Mike O'Sullivan
Department of Mathematics
San Diego State University

Math 627A: Modern Algebra I

Homework III

Problem 8 For an abelian group A and integer m we let $m A=\{m a: a \in A\}$. Verify for yourself that this is a group. Let p be a prime number.
(a) Show that $p^{a} \mathbb{Z}_{p^{n}} \cong \mathbb{Z}_{p^{n-a}}$ for $a \leq n$. (b) Letting $n=a+b$ in part (a), show that there is an exact sequence

$$
0 \longrightarrow \mathbb{Z}_{p^{b}} \xrightarrow{\cdot p^{a}} \mathbb{Z}_{p^{a+b}} \longrightarrow \mathbb{Z}_{p^{a}} \longrightarrow 0
$$

(b) Show that $p^{a-1} \mathbb{Z}_{p^{n}} / p^{a} \mathbb{Z}_{p^{n}} \cong \mathbb{Z}_{p}$ for $a \leq n$.
(c) Suppose that $A \cong\left(\mathbb{Z}_{p}\right)^{a_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{a_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{a_{n}}$. Show that $p^{t-1} A / p^{t} A \cong\left(\mathbb{Z}_{p}\right)^{a_{t}+\cdots+a_{n}}$.
(d) Conclude the uniqueness part of the classification of finite abelian groups: If

$$
\left(\mathbb{Z}_{p}\right)^{a_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{a_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{a_{n}} \cong\left(\mathbb{Z}_{p}\right)^{b_{1}} \times\left(\mathbb{Z}_{p^{2}}\right)^{b_{2}} \times \cdot \times\left(\mathbb{Z}_{p^{n}}\right)^{b_{n}}
$$

then $a_{i}=b_{i}$. (The a_{i} and b_{i} may be 0 in the isomorphism.)

Problem 9 [H7.8 \#17] Let G be the group of all matrices of the form

$$
\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

with $a, b, c \in \mathbb{Q}$.
(a) Find the center C of G and show that C is isomorphic to the additive group \mathbb{Q}.
(b) Show that the center of G / C is isomorphic to $\mathbb{Q} \times \mathbb{Q}$.
(c) Conclude that G is metabelian.

Problem 10 Let p, q and r be prime and let $n=p^{6} q^{2} r^{4}$.
(a) How many abelian groups are there of order n (up to isomorphism)?
(b) For each i from 1 to 7 find how many of these groups have exactly i invariant factors?

