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16 Field Extensions: Algebraic and Transcendental

Definition 16.1. Let E be a field and let F be a subset of E such that F is a
field using the operations ∗F and +F . We say F is a subfield of E and E is an
extension field of F . We will write F ≤ E.

Observe that if F ≤ K then K is a vector space over F . We write [K : F ] for
the dimension.

Definition 16.2. For F ≤ K and α ∈ K, let F [α] be the intersection of all rings
containing F and α. Let F (α) be the intersection of all fields containing F and
α. Similarly for S ⊆ K let F [S] be the intersection of all rings containing S and
F (S) the intersection of all fields containing S.

It is easy to check if we have subfields Fi ≤ K for each i in some set I (not
necessarily finite) then the intersection

⋂
i∈I Fi is a subfield of K. Similarly we can

show that the intersection of a set of subrings Ri of some ring S is a subring of S.
Thus F [S] is a ring and F (S) is a field.

Proposition 16.3. F [α] is the set of all polynomials in α with coefficients from
F .

F [α] =
{
c0 + c1α+ · · ·+ cdα

d : ci ∈ F, d ∈ N0

}
F (α) consists of all quotients of elements in F [α] (with nonzero denominator).

Let ϕ : F −→ K be a homomorphism of fields. Recall that ϕ must be injective,
so ϕ is isomorphic to some subfield of K. The following is just a special case of
the universal property of polynomial rings.

Proposition 16.4. The universal property of F [x]. Let ϕ : F −→ K and let α be
an element of K. There is a unique homomorphism from F [x] to K taking x to α.

We will call the map of the proposition “the natural map extending ϕ taking
x to α.”

When the map of the proposition is not injective, Proposition 10.4 says that
the kernel is generated by a polynomial m(x). We then have an injective ho-
momorphism F [x]/m(x) −→ K. Since K is a field it has no zero divisors, and
therefore F [x]/m(x) has no zero divisors. Theorem 9.3 (and Corollay 9.4) imply
that F [x]/m(x) must be a field and m(x) must be irreducible.

Definition 16.5. Let F be a subfield ofK and let ϕ be the inclusion map F −→ K.
We say that α ∈ K is transcendental over F when the natural map F [x] −→ K
taking x to α is injective. We say α is algebraic over F when the natural map
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taking x to α is not injective. We call the monic polynomial generating the kernel
the minimal polynomial of α and we denote it by mα(x).

We say that K is an algebraic extension of F (or simply K is algebraic over
F ) when each element of K is algebraic over F . Otherwise K is transcendental
over F .

Proposition 16.6. For β ∈ K algebraic over F , F [x]/mβ(x) ∼= F [β] = F (β).

Proof. From the discussion before the definition, we know F [x]/mβ(x) can have
no zero divisors, so it must be a field. There is an injective homomorphism
F [x]/mβ(x) −→ K. The image is F [β], which is therefore isomorphic to Since
F [x]/mβ(x), and consequently it must also be a subfield of K. Thus F [β] =
F (β).

Proposition 16.7. If K contains some transcendental element over F then [K :
F ] is infinite. Conversely, if K is finite dimensional over F then every element of
K is algebraic over F .

Proof. Let α ∈ K be transcendental over F . Then F [α] is isomorphic to F [x] and
it is already infinite dimensional over F .

Proposition 16.8. Let F ≤ D ≤ E and β ∈ E. Let m(x) be the min poly of β
over F and p(x) ∈ D[x] the min poly over D. Then p(x) | m(x).

Proposition 16.9 (Dimension). [K : E][E : F ] = [K : F ]

Corollary 16.10. If [E : F ] = n then each β ∈ E is algebraic of some degree d
dividing n.

Proof.

Here is how to find the minimum polynomial of β ∈ K over F . Consider powers
of β, 1, β, β2, . . . . Find the smallest d such that they are linearly dependendent over
F . The linear dependency gives the minimal polynomial of β (or some constant
multiple of it).

Any finite extension is algebraic, so if we take two finite extensions E/F (this
is shorthand we will use to say E is an extension of F ) and K/E then since
dimensions multiply K/F is also finite dimensional and therefore algebraic.

Proposition 16.11 (Transitivity of algebraic extensions). If F ≤ E and E ≤ K
are both algebraic extensions then so is F ≤ K. Conversely if F ≤ K is algebraic,
so are the extensions F ≤ E and E ≤ K.

Proof.
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17 Splitting Fields

Definition 17.1. We say f(x) splits in F when it factors into linear factors.

Suppose f(x) does not split in F . Let p(x) be an irreducible factor of f(x).
We may form the extension of F , F [x]/p(x). In this extension the class of x is a
root of p(x). We will call the construction of this new field “adjoining a root of
f(x) (or p(x)) to F”.

Example 17.2. x3 − 3x+ 1 ∈ Q[x]. Factor, after adjoining a root.

Example 17.3. x3− 2 ∈ Q[x]. Factor, after adjoining a root. Factor the remaining
irreducible factor.

Here is a subtle issue. Suppose F ∼= F̃ and therefore F [x] ∼= F̃ [x]. Let f(x) ∈
F [x] be irreducible and let f̃(x) be the corresponding irreducible in F̃ [x] under the
isomorphism. Then F [x]/f(x) ∼= F̃ [x]/f̃(x). Now supppose that E is an extension
of F containing a root α of f(x) and that Ẽ is an extension of F̃ containing a root
α̃ of f̃(x). I’m not assuming anything additional about E and Ẽ (in particular,
no assumed isomorphism between the two). We have F (α) (the subfield of E) is
isomorphic to F [x]/f(x) which is isomorphic to F̃ [x]/f̃ [x] and this is isomorphic
to F̃ (α̃). So the two subfields F (α) (in E) and F̃ (α̃) (in Ẽ) are isomorphic.

Definition 17.4. Let f(x) ∈ F [x]. A splitting field of f(x) is an extension of F
in which f(x) splits and for which f(x) does not split in any proper subfield.

Theorem 17.5 (Splitting Field). A splitting field of f(x) ∈ F [x] exists and any
two such fields are isomorphic.

Proof.

Corollary 17.6. The splitting field for f(x) ∈ F [x] of degree n has dimension at
most n! over F .

Proof.

Think about the formulas for the solution of a cubic relative to the question of
computing the splitting field of a cubic.

18 Algebraic Closure

Proposition 18.1. For a field C the following are equivalent.

(1) Each f(x) ∈ C[x] has a root.
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(2) Each f(x) ∈ C[x] splits in C[x]

(3) Each irreducible f(x) ∈ C[x] is linear.

(4) C has no proper algebraic extensions.

Definition 18.2. A field satisfying the properties of the proposition is called
algebraically closed.

Proposition 18.3. Let C be an algebraic extension of F such that every polyno-
mial in F [x] splits in C. Then C is algebraically closed.

Proof. Let c(x) ∈ C[x] be irreducible and let D = C[x]/c(x). The D is algebraic
over C and C is algebraic over F , so by transitivity, D is algebraic over F . Thus α
is algebraic over F . Let f(x) ∈ F [x] be the minimal polynomial of α. Since f(x)
splits in C[x], all of its roots are in C, so α ∈ C. Thus c(x) must be linear (so
D = C).

Theorem 18.4 (Algebraic Closure). For any field F there is a field C ≥ F that
is algebraic over F and is algebraically closed. Any two such fields are isomorphic.

We will show that the complex field C is algebraically closed in Theorem ??.
The algebraic closure of F is usually denoted F . In Sage QQbar is the algebraic

closure of Q.

19 Separable Extensions

Proposition 19.1. A polynomial f(x) ∈ C[x] has repeated roots iff gcd(f, f ′) 6= 1.

Proof. If there is some a ∈ C such that f(x) = (x − a)2g(x) then (x − a) divides
f ′(x) (check!). On the other hand, if f(x) = (x−a)g(x) and (x−a) does not divide
g(x) then (x − a) does not divide f ′(x). Consequently, if f(x) has no repeated
roots then gcd(f(x), f ′(x)) = 1.

We want to extend this to to arbitrary fields.

Definition 19.2. An irreducible polynomial f(x) of degree d in F [x] that has d
distinct roots in its splitting field is called separable. An arbitrary polynomial is
separable when each of its irreducible factors is.

Definition 19.3. Derivative of f

Example 19.4. Over finite field.
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Proposition 19.5 (Properties of the derivative).

Proof.

The repeated roots theorem is valid for any field.

Theorem 19.6. A polynomial f(x) ∈ F [x] has repeated roots iff gcd(f, f ′) = 1.

Proposition 19.7. For f(x) irreducible: f(x) is separable iff f ′ 6= 0.

Proof.

Corollary 19.8. Every polynomial over a field of characteristic 0 is separable.

Proof.

Corollary 19.9. Every polynomial in Fq[x] is separable.

Proof.

Definition 19.10. separable extension, perfect,

The classic example of an inseparable polynomial.

Example 19.11.

Discussion: Suppose that ϕ : F −→ E is an embedding of F into C, the
algebraic closure of E. Then there is an extension of ϕ to an embedding of E into
C. In particular for E = F [α] we may (and must!) take α to a root of mα(x), the
minimal polynomial of α in F [x].

Theorem 19.12. Let E/F be an extension of dimension n and let C be an alge-
braic closure of F . There are at most n distinct embeddings of E into C and there
are exactly n embeddings iff E is separable over F .

Proof.

Theorem 19.13. Primitive Element

Proof.
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20 Normal Field Extensions

Definition 20.1. A field extension F ≤ E satisfying the equivalent conditions in
the following theorem is called normal.

Theorem 20.2 (Normal Extension). Let F ≤ E ≤ C be field extensions with E
algebraic over F and C the algebraic closure of E. The following are equivalent.

(1) Each irreducible m(x) ∈ F [x] that has a root in E splits in E.

(2) E is the splitting field of some set of polynomials.

(3) Every embedding of E into C that fixes F has image E, and is therefore an
automorphism of E.

Proof. We prove the theorem just for the case where [E : F ] is finite. The infinite
dimensional case requires some modification of the final step of this proof, esentially
reducing to the case of a finite dimensional extension.

(3) =⇒ (1). Let m(x) be an irreducible in F [x] having a root α in E. Let
β ∈ C be another root of m(x); we will show β ∈ E. Since β is arbitrary, m(x)
splits in E.

We know F [α] ∼= F [β], because both are isomorphic to F [x]/m(x). Since E
is an algebraic extension of F this isomorphism extends to an embedding of E in
C. By assumption, the image is E, so in particular β ∈ E. (This proof works for
infinite extensions.)

(1) =⇒ (2). Let α1, . . . αr be such that E = F [α1, . . . , αr]. (Here we use
finiteness.) Let mi(x) be the minimal polynomial of αi over F . By assumption,
mi(x) splits in E, so E contains the splitting field of m(x) =

∏r
i=1mi(x). On

the other hand the splitting field of m(x) contains all the αi, so it contains the
field generated by them, F [α1, . . . , αr] = E. Thus E is the splitting field of m(x).
(Thus in the finite dimensional case, E is the splitting field of a single polynomial.)

(2) =⇒ (3) (Assuming finite). Suppose that E is the splitting field of m(x),
and let α1, . . . , αr be the roots of m(x). Let τ : E −→ C be an embedding of E
into C that fixes F . We have seen that τ must take roots of m(x) to roots of m(x).
The roots generate E, so τ(E) ⊆ E. Since τ is an isomorphism onto its image the
dimension of τ(E) over F is equal to [E : F ]. Thus τ(E) = E.

Corollary 20.3. Let [E : F ] = n. E/F is normal and separable over F iff
|Aut(E/F )| = n

Proof. =⇒ By separability, there are exactly n embeddings of E into C fixing F .
By normality, these must all be automorphisms of E. Thus |Aut(E/F )| = n.
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⇐= By the the theorem on separability, there are at most n embeddings of
E into C that fix F , and the number of embeddings is n iff E is separable over
F . Consequently, if |Aut(E/F )| = n, then E must be separable and the automor-
phisms of E fixing F account for all the embeddings of E into C fixing F . Thus
E is normal.

Definition 20.4. When E is normal and separable over F , the extension E/F is
called Galois. In this case, it is common to call the automorphism group Aut(E/F )
the Galois group and write Gal(E/F ). (Some authors use Gal(E/F ) for arbitrary
algebraic extensions.)

Recall that we showed that for separable extensions we have transitivity. In
fact, for F ≤ D ≤ E, E/F is separable iff each of E/D and D/F is separable.
Neither implication is true for normality, but we do have the following weaker
property.

Proposition 20.5. If E/F is normal then E/D is normal for any F ≤ D ≤ E.

Proof. Suppose E/F is normal. By the normality theorem, there is some set of
polynomials, P ⊆ F [x], for which E is the smallest field containing F in the poly-
nomials in P all split. Since P ⊆ D[x], E is the also the smallest field containing
D in which the polynomials in P split. So E is normal over D.

Here is an immediate consequence.

Corollary 20.6. Let E/F be Galois. Then E is Galois over any intermediate
extension.

21 Galois main theorem

Let E/F be an algebraic field extension and let G = Aut(E/F ). We now consider
the relationship between subfields of E containing F and subgroups of G. Define
the fixed field functor F and the fixing group functor G by

F(H) = {x ∈ E : σ(x) = x ∀σ ∈ H}
G(D) = {σ ∈ G : σ(x) = x ∀x ∈ D}

Please verify that for D a field with F ≤ D ≤ E, G(D), which we call the fixing
group of D, is a subgroup of G (it is closed under the operation of composition
and taking inverses). Similarly, F(H), which we call the fixed field of H, is indeed
a field (closure for both addition and multiplication, and both additive and mul-
tiplicative inversion). The following proposition characterizes these functors and
their relationship to each other.

57



Theorem 21.1. Let E/F be an algebraic extension and F and G the operations
defined above.

(1) G and F are inclusion reversing.

(2) FG and GF are increasing.

(3) FGF = F and GFG = G.

Proof. Let F ≤ D ≤ D′ ≤ E. Any σ ∈ G(D′) fixes everything in D′, so it must fix
each element of D. Thus G(D) ≥ G(D′). Similarly one shows that for H ≤ H ′ ≤ G,
F(H) ≥ F(H ′).

Next we want to show that FG(D) ≥ D. This is clear: since everything in
G(D) fixes D, the fixed field of G(D) contains D. The analogous result for GF is
similar.

Applying G to the result of the previous paragraph, and using item (1), G(FG(D)) ≤
G(D). On the other hand, since GF is increasing, when it is applied to G(D) we get
GF(G(D)) ≥ G(D). Thus GFG = G, and by analogous argument FGF = F .

The most useful approach to studying the relationship between subfields and
subgroups of field automorphisms is to restrict to Galois extensions. In fact, this
is not a restrictive restriction. If one wants to study the arbitrary extension E/F ,
one can first tease apart E/F into a separable part Es/F and purely inseparable
part Ei/F . The purely inseparable part has a trivial automorphism group and
Aut(E/F ) ∼= Aut(Es/F ). Thus we reduce to separable extensions. Now, assuming
E/F is separable, one can form the normal closure E′ of E and get information
about Aut(E/F ) from Aut(E′/F ). The details may be found in many standard
graduate algebra texts.

We will focus on E/F Galois, but first, here is the key result used in establishing
the main theorem of Galois theory. I found this proof in Lang’s Algebra and he
atributes it to Artin.

Proposition 21.2. Let E be any field and let G be a subgroup of Aut(E). Let
F = {x ∈ E : σ(x) = x ∀σ ∈ G}.

(1) E/F is Galois.

(2) Gal(E/F ) = G.

(3) [E : F ] = |Gal(E/F )| = |G|.

Proof. Let α ∈ E and let m(x) be the minimal polynomial for α. We will show
m(x) factors completely over E with distinct roots. Since α is arbitrary, E/F is
Galois.
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Let α = α1, α2, . . . , αr be the orbit of α under G, so each αi ∈ E. Let σi ∈ G
be such that σi(α) = αi. Each σ ∈ G fixes F , so σ(m(x)) = m(x). (Here we
are implicitly extending σ to an automorphism of E[x] by applying σ to each
coefficient.) Furthermore, we have

0 = σ(m(α)) = m(σ(α))

so each αi is a root of m(x). Consequently,
∏r
i=1(x− αi) divides m(x).

On the other hand, each σ ∈ G permutes the αi: because σ(αi) = σ(σi(α)) ∈
orb(α) = {α1, . . . , αr}. (Of course σ(αi) = σ(αj) is only true for i = j since σ is
injective.) Now we have

σ
( r∏
i=1

(x− αi)
)

=

r∏
i=1

σ(x− αi) =

r∏
i=1

(x− σ(αi)) =

r∏
i=1

(x− αi)

This shows that
∏r
i=1(x−αi) is fixed under σ for all σ ∈ G and therefore

∏r
i=1(x−

αi) ∈ F [x]. Since m(x) is the minimal polynomial of α it must divide
∏r
i=1(x−αi).

This shows that m(x) =
∏r
i=1(x − αi) and therefore m(x) has distinct roots and

that it splits over E.
Since E/F is separable, the primitive element theorem says that E = F [α] for

some α. For this α, and the notation of the previous paragraph,

[E : F ] = degmα(x) = deg
r∏
i=1

(x− αi) ≤ |G|

On the other hand, since E/F is separable, [E : F ] = |Gal(E/F )| ≤ G. The
latter inequality is because each σ ∈ G is, by assumption, an automorphism of
E and it fixes F by definition of F . Thus we must have [E : F ] = |G| and
G = Gal(E/F ).

Now we come to the climax of the theoretical work in this course.

Theorem 21.3 (Galois). Let E/F be a Galois extension and set G = Gal(E/F ).
Let F and G be the fixed field and fixing group functors for this extension.

(1) F and G are inverses of each other.

(2) For H ≤ G, [E : F(H)] = |H|, or equivalently, [F(H) : F ] = [G : H].

(3) F and G respect conjugation. For σ ∈ G, and H ≤ G,

F(σHσ−1) = σF(H)
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(4) F and G respect normality in the following sense:

H is normal in G ⇐⇒ F(H)/F is a normal extension

Furthermore, if H is normal, Gal(F(H)/F ) ∼= G/H.

For items (2)-(4) in the proof, I’ve expressed the result using F . As a quick
exercise, find the corresponding result for G, and obtain it directly from the result
for F using item (1).

Proof. Let H ≤ G. By the proposition, E/F(H) is Galois, Gal(E/F(H)) = H,
and [E : F(H)] = |H|. This shows that GF is the identity. It also establishes
item (2). We derive [F(H) : F ] = [G : H] from

[E : F(H)][F(H) : F ] = [E : F ] = |G| = |H|[G : H]

Now let F ≤ D ≤ E. By Corollary 20.6, E is Galois over both D and F(G(D))
and by the proposition,

[E : D] = |Gal(E/D)| = |G(D)|
[E : FG(D)] = |Gal(E/FG(D))| = |GFG(D)|

Since GFG = G and D ≤ FG(D), we get D = FG(D). Thus F and G are inverses
of each other.

Now we consider conjugation by σ ∈ G. Let H ≤ G and let θ be an arbitrary
element of H. An element of σF(H) may be written σ(x) with x ∈ F(H). We
have

σθσ−1(σ(x)) = σ(x) ∈ F(H)

So σF(H) ⊆ F(σHσ−1). Applying this result again we have

F(σHσ−1) = σ(σ−1F(σHσ−1)) = σ(F(σ−1σHσ−1σ)) = σF(H)

This establishes item (3).
If H is normal, item (3) gives σF(H) = F(H) for all σ ∈ G. Any embedding

of F(H) into the algebraic closure of E that fixes F can be extended to E. Since
E/F is normal, the only embedddings of E fixing F are automorphisms of F .
Consequently, the only embeddings of F(H) are restrictions of elements of G to
F(H). We have just shown that these all have image F(H), so F(H) must be
normal.

Conversely, if F(H)/F is normal, then every embedding of F(H) into its alge-
braic closure has image F(H). Thus for any σ ∈ G, F(σHσ−1) = σF(H) = F(H).
Now apply G, to get σHσ−1 = H.

60



For any field D ≤ E we get a homomorphism G −→ Aut(D/F ) just by restrict-
ing the domain of σ ∈ G to D. For the field F(H) with H normal the previous
result shows that H is in the kernel of G −→ Aut(F(H)/F ) = Gal(F(H)/F ). By
the factor theorem we have G/H −→ Gal(F(H)/F ). By item (2), and Proposi-
tion 21.2,

|Gal(F(H)/F )| = [F(H) : F ] = [G : H] = |G/H|

so in fact G/H ∼= Gal(F(H)/F ).

Proposition 21.4. Let E and D be two fields and consider the diagram of fields
E ∨D over E and D and E ∩D. If D is normal over D∩E then D∨E is normal
over E.

Proof.

61


