Math 627A: Modern Algebra I Homework I

Problem 1: Subgroup lattice diagrams.

- (a) Draw the diagrams for $\mathbb{Z}_4 \times \mathbb{Z}_2$, the Quaternions, Q, and the Alternating Group A_4 .
- (b) Notice that the diagrams that we did in class and the ones you created establish that \mathbb{Z}_8 , \mathbb{Z}_2^3 , $\mathbb{Z}_4 \times \mathbb{Z}_2$, D_4 and Q are pairwise nonisomorphic.
- (c) Use sage to compute the dicyclic group of order 12. Find as many qualities of this group as you can to distinguish it from A_4 and from D_6 .

Problem 2: Automorphisms of \mathbb{Z}_n .

- (a) Prove that $\operatorname{Aut}(\mathbb{Z}_n) \cong U_n$, the group of units in \mathbb{Z}_n .
- (b) Each group U_n is isomorphic to a cyclic group or a direct product of such. For each of n = 8, 9, 10, 11, 12 find the product of cyclic groups that is isomorphic to U_n .

Problem 3: Exercise 1.20 and 2.7b on order:

- (a) If $g \in G$ has order m and $h \in H$ has order n, find the order of $(g, h) \in G \times H$.
- (b) Suppose that $a, b \in G$ commute (that is ab = ba). If ord(a) and ord(b) are coprime find the order of ab.
- (c) Let A be an abelian group such that $\exp(A)$ is finite. Show that there is some $a \in A$ such that $\operatorname{ord}(a) = \exp(A)$.
- (d) Show that S_4 has no element with order equal to $\exp(S_4)$. [Use intelligent brute force.]
- (e) The order of $\pi \in S_n$ is the lcm of the signature list.