducible factor, we can, after a finite number of steps, arrive at a field in which $x^{p^{n}}-x$ factors completely. I show below that the roots of $x^{p^{n}}-x$ form a field. Since the derivative of $x^{p^{n}}-x$ is $-1, x^{p^{n}}-x$ does not have multiple roots, so by the roots-factors theorem it has exactly p^{n} roots. Thus we have a field of p^{n} elements.

To show the roots of $x^{p^{n}}-x$ form a field, we need to show that the sum of two roots is a root, that the additive inverse of a root is a root, that the product of two roots is a root and that the multiplicative inverse of a root is a root. These are all trivial except for the case of the sum of two roots, which can be proved using the "Freshman's dream."

Definition 5.3.9. Let K be a finite field and let $p(x)$ be a polynomial over K. If $p(x)$ is irreducible and the class of x is primitive in $K[x] / p(x)$, then we say $p(x)$ is a primitive polynomial.

Example 5.3.10. There is a unique irreducible polynomial of degree 2 over \mathbb{F}_{2}, $x^{2}+x+1$. Let's use it to construct the field \mathbb{F}_{4} as $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$. Let η be the congruence class $x+\left\langle x^{2}+x+1\right\rangle$, then η is a root of $x^{2}+x+1$. We say that we have adjoined η to \mathbb{F}_{2} to create the field \mathbb{F}_{4}. The elements of \mathbb{F}_{4} are polynomials in
η of degree less than 2: $\mathbb{F}_{4}=\{0,1, \eta, \eta+1\}$. Addition is component-wise (relative to the basis $\{1, \eta\}$). Multiplication must take account of $\eta^{2}=\eta+1$. Here is a multiplication table for this field.

$*$	1	η	$\eta+1$
1	1	η	$\eta+1$
η	η	$\eta+1$	1
$\eta+1$	$\eta+1$	1	η

We can also see that η is a primitive element. Since \mathbb{F}_{4}^{*} has 3 elements, any element besides 1 generates \mathbb{F}_{4}^{*}. An alternative to compute in this field is by making a table of powers of η and the corresponding polynomials in η as follows.

exponential form	polynomial form
1	1
η	η
η^{2}	$\eta+1$

The following example shows that there can be many ways to construct a given field.

Example 5.3.11. Let $p=2$. We can construct the field $\mathbb{F}_{2^{3}}$ by adjoining to \mathbb{F}_{2} a root η of the irreducible polynomial $m(x)=x^{3}+x+1$. Since the degree of $m(x)$ is 3 , the elements of the field will be polynomials of degree less than 3 in η.

Here is the "dictionary" between powers of η and corresponding polynomials in η. We use $\eta^{3}=\eta+1$ to compute successive rows in the table.

exponential form	polynomial form
1	1
η	η
η^{2}	η^{2}
η^{3}	$\eta+1$
η^{4}	$\eta^{2}+\eta$
η^{5}	$\eta^{2}+\eta+1$
η^{6}	$\eta^{2}+1$

The next line in the table would be

$$
\eta^{7}=\eta^{3}+\eta=\eta+1+\eta=1
$$

This is to be expected, since \mathbb{F}_{8}^{*} is a cyclic group of order 7 . Note that every element of \mathbb{F}_{8}^{*} except 1 is primitive, since 7 is prime.

We can use this table to verify that η^{2} is another root of $x^{3}+x+1$

$$
\begin{aligned}
\left(\eta^{2}\right)^{3}+\eta^{2}+1 & =\eta^{6}+\eta^{2}+1 \\
& =0
\end{aligned}
$$

Similarly η^{4} is also a root.

$$
\begin{aligned}
\left(\eta^{4}\right)^{3}+\eta^{4}+1 & =\eta^{12}+\eta^{4}+1 \\
& =\eta^{5}+\eta^{4}+1 \\
& =\left(\eta^{2}+\eta+1\right)+\left(\eta^{2}+\eta\right)+1 \\
& =0
\end{aligned}
$$

The Finite Field Theorem says that there is a unique field of order 8 so every irreducible polynomial of degree 3 over \mathbb{F}_{2} must have roots in the field that we constructed. There are 2 monic irreducible polynomials of degree 3 over $\mathbb{F}_{2}: x^{3}+$ $x+1$, which we used to construct this field, and $x^{3}+x^{2}+1$.

Similar computations show that η^{3}, η^{5} and η^{7} are the roots of $x^{3}+x^{2}+1$.
Here is a multiplication table (omitting 0) for the representation of \mathbb{F}_{8} using $x^{3}+x+1$.

$*$	1	η	$\eta+1$	η^{2}	$\eta^{2}+1$	$\eta^{2}+\eta$	$\eta^{2}+\eta+1$
1	1	η	$\eta+1$	η^{2}	$\eta^{2}+1$	$\eta^{2}+\eta$	$\eta^{2}+\eta+1$
η	η	η^{2}	$\eta^{2}+\eta$	$\eta+1$	1	$\eta^{2}+\eta+1$	$\eta^{2}+1$
$\eta+1$	$\eta+1$	$\eta^{2}+\eta$	$\eta^{2}+1$	$\eta^{2}+\eta+1$	η^{2}	1	η
η^{2}	η^{2}	$\eta+1$	$\eta^{2}+\eta+1$	$\eta^{2}+\eta$	η	$\eta^{2}+1$	1
$\eta^{2}+1$	$\eta^{2}+1$	1	η^{2}	η	$\eta^{2}+\eta+1$	$\eta+1$	$\eta^{2}+\eta$
$\eta^{2}+\eta$	$\eta^{2}+\eta$	$\eta^{2}+\eta+1$	1	$\eta^{2}+1$	$\eta+1$	η	η^{2}
$\eta^{2}+\eta+1$	$\eta^{2}+\eta+1$	$\eta^{2}+1$	η	1	$\eta^{2}+\eta$	η^{2}	$\eta+1$

Now we consider the automorphism group of a finite field. Recall that any automorphism has to take 1 to itself, and must therefore fix the subfield \mathbb{F}_{p}.

Proposition 5.3.12. The automorphism group of $\mathbb{F}_{p^{n}}$ is cyclic of order n, generated by the Frobenius map $\varphi: \alpha \longmapsto \alpha^{p}$.

Proof. The Frobenius map respects addition, by the Freshman's dream, and it clearly respects multiplication: $\varphi(\alpha \beta)=(\alpha \beta)^{p}=\alpha^{p} \beta^{p}=\varphi(\alpha) \varphi(\beta)$. Thus φ is a homomorphism of fields. Since a homomorphism of fields must be injective, and since an injective function on a finite set is also surjective, we conclude that φ is an automorphism.

Repeatedly composing the Frobenius with itself gives other automorphims and one can inductively establish the formula: $\varphi^{t}(\alpha)=\alpha^{p^{t}}$. Since $\mathbb{F}_{p^{n}}^{*}$ has order $p^{n}-1$ we have for $\alpha \neq 0, \varphi^{n}(\alpha)=\alpha^{p^{n}}=\alpha^{p^{n}-1} * a=1 * \alpha=\alpha$.

Thus φ^{n} is the identity map. I claim no lower power of φ is the identity map. Suppose that φ^{r} is the identity automorphism and let η be primitive in $\mathbb{F}_{p^{n}}$. Then $\eta=\varphi^{r}(\eta)=\eta^{p^{r}}$, so $\eta^{p^{r}-1}=1$. Since η is primitive it has order $p^{n}-1$, so we see $r \geq n$ as claimed.

We need to show that there are no other automorphisms of $\mathbb{F}_{p^{n}}$. Let η be primitive, and let $m(x)=x^{n}+m_{n-1} x^{n-1}+\cdots+m_{0}$ be its mimimum polynomial. The lemma showed that $\varphi^{r}(\eta)=\eta^{p^{r}}$ is another root of $m(x)$. Since η is primitive, $\eta, \ldots, \eta^{p^{n-1}}$ are all distinct and thus they form the complete set of roots of $m(x)$.

Let σ be an arbitrary automorphim of $\mathbb{F}_{p^{n}}$. Then σ must take η to one of these other roots of $m(x)$. The action of σ on η determines σ completely, so if $\sigma(\eta)=\eta^{p^{r}}$ then $\sigma=\varphi^{r}$.

In conclusion $\operatorname{Aut}\left(\mathbb{F}_{p^{n}}\right)$ is cyclic of order n, and is generated by φ.
Example 5.3.13. Consider now the degree 3 extension of \mathbb{F}_{3}, the field with 27 elements, \mathbb{F}_{27}. In this field there is just one subfield \mathbb{F}_{3}, so there are 24 elements that have a minimal polynomial of degree 3. Each of these minimal polynomials factors completely in \mathbb{F}_{27} by Proposition $\sqrt{5.3 .6}$. Thus we have $24 / 3=8$ monic irreducible polynomials of degree 3 over \mathbb{F}_{3}.

Another way to count the number of irreducible monic polynomials of degree 3 over \mathbb{F}_{3} is to count the number of monic reducible polynomials and subtract that from the total number of monic polynomials. There are 27 monic polynomials of degree 3 , since we choose 3 coefficients from \mathbb{F}_{3}. A reducible polynomial is either the product of 3 linear factors or the product of a linear and a quadratic irreducible. There are 3 monic linear polynomials, and 3 monic quadratic irreducibles, so 9 possible products. For a product of linear monic polynomials we choose 3 factors with replacement from the 3 linear polynomials, so there are $\binom{3+2}{3}=10$ possibilites. Thus the number of irreducibles shoule be $27-9-10=8$. That checks with our computation from the previous paragraph.

The multiplicative group \mathbb{F}_{27}^{*} is cyclic of order 26 . In $\mathbb{Z} / 26$ the odd numbers, other than 13 , are all generators for the group so there are 12 generators. Consequently in \mathbb{F}_{27}^{*} there are 12 primitive elements. Each is a root of one of the monic irreducible polynomials of degree 3 , so we expect $12 / 3=4$ different primitive monic polynomials of degree 3 .

Here are the monic irreducibles of degree 3 over \mathbb{F}_{3} that are not primitive

$$
\begin{aligned}
& x^{3}+2 x^{2}+2 x+2, \\
& x^{3}+x^{2}+x+2 \\
& x^{3}+2 x+2 \\
& x^{3}+x^{2}+2,
\end{aligned}
$$

and here are the ones that are primitive.

$$
\begin{aligned}
& x^{3}+2 x+1 \\
& x^{3}+2 x^{2}+x+1 \\
& x^{3}+x^{2}+2 x+1 \\
& x^{3}+2 x^{2}+1
\end{aligned}
$$

5.4 Problems

Exercises 5.4.1. Irreducible polynomials over \mathbb{F}_{2}
(a) (Discussion) Find all irreducible polynomials over \mathbb{F}_{2} of degree at most 4. You should justify your list.
(b) (HW) Find all all irreducible polynomials over \mathbb{F}_{2} of degree 5 . Use the list from part (a) to explain your result. Notice any patterns in the list of polynomials.
(c) (HW) Determine how many irreducible polynomials of degree 6 there are over \mathbb{F}_{2} based on part (a). Justify your answer briefly.

Exercises 5.4.2. (Discussion) The field $\mathbb{F}_{2^{3}}$.
(a) Construct the field \mathbb{F}_{8} using one of the polynomials from the previous problem that has the appropriate degree (there are two). Make a table showing the powers of the primitive element, call it η, and the corresponding vector form, using the basis $\left\{1, \eta, \eta^{2}\right\}$.
(b) Show that the polynomial that you did not choose also has roots in \mathbb{F}_{8}.

Exercises 5.4.3. (HW)
(a) One of the irreducible polynomials of degree 4 in 11.1(a) has roots which are not primitive. Which one?
(b) Construct the field with 16 elements using one of the primitive irreducible polynomials of degree 4: Make a table showing the powers of the primitive element, call it η, and the corresponding vector form, using the basis
$\left\{1, \eta, \eta^{2}, \eta^{3}\right\}$. Give also the multiplicative order of each element and its minimal polynomial.
(c) Identify the subfield \mathbb{F}_{4}.
(d) Factor over \mathbb{F}_{4} the irreducible polynomial that you chose to construct \mathbb{F}_{16}.
(e) How many elements of \mathbb{F}_{16} are primitive?

Exercises 5.4.4. (HW) The field $\mathbb{F}_{3^{2}}$.
(a) Write a multiplication table for $\mathbb{F}_{3}[x] /\left\langle x^{2}+x+2\right\rangle$. [You may omit 0 . It may be easier to take the elements in the order $1, x, x+1, x+2$ followed by twice each.]
(b) Find all irreducible polynomials of degree 2 over \mathbb{F}_{3} and find their roots in the table you constructed.

Exercises 5.4.5. (HW) Factoring a polynomial over different fields.
(a) Factor $x^{9}-x$ over \mathbb{F}_{3}.
(b) Factor $x^{5}+x^{4}+1$ over \mathbb{F}_{2} (it is reducible!), \mathbb{F}_{4} and \mathbb{F}_{8}.
(c) Factor $x^{16}-x$ over $\mathbb{F}_{2}, \mathbb{F}_{4}, \mathbb{F}_{8}$ and \mathbb{F}_{16}.

Exercises 5.4.6. Let $n>m$ be positive integers and $d=\operatorname{gcd}(n, m)$. Show that the intersection of $\mathbb{F}_{p^{m}}$ and $\mathbb{F}_{p^{n}}$ is $\mathbb{F}_{p^{d}}$ as follows.
(a) Recall that the remainder $x^{n}-1$ divided by $x^{m}-1$ is $x^{r}-1$ where r is the remainder when n is divided by m.
(b) Show that the gcd of $x^{n}-1$ and $x^{m}-1$ is $x^{d}-1$.
(c) (HW) Combine the previous results and the theorem that the roots of $x^{p^{n}}-x$ are the elements of $\mathbb{F}_{p^{n}}$ to conclude that $\mathbb{F}_{p^{d}}$ is a subfield of $\mathbb{F}_{p^{n}}$ iff d divides n. (Strictly speaking $\mathbb{F}_{p^{n}}$ has a subfield isomorphic to $\mathbb{F}_{p^{d}}$. See 11.10.)

Exercises 5.4.7. (Optional)The field \mathbb{F}_{81}.
(a) (Discussion) The polynomials $x^{2}+x+2$ and $x^{2}+2 x+2$ are both irreducible over \mathbb{F}_{3}. Can you construct \mathbb{F}_{81} by using one of these polynomials and then the other?
(b) (Optional) In a computer algebra system use $m(x)=x^{4}+x+2$ and $r(x)=$ $x^{4}+2 x+2$ to construct two versions of \mathbb{F}_{81}. Using a brute force search, find a root of $m(x)$ in the second field and a root of $r(x)$ in the first field. These give isomorphisms between the two fields. Check by hand that each composition is an automorphism of the appropriate version of \mathbb{F}_{81}.
(c) (Optional) Factor $x^{80}-1$ over \mathbb{F}_{3}. For each irreducible factor $a(x)$, find the roots of $a(x)$ in $\mathbb{F}_{3}[x] / m(x)$.

Exercises 5.4.8. (Optional)The field of 64 elements.
(a) The polynomials $m(x)=x^{6}+x+1$ and $r(x)=x^{6}+x^{5}+x^{4}+x+1$ are both irreducible over \mathbb{F}_{2}. Using a computer algebra system construct two versions of \mathbb{F}_{64}, using $m(x)$ for one and $r(x)$ for the other. Using a brute force search, find a root of $m(x)$ in the second field and a root of $r(x)$ in the first field. These give isomorphisms between the two fields. Check by hand that each composition of the two isomorphisms is an automorphism of the appropriate version of the field.
(b) Factor $x^{63}-1$ over \mathbb{F}_{2}. For each irreducible factor $a(x)$, find the roots of $a(x)$ in $\mathbb{F}_{2}[x] / m(x)$. Use Sage, but also use your understanding of the theory.
(c) The field \mathbb{F}_{64} can also be constructed as an extension of \mathbb{F}_{4}. Construct \mathbb{F}_{4}, then factor $x^{63}-1$ in $\mathbb{F}_{4}[x]$. Choose one of the factors of degree 3 to construct \mathbb{F}_{64}.
(d) Now create \mathbb{F}_{8} using an irreducible polynomial of degree 3 over \mathbb{F}_{2}, then factor $x^{63}-1$, then create \mathbb{F}_{64} using an irreducible polynomial of degree 2 in $\mathbb{F}_{8}[x]$.

Exercises 5.4.9. (Challenge) The number of irreducible polynomials.
(a) Let $a(n)$ denote the number of degree- n irreducible polynomials over \mathbb{F}_{p} for p prim4. Prove that

$$
p^{n}=\sum_{d \mid n} d \cdot a(d) .
$$

Hint: use the result about the factorization of $x^{p^{d}}-x$ factors over $\mathbb{F}_{p^{d}}$ and about subfields of $\mathbb{F}_{p^{n}}$.
(b) Prove that

$$
\lim _{n \rightarrow \infty} \frac{a(n)}{p^{n}}=0
$$

meaning that irreducible polynomials are "sparse" in $\mathbb{F}_{p}[x]$.
Exercises 5.4.10. (Challenge) The algebraic closure of \mathbb{F}_{p}. This problem extends 11.6, which showed that we may consider $\mathbb{F}_{p^{d}}$ as contained in $\mathbb{F}_{p^{n}}$ if and only if $d \mid n$.
(a) Let $\overline{\mathbb{F}}_{p}=\bigcup_{t \geq 1} \mathbb{F}_{p^{t}}$. Prove that F is a field.
(b) Prove that $\overline{\mathbb{F}}_{p}$ is algebraically closed.
(c) Prove that every element of $\overline{\mathbb{F}}_{p}$ is algebraic over \mathbb{F}_{p} so there is no algebraically closed field properly contained in $\overline{\mathbb{F}}_{p}$.
(d) Conclude that $\overline{\mathbb{F}}_{p}$ is the algebraic closure of $\mathbb{F}_{p_{n}}$ for any n.

Exercises 5.4.11.
(a) Make a table showing the possible multiplicative orders and the number of elements of each order for $\mathbb{F}_{64}, \mathbb{F}_{128}$, and \mathbb{F}_{256}. Relate this information to subfields (refer to the previous problem).

Exercises 5.4.12. Irreducible polynomials over \mathbb{F}_{p}. Suppose you have formulas for the number of irreducible monic polynomials of degree m over \mathbb{F}_{p} for each $m<n$. Using some combinatorial arguments you can then compute the number of monic reducible polynomials of degree n. Subtracting this from the number of monic polynomials of degree n yields the number of monic irreducible polynomials of degree n.
(a) Show that the number of monic irreducible quadratics over \mathbb{F}_{p} is $\left(p^{2}-p\right) / 2$.
(b) Show that the number of monic irreducible cubics over \mathbb{F}_{p} is $\left(p^{3}-p\right) / 3$.
(c) You might want to guess at a general formula. A different counting method yields the result more easily than the one above. Try this if you want, noting:

- For $a \in \mathbb{F}_{p^{n}}, a$ is in no proper subfield iff the minimal polynomial for a has degree n.
- Each monic irreducible of degree n has n distinct roots in $\mathbb{F}_{p^{n}}$.

Exercises 5.4.13. For a given prime p, let $I(d)$ be the set of irreducible polynomials of degree d over \mathbb{F}_{p}.
(a) Show that for $n>0$,

$$
\prod_{d \mid n} \prod_{f \in I(d)} f=x^{p^{n}}-x
$$

(b) Show that for any $\alpha \in \mathbb{F}_{q}$,

$$
1+\alpha+\alpha^{2}+\alpha^{3}+\cdots+\alpha^{q-2}=\left\{\begin{array}{l}
1 \text { if } \alpha=0 \\
-1 \text { if } \alpha=1 \\
0 \text { otherwise }
\end{array}\right.
$$

Exercises 5.4.14. Simplifying the task of finding irreducibles.
(a) Let $a \in \mathbb{F}_{q}^{*}$. Show that there is an automophism m_{a} of $\mathbb{F}_{q}[x]$ that fixes elements of \mathbb{F}_{q} and takes x to $a x$.
(b) Argue that $f(x)$ is irreducible if and only if $m_{a}(f(x))$ is.
(c) Show how this may be used to simplify the search for irreducible polynomials of degree d to those of the form $x^{d}+x^{d-1}+\cdots$ or those of the form $x^{d}+$ $0 x^{d-1}+\cdots$
(d) In the second case (the coefficient of x^{d-1} is 0) how can the simplifying technique be extended?
(e) Show that $f(x)$ is primitive if and only if $m_{a}(f(x))$ is primitive.
(f) Apply these result to small fields to find all irreducible polynomials of degree 2,3 or 4 over \mathbb{F}_{q}. Then find the primitive polynomials.

5.5 Algebraic extensions and splitting fields

Throughout this section F is a field. For an irreducible monic $m(x) \in F[x]$ we will speak of the field $F[x] / m(x)$ as the field extension $F(\alpha)$ with α a root of $m(x)$. Here α is the coset $x+m(x)$ in $F[x] / m(x)$, as explained at the end of Section ??. If $n=\operatorname{deg}(m(x))$ then $F(\alpha)$ is a vector space over F of dimension n with basis $1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}$.

Theorem 5.5.1 (Finite Extensions of a Field).
(1) If K is a finite dimensional extension of F (that is $[K: F]$ is finite) then every element of K is algebraic over F. The minimal polynomial of $\alpha \in K$ over F has degree at most $[K: F]$.
(2) If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is a basis for K over F and $\beta_{1}, \beta_{2}, \ldots, \beta_{t}$ is a basis for L over K, then $[L: F]=n t$ and L has the following basis over F,

$$
\left\{\alpha_{i} \beta_{j}: i \in\{1, \ldots, n\} \text { and } j \in\{1, \ldots, t\}\right\}
$$

Proof. (1) This is a consequence of Proposition 5.2.3, but we give a more constructive proof here. Suppose K has dimension n over F. Let $\alpha \in K$. Then $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$ must be linear dependent, so there are elements $m_{0}, m_{1}, \ldots, m_{n} \in$ F, not all 0 , such that

$$
m_{n} \alpha^{n}+m_{n-1} \alpha^{n-1}+\cdots+m_{2} \alpha^{2}+m_{1} \alpha+m_{0}=0
$$

Thus α is a root of some polynomial over F. The minimal polynomial may have lower degree than n but we know that α is algebraic.
(2) Suppose that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is a basis for K over F and $\beta_{1}, \beta_{2}, \ldots, \beta_{t}$ is a basis for L over K. We will show that the following set spans L over F and is also linear independent over F.

$$
\mathcal{B}=\left\{\alpha_{i} \beta_{j}, i \in\{1, \ldots, n\}, j \in\{1, \ldots, t\}\right\}
$$

An arbitrary element of $\gamma \in L$ may be written as $\gamma=c_{1} \beta_{1}+c_{2} \beta_{2}+\cdots+c_{t} \beta_{t}$ where the $c_{i} \in K$. Since each of the c_{j} is in K each can be written as a linear combination of the α_{i} with coefficients from F :

$$
c_{j}=b_{j, 1} \alpha_{1}+b_{j, 2} \alpha_{2}+\cdots+b_{j, n-1} \alpha_{n-1}+b_{j, n} \alpha_{n} \quad \text { with each } b_{j, i} \in F
$$

Substituting we have

$$
\begin{aligned}
\gamma= & \left(b_{1,1} \alpha_{1}+b_{1,2} \alpha_{2}+\cdots+b_{1, n-1} \alpha_{n-1}+b_{1, n} \alpha_{n}\right) \beta_{1} \\
& +\left(b_{2,1} \alpha_{1}+b_{2,2} \alpha_{2}+\cdots+b_{2, n-1} \alpha_{n-1}+b_{2, n} \alpha_{n}\right) \beta_{2} \\
& \cdots \\
& +\left(b_{t-1,1} \alpha_{1}+b_{t-1,2} \alpha_{2}+\cdots+b_{t-1, n-1} \alpha_{n-1}+b_{t-1, n} \alpha_{n}\right) \beta_{t-1} \\
& +\left(b_{t, 1} \alpha_{1}+b_{t, 2} \alpha_{2}+\cdots+b_{t, n-1} \alpha_{n-1}+b_{t, n} \alpha_{n}\right) \beta_{t} \\
= & \sum_{i=1}^{n} \sum_{j=1}^{t} b_{j, i} \alpha_{i} \beta_{j}
\end{aligned}
$$

This shows that \mathcal{B} spans L as a vector space over F.
To esablish linear independence of \mathcal{B} over F suppose $\sum_{i=1}^{n} \sum_{j=1}^{t} b_{j, i} \alpha_{i} \beta_{j}=0$ for some $b_{j, i} \in F$. Then $\sum_{j=1}^{t} \beta_{j}\left(\sum_{i=1}^{n} b_{j, i} \alpha_{i}\right)=0$. Since each of the interior sums, $\sum_{i=1}^{n} b_{j, i} \alpha_{i}$, is an element of K, and the β_{j} are linearly independent over K we must have that each coefficient $\sum_{i=1}^{n} b_{j, i} \alpha_{i}$ is equal to 0 . Since the α_{i} are linearly independent over F and the $b_{j, i}$ are in F we must have each $b_{j, i}=0$. This proves that \mathcal{B} is a linearly independent set of elements in L over F. Thus \mathcal{B} is a basis for L over F.

Corollary 5.5.2. If α and β are both algebraic over F then

$$
[F(\alpha, \beta): F] \leq[F(\alpha): F][F(\beta): F]
$$

In particular if $m_{1}(x)$ is the minimum polynomial of β over F and $m_{2}(x)$ is the minimum polynomial of β over $F(\alpha)$, then $m_{2}(x)$ divides $m_{1}(x)$ (as elements of $F(\alpha)[x]$).

Proof. Let $m_{1}(x)$ be the minimum polynomial of β over F. Let $m_{2}(x)$ be the minimum polynomial of β over $F(\alpha)$. These two polynomials may or may not be the same. It is possible that $m_{2}(x)$ has lower degree and uses coefficients in $F(\alpha)$. In any case, $m_{2}(x)$ is irreducible and it generates the ideal of $F(\alpha)[x]$ consisting of polynomials that vanish when evaluated at β. Since $m_{1}(x)$ is in $F(\alpha)[x]$ and vanishes on β we have that $m_{2}(x)$ divides $m_{1}(x)$. The dimension of $F(\beta)$ over $F(\alpha)$ is $\operatorname{deg}\left(m_{2}(x)\right)$, so

$$
[F(\alpha, \beta): F]=[F(\alpha, \beta): F(\alpha)][F(\alpha), F] \leq[F(\beta), F][F(\alpha), F]
$$

Theorem 5.5.3 (Algebraic Extensions).
(1) Suppose that K is algebraic over F and L is algebraic over K. Then L is also algebraic over F.
(2) Let $S \subseteq K$ be a set of elements in K that are algebraic over $F<K$. Then every element in $F(S)$ is algebraic over F.
(3) Let $F<C$ be a field extension. The set of elements in C that are algebraic over F forms a field.

The first item in the theorem may be interpreted as transitivity for the property of being an algebraic extension.

Proof. (1) Let γ be an arbitrary element of L. We will show γ is algebraic over F by showing it is an element of some finite dimensional extension of F. By Thereom 5.5.1, γ is then algebraic over F.

Since L is algebraic over K there is some minimimal polynomial for γ with coefficients in $K, x^{n}+m_{n-1} x^{n-1}+\cdots m_{2} x^{2}+m_{1} x+m_{0}$ with $m_{i} \in K$.

Since K is algebraic over F, each m_{i} is also a root of a polynomial with coefficients in F, and $\left[F\left(m_{i}\right): F\right]$ is finite. By the previous corollary (applied iteratively to $\left.m_{0}, m_{1}, \ldots, m_{n-1}\right)$,

$$
\left[F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}\right): F\right] \leq \prod_{i=0}^{n-1}\left[F\left(m_{i}\right): F\right]
$$

In particular, $\left[F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}\right): F\right]$ is finite dimensional over F. The minimum polynomial of γ over K actually lies in the field $F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}\right)$. Consequently γ is algebraic over $F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}\right)$, and the extension has dimension $F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}, \gamma\right): F\left(m_{0}, m_{1}, m_{2}, \ldots, m_{n-1}\right)=n$. Thus γ lies in an extension of F of dimension at most $n \prod_{i=0}^{n-1}\left[F\left(m_{i}\right): F\right]$. We have shown γ is in a finite dimensional extension of F, as claimed.

Example 5.5.4. Let $m(x)=x^{2}-2$ and let $p(x)=x^{4}-2$.
Definition 5.5.5. Let $f(x) \in F[x]$ and let K be an extension field of F. We say that $f(x)$ splits over K when $f(x)$ factors completely into a product of linear factors in $K[x]$.

We say that K is a splitting field of $f(x) \in F[x]$ when $f(x)$ splits over K, but it does not split over any proper subfield of K that contains F.

Theorem 5.5.6. Let $f(x) \in F[x]$. A splitting field for $f(x)$ exists, and any two splitting fields for $f(x)$ are isomorphic.

Proof.
Given a finite set of polynomials $S=\left\{f_{1}(x), f_{2}(x), \ldots, f_{t}(x)\right\}$ there exists a field in which all these polynomials factor completely. One simply applies induction, splitting each polynomial in turn. In fact, that is not even necessary, the previous theorem shows that there exists a unique splitting field for this finite set of polynomials, namely the splitting field of the product $f_{1}(x) f_{2}(x) \cdots f_{t}(x)$.

Dealing with an infinite set of polynomials is a bit more complicated.
Proposition 5.5.7. For a field C the following are equivalent.
(1) Each $f(x) \in C[x]$ has a root.
(2) Each $f(x) \in C[x]$ splits in $C[x]$
(3) Each irreducible $f(x) \in C[x]$ is linear.
(4) C has no proper algebraic extensions.

Definition 5.5.8. A field satisfying the properties of the proposition is called algebraically closed.

Proposition 5.5.9. Let C be an algebraic extension of F such that every polynomial in $F[x]$ splits in C. Then C is algebraically closed.

Proof. Let $c(x) \in C[x]$ be irreducible and let $D=C[x] / c(x)$. Then D is algebraic over C and C is algebraic over F, so by transitivity (Theorem 5.5.3), D is algebraic over F. Thus α is algebraic over F. Let $f(x) \in F[x]$ be the minimal polynomial of α. Since $f(x)$ splits in $C[x]$, all of its roots are in C, so $\alpha \in C$. Thus $c(x)$ must be linear (so $D=C$).

Theorem 5.5.10 (Algebraic Closure). For any field F there is a field $C \geq F$ that is algebraic over F and is algebraically closed. Any two such fields are isomorphic.

The algebraic closure of F is usually denoted \bar{F}; we will use that notation henceforth with the exception of \mathbb{C} being the algebraic closure of \mathbb{R}, which is established in the following theorem

Theorem 5.5.11. The field of complex numbers is algebraically closed and is the algebraic closure of \mathbb{R}.

Bibliography

[Hun12] Thomas W. Hungerford, Abstract algebra, Brooks Cole, 2012.
[Ros00] Kenneth H. Rosen, Elementary number theory and its applications, fourth ed., Addison-Wesley, Reading, MA, 2000. MR 1739433

