Lecture Notes for Math 627B Modern Algebra The union of disjoint varieties

Michael E. O'Sullivan mosulliv@math.sdsu.edu wwww-rohan.sdsu.edu/~mosulliv

April 27, 2009

1 Definition and key properties of modules

Theorem 1.1. Let $\mathbb{V}(I) = V_1 \cup V_2$ and suppose that $V_1 \cap V_2 = \emptyset$. There are ideals J_1 and J_2 such that $V_i = \mathbb{V}(J_i)$ and $I = J_1J_2 = J_1 \cap J_2$.

Proof. Let $J_1 = I : \mathbb{I}(V_2)$ and $J_2 = I : \mathbb{I}(V_1)$. By the theorem on quotient ideals, $\mathbb{V}(J_i) = V_i$ since, for example, $\mathbb{V}(J_1) = \mathbb{V}(I) \setminus \mathbb{V}(\mathbb{I}(V_2))$.

Since $V_1 \cap V_2 = \emptyset$, J_1 and J_2 are comaximal. Thus $J_1J_2 = J_1 \cap J_2$.

It is clear that $I \subseteq J_1 \cap J_2$, for in general, $I \subseteq I : K$. To prove the reverse containment, let $f \in J_1 \cap J_2$. Since J_1 and J_2 are comaximal, there exist $a \in J_1$ and $b \in J_2$ such that a + b = 1. Since $J_i \subseteq \mathbb{I}(V_i)$, we have $fa \in (J_1 \cap J_2)\mathbb{I}(V_1) \subseteq J_2\mathbb{I}(V_1) \subseteq I$, by the definition of J_2 . Similarly, $fb \in I$, so $f = fa + fb \in I$. This shows $I = J_1 \cap J_2$ as claimed.