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1 Definition and key properties of modules

Definition 1.1. A module M over a ring R is an abelian group with R-
multiplication satisfing the following properties.

• 1m = m

• r(r′m) = (rr′)m

• (r + r′)m = rm+ r′m

• r(m+m′) = rm+ rm′

When R is a field, a module is just a vector space over R.

Example 1.2. The direct product R×R×· · ·×R is an abelian group. We
make it into anR-module by introducing theR-multiplication r(r1, . . . , rn) =
(rr1, rr2, . . . , rrn). Check that this satisfies the properties of modules.

If there are t copies of R, we will write Rt for this module.

Example 1.3. Ideals are modules.

Example 1.4. The quotient ring of R by an ideal is a module.

Proposition 1.5. Let M1,M2, . . . ,Mt be modules. Then M1×M2×· · ·×Mt

with component-wise multiplication by R is also a module.
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Naturally, the first things we want to consider are structure preserving
functions and subsets of a module which are modules themselves.

Definition 1.6. A function φ : M → N is a homomorphism of R-modules
when φ is a homomorphism of abelian groups and φ(rm) = rφ(m). It is an
isomorphism when it is also a bijection.

Definition 1.7. A module M is cyclic when it is generated by a single
element. That is, M = Ra for some a ∈M .

A module M is finite free when it is isomorphic to Rt for some t.

The last definition makes you wonder if t is unique. Fortunately it is.

Theorem 1.8. Let R be a finitely generated integral domain. If the R-
module M is isomorphic to Rt and to Rs, then s = t. This number is called
the rank of M .

Proof. (sketch!) The trick is to mod out by a maximal ideal I of R. You
get (R/I)t ∼= (R/I)s. But R/I is a field, so (R/I)s and (R/I)t are vector
spaces. We now use the fact that the dimension of a vector space is well
defined.

Example 1.9. Not all modules are free. For example the ideal 〈x, y〉 in
k[x, y] is not free. There is no common divisor of x and y, so 〈x, y〉 is not
cyclic. Also y(x)− x(y) = 0.

Z/n is a Z-module. It is clearly not free because Z is infinite and Z/n is
finite.

Example 1.10. For I an ideal of R the inclusion map I −→ R is a module
homomorphism.

The quotient map R −→ R/I is also a module homomorphism.

Example 1.11. A principal ideal is a cyclic module. The homomorphism
φa : R −→ R taking 1 to a has image the ideal 〈a〉. If R is an integral
domain then the map is injective, so R is isomorphic to im(φa) = 〈a〉.

Show that in Z/4, the ideal 〈2〉 is cyclic, but not isomorphic to Z/4.

Definition 1.12. A submodule of M is a subgroup K of M that is closed
under multiplication by elements of R, that is rk ∈ K for all k ∈ K.

Example 1.13. An ideal I in R is a submodule of R.

Example 1.14. If I1, I2, . . . , It are ideals in R, then I1 × I2 × · · · × It is a
submodule of Rt.
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Proposition 1.15. Let φ : M −→ N be a homomorphism of modules. Then
ker(φ) is a submodule of M and im(φ) is a submodule of N .

Proposition 1.16. If N is a submodule of M then the quotient group M/N
also has the structure of an R-module.

This leads to the isomorphism theorems:

Theorem 1.17 (First isomorphism, factor). Let φ : M −→ N be a ho-
momorphism of R-modules, and let K = ker(φ). There is a unique homo-
morphism, φ̃ : M/K −→ N such that φ̃ ◦ π = φ where π is the natural
homomorphism M →M/K.

Furthermore, if φ is surjective then φ̃ is an isomorphism.

Theorem 1.18 (Correspondence, third isomorphism). Let K be a submod-
ule of M . There is a one-to-one correspondence between submodules of M/K
and submodules of M containing K.

If N is a submodule of N containing K then M/N ∼= M/K
/
N/K as

R-modules.

2 Generators and relations for a module

We will write elements of Rs as row vectors of length s. Any homomorphism
is assumed to be an R-module homomorphism.

Let M be an s×t matrix of elements of R. Then M defines an R-module
homomorphism fromRs toRt using the usual rules for matrix multiplication.
Conversely, suppose φ is an R-module homomorphism from Rs to Rt. Let
e1, . . . , es be the standard basis for Rs and f1, . . . , ft be the standard basis for
Rt. Write φ(ei) = mi1f1 +mi2f2 + · · ·+mitft. Form the matrix M = [mij ].
By the properties of R-module homomorphisms, φ is agrees with matrix
multiplication by M , φ(x) = xM for any x ∈ Rs.

Definition 2.1. A presentation of a module M is a surjective homomor-
phism from a free module onto M , φ : Rt −→M .

A generators and relations representation of M is a sequence of two
homomorphisms Rs

ψ−→ Rt
φ−→ M such that φ is surjective and ker(φ) =

im(ψ). The image of φ generates M and the kernel of φ is the set of relations
on those generators.

A sequence of homomorphisms M0
φ1−→ M1

φ2−→ . . .
φk−→ Mk is exact

when ker(φi+1) = im(φi) for i = 1, . . . , k − 1.
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A generators and relations representation of M is an exact sequence of
two homomorphisms.

Example 2.2. Consider the ideal 〈x, y〉 in R = k[x, y]. Then

R2 −→ 〈x, y〉[
x
y

]
gives a presentation of 〈x, y〉. A generators and relations representation is

R2 −→ R2 −→ 〈x, y〉[
y −x

] [
x
y

]
Polynomial Rings

Now R = k[x1, . . . , xn]

Definition 2.3. Let F = {f1, . . . , f
s} be elements of R. Consider the

homomorphism

Rt −→ 〈F 〉
ei 7−→ fi

The kernel of this homomorphism is called the syzygy module of F .

For a monomial ideal G = {xα1 , . . . , xαs}, where αi ∈ Nn
0 , let γij =

lcm{αi, αj}. For the presentation Rs −→ 〈G〉 taking basis vector ei to gi
we have elements of the syzygy module S̄ij = xγij−αiei − xγij−αjej . We will
show that these generate the syzygy module.

First, note that any h ∈ R may be written as
∑

β∈Nn
0
hβx

β. Now for
any α ∈ N0 we may shift the indices by α and write h as

∑
β∈Nn

0
h′βx

β−α.
We simply set h′β = 0 if β 6� α and h′β = hα−β if β � α. For example if
h = 1 + 2x + 3y + 5x2 + 4y2 and α = (1, 0) then h′(0,a) = 0 for any a and
h′(1,0) = 1, h′(2,0) = 2, h′(1,1) = 3, h′(3,0) = 5, h′(1,2) = 4.

Let us now work with a monomial ordering < on R. We will call an
element m̄ = (m1, . . . ,ms) of Rs homogogeneous of degree δ (with respect
to the presentation for 〈G〉) when the entries of m are all monomials and
LE(mi) + αi = δ for all nonzero mi.

Proposition 2.4. For G a set of monomials, any element of S(G) may be
written as a sum of homogeneous elements.
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Proof. Let h̄ = (h1, . . . , hs) ∈ S(G). Expand each hi using αi as discussed
above: hi =

∑
β∈N0

hi,βx
β−αi . Then h̄ =

∑
β∈Nn

0
(h1x

β−α1 , . . . , hsx
β−αs)

expresses h̄ as a sum of homogeneous terms. We can see from the following
computation that each of the homogeneous terms is in S(G).

0 =
s∑
i=1

hix
αi

=
s∑
i=1

xαi
∑
β∈Nn

0

hi,βx
β−αi

=
∑
β∈Nn

0

s∑
i=1

hi,βx
β

=
∑
β∈Nn

0

xβ
s∑
i=1

hi,β

Since a polynomial is zero only when each term in its expansion is 0, the
final sum shows that each

∑s
i=1 hi,β = 0.

Theorem 2.5. For a monomial generating set G, the S̄ij generate S(G).

Proof. By the lemma, it is enough to show that any homogeneous element
may be written as a sum of the S̄ij . Let m̄ be homogeneous of degree δ, so
m̄ = (c1xδ−α1 , . . . , csx

δ−αs) with ci ∈ k. We must have δ � αi for any i for
which ci 6= 0. We now argue that if there are two or more nonzero terms, we
can subtract a multiple of some S̄ij , and get another homogeneous element
of S(G) which has fewer nonzero terms. By continuing this process we
eventually get at most one nonzero term. But a vector with exactly one
nonzero term is clearly not in S(G). Thus we end with the 0 vector, and
therefore m̄ can be written as a sum of multiples of the S̄ij .

Suppose ci and cj are nonzero. We know δ � αi, αj so δ � γij . Now

cix
δ−γij S̄ij = cix

δ−γij

(
xγij−αiei − xγij−αjej

)
= cix

δ−αiei − cixδ−αjej

Subtracting from m̄ eliminates the ith term in m̄ and results in a homoge-
neous element of S(G) with one fewer nonzero term.
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Example 2.6. Consider k[x, y] with glex and x > y. Let G = (y2, x2y, x3).
A presentation of 〈G〉 is

R2 −→ 〈G〉 y2

x2y
x3


A representation of the syzygy module for S(G) is

R3 −→ R2 −→ 〈G〉 x2 −y 0
0 x −y
−x3 0 y2

  y2

x2y
x3


The first row of the syzygy matrix is homogeneous of degree (2, 2), the

second is homogeneous of degree (3, 1) and the third is homogeneous of
degree (3, 2). Notice that we used all the syzygys, although the final one
can be expressed as a combination of the first two. The kernel of the left hand
homomorphism is not trivial. You can see that it is generated by (x, y, 1).
A more efficient representation would use just the first two syzygys.

Groebner Bases

Now consder G = (g1, . . . , gs) a Groebner basis for the ideal it generates.
We want to relate the generators and relations representation of 〈G〉 to that
for S(G). Let’s assume the gi are monic; let LE(gi) = αi and let γij =
lcm(αi, αj). We may write any h̄ ∈ Rs as a sum of homogeneous elements
relative to (α1, . . . , αs) as we did in the last section. If δ = maxi{LE(hi) +
αi}, then the LT(h̄) is the vector consisting of the homogeneous terms of
degree δ in h̄.

Recall that the S-polynomial of gi and gj is

S(gi, gj) = xγij−αigi − xγij−αjgj

Since G is a Groeber basis, S(gi, gj)
G−→ 0, and this means that S(gi, gj) =∑

i aigi with LE(aigi) ≤ LE(S(gi, gj)) < γij . The latter inequality comes
from the cancellation of the degree γij terms that occurs in the computations

of S(gi, gj) and the first inequatity is from the definition of G−→. Rewrite
this we get

(xγij−αi − ai)gi + (−xγij−αj − aj)gj −
∑
k 6=i,j

akgk = 0
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so
T̄ij = (xγij−αi − ai)ei + (−xγij−αj − aj)ej −

∑
k 6=i,j

akek

is an element of S(G). The leading term of this element is xγij−αiei +
−xγij−αjej : It is equal to the element S̄ij in the presentation of S(LT(g)).

More generally, suppose that m̄ = (m1, . . . ,ms) is homogeneous of degree
δ in S(LT(G)). Consider f =

∑
migi. This is an element of 〈G〉, so f G−→ 0.

Since m̄ ∈ S(LT(G)), the leading term of f is less than δ. Similar to the
situation for the S-polynomials, f =

∑
migi =

∑
i aigi with LE(aigi) ≤

LE(f) < δ. Then m̄− ā ∈ S(G) and LT(m̄− ā) = m̄.
We have essentially proven this theorem.

Theorem 2.7. Let G = (g1, . . . , gs) be a Groebner basis for the ideal it
generates. Let S̄1, . . . , S̄r be a homogeneous basis for S(LT(G)). There exist
T̄1, . . . T̄r ∈ S(G) with LT(T̄j) = S̄j and these Tj generate S(G).

Example 2.8. Consider k[x, y] with glex and x > y. Let G = (y2−x, x2y−
x, x3 − y3). A representation of 〈LT(G)〉 was given in Example 2.6. Let us
extend this to a representation of 〈G〉.

We have

S(g1, g2) = x2(y2 − x)− y(x2y − x)

= −x3 + xy

= −y(y2 − x)− (x3 − y3)

S(g2, g3) = x(x2y − x)− y(x3 − y3)

= y4 − x2

= (y2 + x)(y2 − x)

A similar computation for S(g1, g3) may be done. From S(g1, g2) we get
T12 = (x2−y, y,−1) ∈ S(G) and from S(g2, g3) we get T23 = (y2+x, x,−y) ∈
S(G). Notic that LT(T12) = S12 and LT(T23) = S23 (using the homogeneity
defined by α1 = (0, 2), α2 = (2, 1), α3 = (3, 0)). We get the following
representation of the syzygy module S(G)

R3 −→ R2 −→ 〈G〉 x2 + y −y 1
y2 + x −x y
−x3 + y3 0 y2 − x

  y2

x2y
x3


As in the previous example, the last syzygy is redundant, a more efficient
representation would use just the first two syzygys.
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