Lecture Notes for Math 627B Modern Algebra
 Modules and Groebner Bases

Michael E. O'Sullivan
mosulliv@math.sdsu.edu
wwww-rohan.sdsu.edu/ ~ mosulliv

March 23, 2009

1 Definition and key properties of modules

Definition 1.1. A module M over a ring R is an abelian group with R multiplication satisfing the following properties.

- $1 m=m$
- $r\left(r^{\prime} m\right)=\left(r r^{\prime}\right) m$
- $\left(r+r^{\prime}\right) m=r m+r^{\prime} m$
- $r\left(m+m^{\prime}\right)=r m+r m^{\prime}$

When R is a field, a module is just a vector space over R.
Example 1.2. The direct product $R \times R \times \cdots \times R$ is an abelian group. We make it into an R-module by introducing the R-multiplication $r\left(r_{1}, \ldots, r_{n}\right)=$ $\left(r r_{1}, r r_{2}, \ldots, r r_{n}\right)$. Check that this satisfies the properties of modules.

If there are t copies of R, we will write R^{t} for this module.
Example 1.3. Ideals are modules.
Example 1.4. The quotient ring of R by an ideal is a module.
Proposition 1.5. Let $M_{1}, M_{2}, \ldots, M_{t}$ be modules. Then $M_{1} \times M_{2} \times \cdots \times M_{t}$ with component-wise multiplication by R is also a module.

Naturally, the first things we want to consider are structure preserving functions and subsets of a module which are modules themselves.

Definition 1.6. A function $\phi: M \rightarrow N$ is a homomorphism of R-modules when ϕ is a homomorphism of abelian groups and $\phi(r m)=r \phi(m)$. It is an isomorphism when it is also a bijection.

Definition 1.7. A module M is cyclic when it is generated by a single element. That is, $M=R a$ for some $a \in M$.

A module M is finite free when it is isomorphic to R^{t} for some t.
The last definition makes you wonder if t is unique. Fortunately it is.
Theorem 1.8. Let R be a finitely generated integral domain. If the R module M is isomorphic to R^{t} and to R^{s}, then $s=t$. This number is called the rank of M.

Proof. (sketch!) The trick is to mod out by a maximal ideal I of R. You get $(R / I)^{t} \cong(R / I)^{s}$. But R / I is a field, so $(R / I)^{s}$ and $(R / I)^{t}$ are vector spaces. We now use the fact that the dimension of a vector space is well defined.

Example 1.9. Not all modules are free. For example the ideal $\langle x, y\rangle$ in $k[x, y]$ is not free. There is no common divisor of x and y, so $\langle x, y\rangle$ is not cyclic. Also $y(x)-x(y)=0$.
\mathbb{Z} / n is a \mathbb{Z}-module. It is clearly not free because \mathbb{Z} is infinite and \mathbb{Z} / n is finite.

Example 1.10. For I an ideal of R the inclusion map $I \longrightarrow R$ is a module homomorphism.

The quotient map $R \longrightarrow R / I$ is also a module homomorphism.
Example 1.11. A principal ideal is a cyclic module. The homomorphism $\phi_{a}: R \longrightarrow R$ taking 1 to a has image the ideal $\langle a\rangle$. If R is an integral domain then the map is injective, so R is isomorphic to $\operatorname{im}\left(\phi_{a}\right)=\langle a\rangle$.

Show that in $\mathbb{Z} / 4$, the ideal $\langle 2\rangle$ is cyclic, but not isomorphic to $\mathbb{Z} / 4$.
Definition 1.12. A submodule of M is a subgroup K of M that is closed under multiplication by elements of R, that is $r k \in K$ for all $k \in K$.

Example 1.13. An ideal I in R is a submodule of R.
Example 1.14. If $I_{1}, I_{2}, \ldots, I_{t}$ are ideals in R, then $I_{1} \times I_{2} \times \cdots \times I_{t}$ is a submodule of R^{t}.

Proposition 1.15. Let $\phi: M \longrightarrow N$ be a homomorphism of modules. Then $\operatorname{ker}(\phi)$ is a submodule of M and $\operatorname{im}(\phi)$ is a submodule of N.

Proposition 1.16. If N is a submodule of M then the quotient group M / N also has the structure of an R-module.

This leads to the isomorphism theorems:
Theorem 1.17 (First isomorphism, factor). Let $\phi: M \longrightarrow N$ be a homomorphism of R-modules, and let $K=\operatorname{ker}(\phi)$. There is a unique homomorphism, $\tilde{\phi}: M / K \longrightarrow N$ such that $\tilde{\phi} \circ \pi=\phi$ where π is the natural homomorphism $M \rightarrow M / K$.

Furthermore, if ϕ is surjective then $\tilde{\phi}$ is an isomorphism.
Theorem 1.18 (Correspondence, third isomorphism). Let K be a submodule of M. There is a one-to-one correspondence between submodules of M / K and submodules of M containing K.

If N is a submodule of N containing K then $M / N \cong M / K / N / K$ as R-modules.

2 Generators and relations for a module

We will write elements of R^{s} as row vectors of length s. Any homomorphism is assumed to be an R-module homomorphism.

Let M be an $s \times t$ matrix of elements of R. Then M defines an R-module homomorphism from R^{s} to R^{t} using the usual rules for matrix multiplication. Conversely, suppose ϕ is an R-module homomorphism from R^{s} to R^{t}. Let e_{1}, \ldots, e_{s} be the standard basis for R^{s} and f_{1}, \ldots, f_{t} be the standard basis for R^{t}. Write $\phi\left(e_{i}\right)=m_{i 1} f_{1}+m_{i 2} f_{2}+\cdots+m_{i t} f_{t}$. Form the matrix $M=\left[m_{i j}\right]$. By the properties of R-module homomorphisms, ϕ is agrees with matrix multiplication by $M, \phi(x)=x M$ for any $x \in R^{s}$.

Definition 2.1. A presentation of a module M is a surjective homomorphism from a free module onto $M, \phi: R^{t} \longrightarrow M$.

A generators and relations representation of M is a sequence of two homomorphisms $R^{s} \xrightarrow{\psi} R^{t} \xrightarrow{\phi} M$ such that ϕ is surjective and $\operatorname{ker}(\phi)=$ $\operatorname{im}(\psi)$. The image of ϕ generates M and the kernel of ϕ is the set of relations on those generators.

A sequence of homomorphisms $M_{0} \xrightarrow{\phi_{1}} M_{1} \xrightarrow{\phi_{2}} \ldots \xrightarrow{\phi_{k}} M_{k}$ is exact when $\operatorname{ker}\left(\phi_{i+1}\right)=\operatorname{im}\left(\phi_{i}\right)$ for $i=1, \ldots, k-1$.

A generators and relations representation of M is an exact sequence of two homomorphisms.

Example 2.2. Consider the ideal $\langle x, y\rangle$ in $R=k[x, y]$. Then

$$
\begin{gathered}
R^{2} \longrightarrow\langle x, y\rangle \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{gathered}
$$

gives a presentation of $\langle x, y\rangle$. A generators and relations representation is

$$
\begin{array}{ccc}
R^{2} & \left.\begin{array}{ll}
\longrightarrow & -x
\end{array}\right] & R^{2} \\
& \\
{\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{array}
$$

Polynomial Rings

Now $R=k\left[x_{1}, \ldots, x_{n}\right]$
Definition 2.3. Let $F=\left\{f_{1}, \ldots, f^{s}\right\}$ be elements of R. Consider the homomorphism

$$
\begin{aligned}
R^{t} & \longrightarrow\langle F\rangle \\
e_{i} & \longmapsto f_{i}
\end{aligned}
$$

The kernel of this homomorphism is called the syzygy module of F.
For a monomial ideal $G=\left\{x^{\alpha_{1}}, \ldots, x^{\alpha_{s}}\right\}$, where $\alpha_{i} \in \mathbb{N}_{0}^{n}$, let $\gamma_{i j}=$ $\operatorname{lcm}\left\{\alpha_{i}, \alpha_{j}\right\}$. For the presentation $R^{s} \longrightarrow\langle G\rangle$ taking basis vector e_{i} to g_{i} we have elements of the syzygy module $\bar{S}_{i j}=x^{\gamma_{i j}-\alpha_{i}} e_{i}-x^{\gamma_{i j}-\alpha_{j}} e_{j}$. We will show that these generate the syzygy module.

First, note that any $h \in R$ may be written as $\sum_{\beta \in \mathbb{N}_{0}^{n}} h_{\beta} x^{\beta}$. Now for any $\alpha \in \mathbb{N}_{0}$ we may shift the indices by α and write h as $\sum_{\beta \in \mathbb{N}_{0}^{n}} h_{\beta}^{\prime} x^{\beta-\alpha}$. We simply set $h_{\beta}^{\prime}=0$ if $\beta \nsucceq \alpha$ and $h_{\beta}^{\prime}=h_{\alpha-\beta}$ if $\beta \succeq \alpha$. For example if $h=1+2 x+3 y+5 x^{2}+4 y^{2}$ and $\alpha=(1,0)$ then $h_{(0, a)}^{\prime}=0$ for any a and $h_{(1,0)}^{\prime}=1, h_{(2,0)}^{\prime}=2, h_{(1,1)}^{\prime}=3, h_{(3,0)}^{\prime}=5, h_{(1,2)}^{\prime}=4$.

Let us now work with a monomial ordering $<$ on R. We will call an element $\bar{m}=\left(m_{1}, \ldots, m_{s}\right)$ of R^{s} homogogeneous of degree δ (with respect to the presentation for $\langle G\rangle$) when the entries of m are all monomials and $\mathrm{LE}\left(m_{i}\right)+\alpha_{i}=\delta$ for all nonzero m_{i}.

Proposition 2.4. For G a set of monomials, any element of $S(G)$ may be written as a sum of homogeneous elements.

Proof. Let $\bar{h}=\left(h_{1}, \ldots, h_{s}\right) \in S(G)$. Expand each h_{i} using α_{i} as discussed above: $h_{i}=\sum_{\beta \in \mathbb{N}_{0}} h_{i, \beta} x^{\beta-\alpha_{i}}$. Then $\bar{h}=\sum_{\beta \in \mathbb{N}_{0}^{n}}\left(h_{1} x^{\beta-\alpha_{1}}, \ldots, h_{s} x^{\beta-\alpha_{s}}\right)$ expresses \bar{h} as a sum of homogeneous terms. We can see from the following computation that each of the homogeneous terms is in $S(G)$.

$$
\begin{aligned}
0 & =\sum_{i=1}^{s} h_{i} x^{\alpha_{i}} \\
& =\sum_{i=1}^{s} x^{\alpha_{i}} \sum_{\beta \in \mathbb{N}_{0}^{n}} h_{i, \beta} x^{\beta-\alpha_{i}} \\
& =\sum_{\beta \in \mathbb{N}_{0}^{n}} \sum_{i=1}^{s} h_{i, \beta} x^{\beta} \\
& =\sum_{\beta \in \mathbb{N}_{0}^{n}} x^{\beta} \sum_{i=1}^{s} h_{i, \beta}
\end{aligned}
$$

Since a polynomial is zero only when each term in its expansion is 0 , the final sum shows that each $\sum_{i=1}^{s} h_{i, \beta}=0$.

Theorem 2.5. For a monomial generating set G, the $\bar{S}_{i j}$ generate $S(G)$.
Proof. By the lemma, it is enough to show that any homogeneous element may be written as a sum of the $\bar{S}_{i j}$. Let \bar{m} be homogeneous of degree δ, so $\bar{m}=\left(c_{1} x^{\delta-\alpha_{1}}, \ldots, c_{s} x^{\delta-\alpha_{s}}\right)$ with $c_{i} \in k$. We must have $\delta \succeq \alpha_{i}$ for any i for which $c_{i} \neq 0$. We now argue that if there are two or more nonzero terms, we can subtract a multiple of some $\bar{S}_{i j}$, and get another homogeneous element of $S(G)$ which has fewer nonzero terms. By continuing this process we eventually get at most one nonzero term. But a vector with exactly one nonzero term is clearly not in $S(G)$. Thus we end with the 0 vector, and therefore \bar{m} can be written as a sum of multiples of the $\bar{S}_{i j}$.

Suppose c_{i} and c_{j} are nonzero. We know $\delta \succeq \alpha_{i}, \alpha_{j}$ so $\delta \succeq \gamma_{i j}$. Now

$$
\begin{aligned}
c_{i} x^{\delta-\gamma_{i j}} \bar{S}_{i j} & =c_{i} x^{\delta-\gamma_{i j}}\left(x^{\gamma_{i j}-\alpha_{i}} e_{i}-x^{\gamma_{i j}-\alpha_{j}} e_{j}\right) \\
& =c_{i} x^{\delta-\alpha_{i}} e_{i}-c_{i} x^{\delta-\alpha_{j}} e_{j}
\end{aligned}
$$

Subtracting from \bar{m} eliminates the i th term in \bar{m} and results in a homogeneous element of $S(G)$ with one fewer nonzero term.

Example 2.6. Consider $k[x, y]$ with glex and $x>y$. Let $G=\left(y^{2}, x^{2} y, x^{3}\right)$. A presentation of $\langle G\rangle$ is

$$
\begin{align*}
& R^{2} \\
& {\left[\begin{array}{c}
y^{2} \\
x^{2} y \\
x^{3}
\end{array}\right]}
\end{align*}
$$

A representation of the syzygy module for $S(G)$ is

$$
\begin{align*}
& R^{3} \\
& {\left[\begin{array}{ccc}
x^{2} & -y & 0 \\
0 & x & -y \\
-x^{3} & 0 & y^{2}
\end{array}\right]}
\end{align*} \begin{array}{cc}
& R^{2}
\end{array} \begin{gathered}
\\
{\left[\begin{array}{c}
y^{2} \\
x^{2} y \\
x^{3}
\end{array}\right]}
\end{gathered}
$$

The first row of the syzygy matrix is homogeneous of degree $(2,2)$, the second is homogeneous of degree $(3,1)$ and the third is homogeneous of degree $(3,2)$. Notice that we used all the syzygys, although the final one can be expressed as a combination of the first two. The kernel of the left hand homomorphism is not trivial. You can see that it is generated by $(x, y, 1)$. A more efficient representation would use just the first two syzygys.

Groebner Bases

Now consder $G=\left(g_{1}, \ldots, g_{s}\right)$ a Groebner basis for the ideal it generates. We want to relate the generators and relations representation of $\langle G\rangle$ to that for $S(G)$. Let's assume the g_{i} are monic; let $L E\left(g_{i}\right)=\alpha_{i}$ and let $\gamma_{i j}=$ $\operatorname{lcm}\left(\alpha_{i}, \alpha_{j}\right)$. We may write any $\bar{h} \in R^{s}$ as a sum of homogeneous elements relative to $\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ as we did in the last section. If $\delta=\max _{i}\left\{\mathrm{LE}\left(h_{i}\right)+\right.$ $\left.\alpha_{i}\right\}$, then the $\operatorname{LT}(\bar{h})$ is the vector consisting of the homogeneous terms of degree δ in \bar{h}.

Recall that the S-polynomial of g_{i} and g_{j} is

$$
S\left(g_{i}, g_{j}\right)=x^{\gamma_{i j}-\alpha_{i}} g_{i}-x^{\gamma_{i j}-\alpha_{j}} g_{j}
$$

Since G is a Groeber basis, $S\left(g_{i}, g_{j}\right) \xrightarrow{G} 0$, and this means that $S\left(g_{i}, g_{j}\right)=$ $\sum_{i} a_{i} g_{i}$ with $\operatorname{LE}\left(a_{i} g_{i}\right) \leq \operatorname{LE}\left(S\left(g_{i}, g_{j}\right)\right)<\gamma_{i j}$. The latter inequality comes from the cancellation of the degree $\gamma_{i j}$ terms that occurs in the computations of $S\left(g_{i}, g_{j}\right)$ and the first inequatity is from the definition of \xrightarrow{G}. Rewrite this we get

$$
\left(x^{\gamma_{i j}-\alpha_{i}}-a_{i}\right) g_{i}+\left(-x^{\gamma_{i j}-\alpha_{j}}-a_{j}\right) g_{j}-\sum_{k \neq i, j} a_{k} g_{k}=0
$$

$$
\bar{T}_{i j}=\left(x^{\gamma_{i j}-\alpha_{i}}-a_{i}\right) e_{i}+\left(-x^{\gamma_{i j}-\alpha_{j}}-a_{j}\right) e_{j}-\sum_{k \neq i, j} a_{k} e_{k}
$$

is an element of $S(G)$. The leading term of this element is $x^{\gamma_{i j}-\alpha_{i}} e_{i}+$ $-x^{\gamma_{i j}-\alpha_{j}} e_{j}$: It is equal to the element $\bar{S}_{i j}$ in the presentation of $S(\operatorname{LT}(g))$.

More generally, suppose that $\bar{m}=\left(m_{1}, \ldots, m_{s}\right)$ is homogeneous of degree δ in $S(\operatorname{LT}(G))$. Consider $f=\sum m_{i} g_{i}$. This is an element of $\langle G\rangle$, so $f \xrightarrow{G} 0$. Since $\bar{m} \in S(\operatorname{LT}(G))$, the leading term of f is less than δ. Similar to the situation for the S-polynomials, $f=\sum m_{i} g_{i}=\sum_{i} a_{i} g_{i}$ with $\mathrm{LE}\left(a_{i} g_{i}\right) \leq$ $\mathrm{LE}(f)<\delta$. Then $\bar{m}-\bar{a} \in S(G)$ and $\operatorname{LT}(\bar{m}-\bar{a})=\bar{m}$.

We have essentially proven this theorem.
Theorem 2.7. Let $G=\left(g_{1}, \ldots, g_{s}\right)$ be a Groebner basis for the ideal it generates. Let $\bar{S}_{1}, \ldots, \bar{S}_{r}$ be a homogeneous basis for $S(\operatorname{LT}(G))$. There exist $\bar{T}_{1}, \ldots \bar{T}_{r} \in S(G)$ with $\operatorname{LT}\left(\bar{T}_{j}\right)=\bar{S}_{j}$ and these T_{j} generate $S(G)$.
Example 2.8. Consider $k[x, y]$ with glex and $x>y$. Let $G=\left(y^{2}-x, x^{2} y-\right.$ $\left.x, x^{3}-y^{3}\right)$. A representation of $\langle\mathrm{LT}(G)\rangle$ was given in Example 2.6. Let us extend this to a representation of $\langle G\rangle$.

We have

$$
\begin{aligned}
S\left(g_{1}, g_{2}\right) & =x^{2}\left(y^{2}-x\right)-y\left(x^{2} y-x\right) \\
& =-x^{3}+x y \\
& =-y\left(y^{2}-x\right)-\left(x^{3}-y^{3}\right) \\
S\left(g_{2}, g_{3}\right) & =x\left(x^{2} y-x\right)-y\left(x^{3}-y^{3}\right) \\
& =y^{4}-x^{2} \\
& =\left(y^{2}+x\right)\left(y^{2}-x\right)
\end{aligned}
$$

A similar computation for $S\left(g_{1}, g_{3}\right)$ may be done. From $S\left(g_{1}, g_{2}\right)$ we get $T_{12}=\left(x^{2}-y, y,-1\right) \in S(G)$ and from $S\left(g_{2}, g_{3}\right)$ we get $T_{23}=\left(y^{2}+x, x,-y\right) \in$ $S(G)$. Notic that $\operatorname{LT}\left(T_{12}\right)=S_{12}$ and $\operatorname{LT}\left(T_{23}\right)=S_{23}$ (using the homogeneity defined by $\left.\alpha_{1}=(0,2), \alpha_{2}=(2,1), \alpha_{3}=(3,0)\right)$. We get the following representation of the syzygy module $S(G)$

$$
\begin{gather*}
R^{3} \longrightarrow \\
\\
{\left[\begin{array}{ccc}
x^{2}+y & -y & 1 \\
y^{2}+x & -x & y \\
-x^{3}+y^{3} & 0 & y^{2}-x
\end{array}\right]}
\end{gather*} \begin{array}{cc}
R^{2} & \longrightarrow \\
{\left[\begin{array}{c}
y^{2} \\
x^{2} y \\
x^{3}
\end{array}\right]}
\end{array}
$$

As in the previous example, the last syzygy is redundant, a more efficient representation would use just the first two syzygys.

