Math 627B: Modern Algebra II Homework VI

Due Tu. 11/27, 2012.

Problem 1: Let *F* be a field and let *G* be the subgroup of Gl(F, n) that stabilizes the standard basis vector $\begin{bmatrix} 1\\0\\ \\ \\ 0 \end{bmatrix}$

(a) Show that G has a subgroup H isomorphic to Gl(F, n-1).

- (b) Show that G has a normal subgroup N isomorphic to the additive group F^{n-1} .
- (c) Show G is the semidirect product $N \rtimes H$.

Problem 2: Nonabelian groups of order 2^n .

- (a) For both the quaternions, Q, and the dihedral group with 8 elements, D_4 , the center is isomorphic to \mathbb{Z}_2 and the quotient to $\mathbb{Z}_2 \times \mathbb{Z}_2$. Note that $\mathbb{Z}_2 \times \mathbb{Z}_2$ has 3 nontrivial proper subgroups.
 - Using $D_8/Z(D_8) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, find the subgroups of D_8 corresponding to the 3 proper nontrivial subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$. Find the isomorphism class of each of these subgroups ($\mathbb{Z}_2 \times \mathbb{Z}_2$ or \mathbb{Z}_4 .).
 - Do the same thing for Q.
- (b) Let G be a non-abelian group of order 16. Identify all possibilities for Z the center of G. For each possible center identify the possibilities for G/Z. Give a short justification for your answers.

Problem 3: Let P be a p-Sylow subgroup of G. Let N be a normal subgroup of G. Show that

- (a) $P \cap N$ is a *p*-Sylow subgroup of *N*.
- (b) Show that PN/N is a p-Sylow subgroup of G/N.

Note: If p does not divide |G|, the p-Sylow subgroup of G is the trivial group, $\{e\}$.

Problem 4: In this problem we generalize the result that a group of index 2 must be normal. (You may use the results in Problems 5.1#1,2 in Ash. See also 5.1#8, 9; and 5.5#8,9.)

Let H be a subgroup of a finite group G of index n, so [G:H] = n.

- (a) Let G act on left cosets of H by left multiplication. Let N be the kernel of the action. Show that [G:N] divides n!.
- (b) Suppose in addition that n = p is prime. Show that [G:N] divides (p-1)!.
- (c) Suppose in addition that p is the smallest prime dividing |G|. Show that H is normal in G.