Mike O'Sullivan
Department of Mathematics
San Diego State University

Math 627A: Modern Algebra I

Homework I

Problem 1: Use the Euclidean algorithm to express the greatest common divisor as a linear combination of the given

- 89,24
- 24, 10, 12
- $f=x^{6}+1$ and $g=x^{4}+x^{3}+x^{2}+1$ as elements of $\mathbb{F}_{2}[x]$.

Problem 2: Use the result that $\operatorname{gcd}(a, b)$ is a linear combination of a and b to prove that $\operatorname{gcd}(a, b, c)=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$.

Problem 3: Write a multiplication table for $\mathbb{F}_{3}[x] /\left\langle x^{2}+x+2\right\rangle$. [You may omit 0. It may be easier to take the elements in the order $1, x, x+1, x+2$ followed by twice each.]

Problem 4: Use a linear system to find the inverse of $x+3$ in $\mathbb{Q}[x] /\left\langle x^{2}+2\right\rangle$.

Problem 5: Let σ be the permutation $\sigma=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 5 & 4 & 1 & 2\end{array}\right)$.

- Write σ in cycle notation.
- Compute σ^{2}.
- Compute σ^{-1}
- Find the order of σ.

Problem 6: Let $\left(U_{n}, *\right)$ be the group of invertible elements of \mathbb{Z}_{n}. Find all n such that $\left(U_{n}, *\right)$ is isomorphic to

- $\left(\mathbb{Z}_{2},+\right)$.
- $\left(\mathbb{Z}_{4},+\right)$.
- $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$.

Problem 7: Define a hemigroup to be a set G with an operation $*$ that is associative, has an identity element, and such that each element has a right inverse. Show that the right of a is also a left inverse of a, so that a hemigroup is actually a group.

