Lecture Notes for Math 627B Modern Algebra Groups, Fields, and Galois Theory

> Michael E. O'Sullivan mosulliv@math.sdsu.edu www-rohan.sdsu.edu/~mosulliv

> > November 10, 2012

Part I

Field Extensions and Galois Theory

16 Field Extensions: Algebraic and Transcendental

Definition 16.1. Let *E* be a field and let *F* be a subset of *E* such that *F* is a field using the operations $*_F$ and $+_F$. We say *F* is a *subfield* of *E* and *E* is an *extension field* of *F*. We will write $F \leq E$.

Observe that if $F \leq K$ then K is a vector space over F. We write [K : F] for the dimension.

Definition 16.2. For $F \leq K$ and $\alpha \in K$, let $F[\alpha]$ be the intersection of all rings containing F and α . Let $F(\alpha)$ be the intersection of all fields containing F and α . Similarly for $S \subseteq K$ let F[S] be the intersection of all rings containing S and F(S) the intersection of all fields containing S.

It is easy to check if we have subfields $F_i \leq K$ for each *i* in some set *I* (not necessarily finite) then the intersection $\bigcap_{i \in I} F_i$ is a subfield of *K*. Similarly we can show that the intersection of a set of subrings R_i of some ring *S* is a subring of *S*. Thus F[S] is a ring and F(S) is a field.

Proposition 16.3. $F[\alpha]$ is the set of all polynomials in α with coefficients from F.

$$F[\alpha] = \left\{ c_0 + c_1 \alpha + \dots + c_d \alpha^d : c_i \in F, d \in \mathbb{N}_0 \right\}$$

 $F(\alpha)$ consists of all quotients of elements in $F[\alpha]$ (with nonzero denominator).

Let $\varphi : F \longrightarrow K$ be a homomorphism of fields. Recall that φ must be injective, so φ is isomorphic to some subfield of K. The following is just a special case of the universal property of polynomial rings.

Proposition 16.4. The universal property of F[x]. Let $\varphi : F \longrightarrow K$ and let α be an element of K. There is a unique homomorphism from F[x] to K taking x to α .

We will call the map of the proposition "the natural map extending φ taking x to α ."

When the map of the proposition is not injective, Proposition 10.4 says that the kernel is generated by a polynomial m(x). We then have an injective homomorphism $F[x]/m(x) \longrightarrow K$. Since K is a field it has no zero divisors, and therefore F[x]/m(x) has no zero divisors. Theorem 9.3 (and Corollay 9.4) imply that F[x]/m(x) must be a field and m(x) must be irreducible.

Definition 16.5. Let F be a subfield of K and let φ be the inclusion map $F \longrightarrow K$. We say that $\alpha \in K$ is *transcendental* over F when the natural map $F[x] \longrightarrow K$ taking x to α is injective. We say α is *algebraic* over F when the natural map taking x to α is not injective. We call the monic polynomial generating the kernel the *minimal polynomial* of α and we denote it by $m_{\alpha}(x)$.

We say that K is an algebraic extension of F (or simply K is algebraic over F) when each element of K is algebraic over F. Otherwise K is transcendental over F.

Proposition 16.6. For $\beta \in K$ algebraic over F, $F[x]/m_{\beta}(x) \cong F[\beta] = F(\beta)$.

Proof. From the discussion before the definition, we know $F[x]/m_{\beta}(x)$ can have no zero divisors, so it must be a field. There is an injective homomorphism $F[x]/m_{\beta}(x) \longrightarrow K$. The image is $F[\beta]$, which is therefore isomorphic to Since $F[x]/m_{\beta}(x)$, and consequently it must also be a subfield of K. Thus $F[\beta] = F(\beta)$.

Proposition 16.7. If K contains some transcendental element over F then [K : F] is infinite. Conversely, if K is finite dimensional over F then every element of K is algebraic over F.

Proof. Let $\alpha \in K$ be transcendental over F. Then $F[\alpha]$ is isomorphic to F[x] and it is already infinite dimensional over F.

Proposition 16.8. Let $F \leq D \leq E$ and $\beta \in E$. Let m(x) be the min poly of β over F and $p(x) \in D[x]$ the min poly over D. Then $p(x) \mid m(x)$.

Proposition 16.9 (Dimension). [K : E][E : F] = [K : F]

Corollary 16.10. If [E : F] = n then each $\beta \in E$ is algebraic of some degree d dividing n.

Proof.

Here is how to find the minimum polynomial of $\beta \in K$ over F. Consider powers of β , 1, β , β^2 , Find the smallest d such that they are linearly dependendent over F. The linear dependency gives the minimal polynomial of β (or some constant multiple of it).

Any finite extension is algebraic, so if we take two finite extensions E/F (this is shorthand we will use to say E is an extension of F) and K/E then since dimensions multiply K/F is also finite dimensional and therefore algebraic.

Proposition 16.11 (Transitivity of algebraic extensions). If $F \leq E$ and $E \leq K$ are both algebraic extensions then so is $F \leq K$. Conversely if $F \leq K$ is algebraic, so are the extensions $F \leq E$ and $E \leq K$.

Proof.

17 Splitting Fields

Definition 17.1. We say f(x) splits in F when it factors into linear factors.

Suppose f(x) does not split in F. Let p(x) be an irreducible factor of f(x). We may form the extension of F, F[x]/p(x). In this extension the class of x is a root of p(x). We will call the construction of this new field "adjoining a root of f(x) (or p(x)) to F".

Example 17.2. $x^3 - 3x + 1 \in \mathbb{Q}[x]$. Factor, after adjoining a root.

Example 17.3. $x^3 - 2 \in \mathbb{Q}[x]$. Factor, after adjoining a root. Factor the remaining irreducible factor.

Here is a subtle issue. Suppose $F \cong \tilde{F}$ and therefore $F[x] \cong \tilde{F}[x]$. Let $f(x) \in F[x]$ be irreducible and let $\tilde{f}(x)$ be the corresponding irreducible in $\tilde{F}[x]$ under the isomorphism. Then $F[x]/f(x) \cong \tilde{F}[x]/\tilde{f}(x)$. Now suppose that E is an extension of F containing a root α of f(x) and that \tilde{E} is an extension of \tilde{F} containing a root α of f(x) and that \tilde{E} is an extension of \tilde{F} containing a root α of f(x) and that \tilde{E} is an extension of \tilde{F} containing a root α of f(x) and that \tilde{E} is an extension of \tilde{F} containing a root α of f(x) and that \tilde{E} is an extension of \tilde{F} containing a root $\tilde{\alpha}$ of $\tilde{f}(x)$. I'm not assuming anything additional about E and \tilde{E} (in particular, no assumed isomorphism between the two). We have $F(\alpha)$ (the subfield of E) is isomorphic to F[x]/f(x) which is isomorphic to $\tilde{F}[x]/\tilde{f}[x]$ and this is isomorphic to $\tilde{F}(\tilde{\alpha})$. So the two subfields $F(\alpha)$ (in E) and $\tilde{F}(\tilde{\alpha})$ (in \tilde{E}) are isomorphic.

Definition 17.4. Let $f(x) \in F[x]$. A splitting field of f(x) is an extension of F in which f(x) splits and for which f(x) does not split in any proper subfield.

Theorem 17.5 (Splitting Field). A splitting field of $f(x) \in F[x]$ exists and any two such fields are isomorphic.

Proof.

Corollary 17.6. The splitting field for $f(x) \in F[x]$ of degree n has dimension at most n! over F.

Proof.

Think about the formulas for the solution of a cubic relative to the question of computing the splitting field of a cubic.

18 Algebraic Closure

Proposition 18.1. For a field C the following are equivalent.

(1) Each $f(x) \in C[x]$ has a root.

- (2) Each $f(x) \in C[x]$ splits in C[x]
- (3) Each irreducible $f(x) \in C[x]$ is linear.
- (4) C has no proper algebraic extensions.

Definition 18.2. A field satisfying the properties of the proposition is called *algebraically closed*.

Proposition 18.3. Let C be an algebraic extension of F such that every polynomial in F[x] splits in C. Then C is algebraically closed.

Proof. Let $c(x) \in C[x]$ be irreducible and let D = C[x]/c(x). The D is algebraic over C and C is algebraic over F, so by transitivity, D is algebraic over F. Thus α is algebraic over F. Let $f(x) \in F[x]$ be the minimal polynomial of α . Since f(x)splits in C[x], all of its roots are in C, so $\alpha \in C$. Thus c(x) must be linear (so D = C).

Theorem 18.4 (Algebraic Closure). For any field F there is a field $C \ge F$ that is algebraic over F and is algebraically closed. Any two such fields are isomorphic.

We will show that the complex field \mathbb{C} is algebraically closed in Theorem ??.

The algebraic closure of F is usually denoted \overline{F} . In Sage QQbar is the algebraic closure of \mathbb{Q} .

19 Separable Extensions

Proposition 19.1. A polynomial $f(x) \in \mathbb{C}[x]$ has repeated roots iff $gcd(f, f') \neq 1$.

Proof. If there is some $a \in \mathbb{C}$ such that $f(x) = (x-a)^2 g(x)$ then (x-a) divides f'(x) (check!). On the other hand, if f(x) = (x-a)g(x) and (x-a) does not divide g(x) then (x-a) does not divide f'(x). Consequently, if f(x) has no repeated roots then gcd(f(x), f'(x)) = 1.

We want to extend this to to arbitrary fields.

Definition 19.2. An irreducible polynomial f(x) of degree d in F[x] that has d distinct roots in its splitting field is called *separable*. An arbitrary polynomial is separable when each of its irreducible factors is.

Definition 19.3. Derivative of f

Example 19.4. Over finite field.

Proposition 19.5 (Properties of the derivative).

Proof.

The repeated roots theorem is valid for any field.

Theorem 19.6. A polynomial $f(x) \in F[x]$ has repeated roots iff gcd(f, f') = 1.

Proposition 19.7. For f(x) irreducible: f(x) is separable iff $f' \neq 0$.

Proof.

Corollary 19.8. Every polynomial over a field of characteristic 0 is separable.

Proof.

Corollary 19.9. Every polynomial in $\mathbb{F}_q[x]$ is separable.

Proof.

Definition 19.10. separable extension, perfect,

The classic example of an inseparable polynomial.

Example 19.11.

Discussion: Suppose that $\varphi : F \longrightarrow E$ is an embedding of F into C, the algebraic closure of E. Then there is an extension of φ to an embedding of E into C. In particular for $E = F[\alpha]$ we may (and must!) take α to a root of $m_{\alpha}(x)$, the minimal polynomial of α in F[x].

Theorem 19.12. Let E/F be an extension of dimension n and let C be an algebraic closure of F. There are at most n distinct embeddings of E into C and there are exactly n embeddings iff E is separable over F.

Proof.

Theorem 19.13. Primitive Element

Proof.

20 Normal Field Extensions

Definition 20.1. A field extension $F \leq E$ satisfying the equivalent conditions in the following theorem is called *normal*.

Theorem 20.2 (Normal Extension). Let $F \leq E \leq C$ be field extensions with E algebraic over F and C the algebraic closure of E. The following are equivalent.

- (1) Each irreducible $m(x) \in F[x]$ that has a root in E splits in E.
- (2) E is the splitting field of some set of polynomials.
- (3) Every embedding of E into C that fixes F has image E, and is therefore an automorphism of E.

Proof. We prove the theorem just for the case where [E : F] is finite. The infinite dimensional case requires some modification of the final step of this proof, esentially reducing to the case of a finite dimensional extension.

(3) \implies (1). Let m(x) be an irreducible in F[x] having a root α in E. Let $\beta \in C$ be another root of m(x); we will show $\beta \in E$. Since β is arbitrary, m(x) splits in E.

We know $F[\alpha] \cong F[\beta]$, because both are isomorphic to F[x]/m(x). Since E is an algebraic extension of F this isomorphism extends to an embedding of E in C. By assumption, the image is E, so in particular $\beta \in E$. (This proof works for infinite extensions.)

(1) \implies (2). Let $\alpha_1, \ldots, \alpha_r$ be such that $E = F[\alpha_1, \ldots, \alpha_r]$. (Here we use finiteness.) Let $m_i(x)$ be the minimal polynomial of α_i over F. By assumption, $m_i(x)$ splits in E, so E contains the splitting field of $m(x) = \prod_{i=1}^r m_i(x)$. On the other hand the splitting field of m(x) contains all the α_i , so it contains the field generated by them, $F[\alpha_1, \ldots, \alpha_r] = E$. Thus E is the splitting field of m(x). (Thus in the finite dimensional case, E is the splitting field of a single polynomial.)

(2) \implies (3) (Assuming finite). Suppose that E is the splitting field of m(x), and let $\alpha_1, \ldots, \alpha_r$ be the roots of m(x). Let $\tau : E \longrightarrow C$ be an embedding of Einto C that fixes F. We have seen that τ must take roots of m(x) to roots of m(x). The roots generate E, so $\tau(E) \subseteq E$. Since τ is an isomorphism onto its image the dimension of $\tau(E)$ over F is equal to [E:F]. Thus $\tau(E) = E$.

Corollary 20.3. Let [E : F] = n. E/F is normal and separable over F iff $|\operatorname{Aut}(E/F)| = n$

Proof. \implies By separability, there are exactly *n* embeddings of *E* into *C* fixing *F*. By normality, these must all be automorphisms of *E*. Thus $|\operatorname{Aut}(E/F)| = n$.

 \Leftarrow By the the theorem on separability, there are at most n embeddings of E into C that fix F, and the number of embeddings is n iff E is separable over F. Consequently, if $|\operatorname{Aut}(E/F)| = n$, then E must be separable and the automorphisms of E fixing F account for all the embeddings of E into C fixing F. Thus E is normal.

Definition 20.4. When E is normal and separable over F, the extension E/F is called *Galois*. In this case, it is common to call the automorphism group $\operatorname{Aut}(E/F)$ the *Galois group* and write $\operatorname{Gal}(E/F)$. (Some authors use $\operatorname{Gal}(E/F)$ for arbitrary algebraic extensions.)

Recall that we showed that for separable extensions we have transitivity. In fact, for $F \leq D \leq E$, E/F is separable iff each of E/D and D/F is separable. Neither implication is true for normality, but we do have the following weaker property.

Proposition 20.5. If E/F is normal then E/D is normal for any $F \leq D \leq E$.

Proof. Suppose E/F is normal. By the normality theorem, there is some set of polynomials, $P \subseteq F[x]$, for which E is the smallest field containing F in the polynomials in P all split. Since $P \subseteq D[x]$, E is the also the smallest field containing D in which the polynomials in P split. So E is normal over D.

Here is an immediate consequence.

Corollary 20.6. Let E/F be Galois. Then E is Galois over any intermediate extension.

21 Galois main theorem

Let E/F be an algebraic field extension and let $G = \operatorname{Aut}(E/F)$. We now consider the relationship between subfields of E containing F and subgroups of G. Define the *fixed field* functor \mathcal{F} and the *fixing group* functor \mathcal{G} by

$$\mathcal{F}(H) = \{ x \in E : \sigma(x) = x \,\forall \, \sigma \in H \}$$
$$\mathcal{G}(D) = \{ \sigma \in G : \sigma(x) = x \,\forall \, x \in D \}$$

Please verify that for D a field with $F \leq D \leq E$, $\mathcal{G}(D)$, which we call the fixing group of D, is a subgroup of G (it is closed under the operation of composition and taking inverses). Similarly, $\mathcal{F}(H)$, which we call the fixed field of H, is indeed a field (closure for both addition and multiplication, and both additive and multiplicative inversion). The following proposition characterizes these functors and their relationship to each other.

Theorem 21.1. Let E/F be an algebraic extension and \mathcal{F} and \mathcal{G} the operations defined above.

- (1) \mathcal{G} and \mathcal{F} are inclusion reversing.
- (2) \mathcal{FG} and \mathcal{GF} are increasing.
- (3) $\mathcal{FGF} = \mathcal{F}$ and $\mathcal{GFG} = \mathcal{G}$.

Proof. Let $F \leq D \leq D' \leq E$. Any $\sigma \in \mathcal{G}(D')$ fixes everything in D', so it must fix each element of D. Thus $\mathcal{G}(D) \geq \mathcal{G}(D')$. Similarly one shows that for $H \leq H' \leq G$, $\mathcal{F}(H) \geq \mathcal{F}(H')$.

Next we want to show that $\mathcal{FG}(D) \geq D$. This is clear: since everything in $\mathcal{G}(D)$ fixes D, the fixed field of $\mathcal{G}(D)$ contains D. The analogous result for \mathcal{GF} is similar.

Applying \mathcal{G} to the result of the previous paragraph, and using item (1), $\mathcal{G}(\mathcal{FG}(D)) \leq \mathcal{G}(D)$. On the other hand, since \mathcal{GF} is increasing, when it is applied to $\mathcal{G}(D)$ we get $\mathcal{GF}(\mathcal{G}(D)) \geq \mathcal{G}(D)$. Thus $\mathcal{GFG} = \mathcal{G}$, and by analogous argument $\mathcal{FGF} = \mathcal{F}$. \Box

The most useful approach to studying the relationship between subfields and subgroups of field automorphisms is to restrict to Galois extensions. In fact, this is not a restrictive restriction. If one wants to study the arbitrary extension E/F, one can first tease apart E/F into a separable part E_s/F and purely inseparable part E_i/F . The purely inseparable part has a trivial automorphism group and $\operatorname{Aut}(E/F) \cong \operatorname{Aut}(E_s/F)$. Thus we reduce to separable extensions. Now, assuming E/F is separable, one can form the normal closure E' of E and get information about $\operatorname{Aut}(E/F)$ from $\operatorname{Aut}(E'/F)$. The details may be found in many standard graduate algebra texts.

We will focus on E/F Galois, but first, here is the key result used in establishing the main theorem of Galois theory. I found this proof in Lang's *Algebra* and he atributes it to Artin.

Proposition 21.2. Let E be any field and let G be a subgroup of Aut(E). Let $F = \{x \in E : \sigma(x) = x \forall \sigma \in G\}.$

- (1) E/F is Galois.
- (2) $\operatorname{Gal}(E/F) = G$.
- (3) [E:F] = |Gal(E/F)| = |G|.

Proof. Let $\alpha \in E$ and let m(x) be the minimal polynomial for α . We will show m(x) factors completely over E with distinct roots. Since α is arbitrary, E/F is Galois.

Let $\alpha = \alpha_1, \alpha_2, \ldots, \alpha_r$ be the orbit of α under G, so each $\alpha_i \in E$. Let $\sigma_i \in G$ be such that $\sigma_i(\alpha) = \alpha_i$. Each $\sigma \in G$ fixes F, so $\sigma(m(x)) = m(x)$. (Here we are implicitly extending σ to an automorphism of E[x] by applying σ to each coefficient.) Furthermore, we have

$$0 = \sigma(m(\alpha)) = m(\sigma(\alpha))$$

so each α_i is a root of m(x). Consequently, $\prod_{i=1}^r (x - \alpha_i)$ divides m(x).

On the other hand, each $\sigma \in G$ permutes the α_i : because $\sigma(\alpha_i) = \sigma(\sigma_i(\alpha)) \in$ orb $(\alpha) = \{\alpha_1, \ldots, \alpha_r\}$. (Of course $\sigma(\alpha_i) = \sigma(\alpha_j)$ is only true for i = j since σ is injective.) Now we have

$$\sigma\Big(\prod_{i=1}^r (x-\alpha_i)\Big) = \prod_{i=1}^r \sigma(x-\alpha_i) = \prod_{i=1}^r (x-\sigma(\alpha_i)) = \prod_{i=1}^r (x-\alpha_i)$$

This shows that $\prod_{i=1}^{r} (x - \alpha_i)$ is fixed under σ for all $\sigma \in G$ and therefore $\prod_{i=1}^{r} (x - \alpha_i) \in F[x]$. Since m(x) is the minimal polynomial of α it must divide $\prod_{i=1}^{r} (x - \alpha_i)$. This shows that $m(x) = \prod_{i=1}^{r} (x - \alpha_i)$ and therefore m(x) has distinct roots and that it splits over E.

Since E/F is separable, the primitive element theorem says that $E = F[\alpha]$ for some α . For this α , and the notation of the previous paragraph,

$$[E:F] = \deg m_{\alpha}(x) = \deg \prod_{i=1}^{r} (x - \alpha_i) \le |G|$$

On the other hand, since E/F is separable, $[E : F] = |\operatorname{Gal}(E/F)| \leq G$. The latter inequality is because each $\sigma \in G$ is, by assumption, an automorphism of E and it fixes F by definition of F. Thus we must have [E : F] = |G| and $G = \operatorname{Gal}(E/F)$.

Now we come to the climax of the theoretical work in this course.

Theorem 21.3 (Galois). Let E/F be a Galois extension and set G = Gal(E/F). Let \mathcal{F} and \mathcal{G} be the fixed field and fixing group functors for this extension.

- (1) \mathcal{F} and \mathcal{G} are inverses of each other.
- (2) For $H \leq G$, $[E : \mathcal{F}(H)] = |H|$, or equivalently, $[\mathcal{F}(H) : F] = [G : H]$.
- (3) \mathcal{F} and \mathcal{G} respect conjugation. For $\sigma \in G$, and $H \leq G$,

$$\mathcal{F}(\sigma H \sigma^{-1}) = \sigma \mathcal{F}(H)$$

(4) \mathcal{F} and \mathcal{G} respect normality in the following sense:

H is normal in $G \iff \mathcal{F}(H)/F$ is a normal extension

Furthermore, if H is normal, $\operatorname{Gal}(\mathcal{F}(H)/F) \cong G/H$.

For items (2)-(4) in the proof, I've expressed the result using \mathcal{F} . As a quick exercise, find the corresponding result for \mathcal{G} , and obtain it directly from the result for \mathcal{F} using item (1).

Proof. Let $H \leq G$. By the proposition, $E/\mathcal{F}(H)$ is Galois, $\operatorname{Gal}(E/\mathcal{F}(H)) = H$, and $[E : \mathcal{F}(H)] = |H|$. This shows that \mathcal{GF} is the identity. It also establishes item (2). We derive $[\mathcal{F}(H) : F] = [G : H]$ from

$$[E:\mathcal{F}(H)][\mathcal{F}(H):F] = [E:F] = |G| = |H|[G:H]$$

Now let $F \leq D \leq E$. By Corollary 20.6, E is Galois over both D and $\mathcal{F}(\mathcal{G}(D))$ and by the proposition,

$$[E:D] = |\operatorname{Gal}(E/D)| = |\mathcal{G}(D)|$$
$$[E:\mathcal{FG}(D)] = |\operatorname{Gal}(E/\mathcal{FG}(D))| = |\mathcal{GFG}(D)|$$

Since $\mathcal{GFG} = \mathcal{G}$ and $D \leq \mathcal{FG}(D)$, we get $D = \mathcal{FG}(D)$. Thus \mathcal{F} and \mathcal{G} are inverses of each other.

Now we consider conjugation by $\sigma \in G$. Let $H \leq G$ and let θ be an arbitrary element of H. An element of $\sigma \mathcal{F}(H)$ may be written $\sigma(x)$ with $x \in \mathcal{F}(H)$. We have

$$\sigma\theta\sigma^{-1}(\sigma(x)) = \sigma(x) \in \mathcal{F}(H)$$

So $\sigma \mathcal{F}(H) \subseteq \mathcal{F}(\sigma H \sigma^{-1})$. Applying this result again we have

$$\mathcal{F}(\sigma H \sigma^{-1}) = \sigma(\sigma^{-1} \mathcal{F}(\sigma H \sigma^{-1})) = \sigma(\mathcal{F}(\sigma^{-1} \sigma H \sigma^{-1} \sigma)) = \sigma \mathcal{F}(H)$$

This establishes item (3).

If H is normal, item (3) gives $\sigma \mathcal{F}(H) = \mathcal{F}(H)$ for all $\sigma \in G$. Any embedding of $\mathcal{F}(H)$ into the algebraic closure of E that fixes F can be extended to E. Since E/F is normal, the only embeddings of E fixing F are automorphisms of F. Consequently, the only embeddings of $\mathcal{F}(H)$ are restrictions of elements of G to $\mathcal{F}(H)$. We have just shown that these all have image $\mathcal{F}(H)$, so $\mathcal{F}(H)$ must be normal.

Conversely, if $\mathcal{F}(H)/F$ is normal, then every embedding of $\mathcal{F}(H)$ into its algebraic closure has image $\mathcal{F}(H)$. Thus for any $\sigma \in G$, $\mathcal{F}(\sigma H \sigma^{-1}) = \sigma \mathcal{F}(H) = \mathcal{F}(H)$. Now apply \mathcal{G} , to get $\sigma H \sigma^{-1} = H$. For any field $D \leq E$ we get a homomorphism $G \longrightarrow \operatorname{Aut}(D/F)$ just by restricting the domain of $\sigma \in G$ to D. For the field $\mathcal{F}(H)$ with H normal the previous result shows that H is in the kernel of $G \longrightarrow \operatorname{Aut}(\mathcal{F}(H)/F) = \operatorname{Gal}(\mathcal{F}(H)/F)$. By the factor theorem we have $G/H \longrightarrow \operatorname{Gal}(\mathcal{F}(H)/F)$. By item (2), and Proposition 21.2,

$$|\operatorname{Gal}(\mathcal{F}(H)/F)| = [\mathcal{F}(H):F] = [G:H] = |G/H|$$

so in fact $G/H \cong \operatorname{Gal}(\mathcal{F}(H)/F)$.

Proposition 21.4. Let E and D be two fields and consider the diagram of fields $E \lor D$ over E and D and $E \cap D$. If D is normal over $D \cap E$ then $D \lor E$ is normal over E.

Proof.