
Lecture Notes for Math 627A

Modern Algebra

Notes on the Isomorphism Theorems for Groups

Michael E. O’Sullivan
mosulliv@math.sdsu.edu

www-rohan.sdsu.edu/ ˜ mosulliv

October 17, 2012



1 Fundamental Results: Up to the First Isomorphism
Theorem

The material up to the first isomorphism theorem deals with basic properties of

(1) Groups

(2) Homomorphisms of groups

(3) Injective homomorphisms (subgroups)

(4) Surjective homomorphisms (quotient groups)

Let’s discuss (3). Suppose H is a subgroup of G. There is a function from H
to G, which is called the inclusion map, that simply takes h ∈ H to itself, as an
element of G. Since H is a subgroup of G (it’s multiplication is the same as the
one on G), the inclusion map is an injective homomorphism from H to G.

On the other hand, suppose that H and G are arbitrary groups and that
ϕ : H −→ G is an injective homomorpism. The first exercise below shows, in
particular, that ϕ(H) is a subgroup of G. Thus ϕ : H −→ ϕ(H) is a bijective
homomorphism. This shows that the image of an injective homomorphism ϕ :
H −→ G is a subgroup that is isomorphic to H. Thus, the study of injective
homomorphisms is essentially the study of subgroups.

After studying subgroups, we defined normal subgroup and showed several
equivalent properties determining that a subgroup is normal. If N is normal in
G, we can define a quotient group G/N . The first isomorphism theorem shows
that for any surjective homomorphism ϕ : G −→ H, the codomain is essentially a
quotient of G.

Theorem 1.1 (First Isomorphism). Let ϕ : G −→ H be a surjective homomor-
phism with kernel N . Then G/N is isomorphic to H.

Here are a few short, “just use the definitions,” exercises.

Exercises 1.2. Let ϕ : G −→ H be a homomorphism of groups. If A is a subgroup
of G and B is a subgroup of H then ϕ(A) is a subgroup of H and ϕ−1(B) is a
subgroup of G.

Exercises 1.3. Let α : G −→ H and β : H −→ K be homomorphisms of groups.
Then β ◦ α is a homomorphism from G to K.

Here is a typical snappy use of the 1st isomorphism theorem.
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Theorem 1.4. Let G1, G2, . . . Gr be groups and let N1, N2, . . . , Nr be normal sub-
groups, Ni EGi. There is a well defined map

(G1 ×G2 × · · · ×Gr)/(N1 ×N2 × · · · ×Nr) −→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr)

(g1, g2, . . . , gr)N1 ×N2 × · · · ×Nr 7−→ (g1N1, g2N2, . . . grNr)

and it is an isomorphism.

Proof. First we note that the function

G1 ×G2 × · · · ×Gr
ϕ−→ (G1/N1)× (G2/N2)× · · · × (Gr/Nr),

which is just projection onto each factor, is a homomorphism. This is an easy
computation; let (g1, g2, . . . , gr) and (g′1, g

′
2, . . . , g

′
r) be elements of G1×G2× · · ·×

Gr. Then

ϕ((g1, g2, . . . , gr) ∗ (g′1, g
′
2, . . . , g

′
r)) = ϕ( (g1g

′
1, g2, g

′
2, . . . , grg

′
r) )

= (g1g
′
1N1, g2g

′
2N, . . . , grg

′
rNr)

= (g1N1, g2N, . . . , grNr) ∗ (g′1N1, g
′
2N, . . . , g

′
rNr)

We used, in order, the definition of multiplication in G1 × G2 × · · · × Gr, the
definition of ϕ, the definition of multiplication in G1/N1×G2/N/2× · · · ×Gr/Nr.

The kernel of ϕ is the set of (g1, . . . , gr) such that g1N1, g2N2, . . . , grNr =
N1 ×N2 × · · · ×Nr. Each gi must be in Ni. So, the kernel is N1 ×N2 × · · · ×Nr.
The 1st isomorphism theorem now gives the result.

A generalization of the first isomorphism theorem that we will often use treats
the case when ϕ is not necessarily injective.

Theorem 1.5 (Factor). Let ϕ : G −→ H be a homomorphism with kernel N .
Then ϕ can be factored into the canonical surjective homomorphism π : G −→ G/N
followed by an injective homomorphism ϕ̄ : G/N −→ H.

2 Structure in the Quotient Group: The Third Isomor-
phism Theorem and the Correspondence Theorem

The next step is to understand the structure of a quotient group. The two main
results—the third isomorphism theorem and the correspondence theorem—have
fairly simple statements, which obscure some subtle issues. The proof of the third
isomorphism theorem is an easy consequence of the first isomorphism theorem.
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Theorem 2.1 (Third Isomorphism). Let N and K be normal subgroups of G with

N ≤ K. Then G/K ∼= (G/N)
/

(K/N).

Proof. We have two well defined quotient groups: G/N and G/K. I claim that
there is a well defined function from G/N to G/K taking gN to gK. To prove
this we have to check that if two cosets aN and bN are equal then the cosets aK
and bK are also equal. Suppose aN = bN . Then a−1b ∈ N and since N ⊆ K we
have a−1b ∈ K. Consequently aK = bK.

It is easy to check that the function ϕ : G/N −→ G/K defined above is
surjective and a homomorphism. Given any gK there is an element, namely gN ,
that clearly maps to it, ϕ(gN) = gK, so we get surjectivity. Finally, ϕ respects
multiplication: ϕ(gN ∗ g′N) = ϕ(gg′N) = gg′K = gK ∗ g′K = ϕ(gN) ∗ ϕ(g′N)

The kernel of ϕ is {gN : gK = eK} = K/N . Now the result follows from the
first isomorphism theorem.

Theorem 2.2 (Correspondence). Let ϕ : G −→ H be a surjective homomor-
phim with kernel N . There is a one-to-one correspondence, given by ϕ, between
subgroups of G/N and subgroups G containing N .

G −→ H

N ≤ A←→ ϕ(A)

ϕ−1(B)←→ B

The correspondence respects containment, normality, and quotients.

• N ≤ A ≤ A′ iff ϕ(A) ≤ ϕ(A′).

• A is normal in G iff ϕ(A) is normal in H. In this case G/A ∼= H/ϕ(A)

Proof. Some of these results are simply based on facts about functions. Let f :
X → Y and let A ⊆ X and B ⊆ Y . Then A ⊆ f−1(f(A)) and f(f−1(B)) ⊆ B.
On the other hand, if f is surjective then for each b ∈ B there is some x ∈ X such
that f(x) = b. Thus for f surjective, f(f−1(B)) = B. Respecting containment is
also immediate: If A ⊆ A′ ⊆ X then f(A) ⊆ f(A′) and similarly if B ⊆ B′ ⊆ Y
then f−1(B) ⊆ f−1(B′).

Let A be a subgroup of G containing N and let B be a subgroup of H. We
already know that ϕ(A) is a subgroup of H and ϕ−1(B) is a subgroup of G. Based
on the above discussion, to show the one-to-one correspondence, we need to show
that ϕ−1(ϕ(A)) ⊆ A. Let g ∈ ϕ−1(ϕ(A)). Then ϕ(g) = ϕ(a) for some a ∈ A.
Consequently, ϕ(ga−1) = eH and therefore ga−1 ∈ ker(ϕ) = N . Since N ⊆ A,
ga−1 ∈ A so g ∈ A. Thus ϕ−1(ϕ(A)) = A. Thus, we have established the one-to-
one correspondence.

3



We have also shown that if B is normal then ϕ−1(B) is normal. These results
are true for an arbitrary homomorphism. Let’s now show that when ϕ is surjective,
if A is normal in G then ϕ(A) is normal in H.

Let h ∈ H. We need to show hϕ(A)h−1 = ϕ(A), or equivalently, hϕ(a)h−1 ∈
ϕ(A) for all a ∈ A. Since ϕ is surjective, there is some g ∈ G such that ϕ(g) = h.

hϕ(a)h−1 = ϕ(g)ϕ(a)ϕ(g)−1 = ϕ(gag−1) ∈ ϕ(A)

The last step holds because A is normal in G, so gag−1 ∈ A.
Now we apply the first isomorphism theorem. Let B be normal in H. We have

a composition of surjective homomorphisms

G −→ H −→ H/B

whose kernel is ϕ−1(B). Letting A = ϕ−1(B), the first isomorphism theorem says
that G/A ∼= H/ϕ(A).

We can derive the 3rd isomorphism theorem as a corollary.

Corollary 2.3 (3rd isomorphism theorem). Let N and K be normal subgroups of

G with N ≤ K. Then G/K ∼= (G/N)
/

(K/N).

Proof. Apply the correspondence theorem to G −→ G/N . The subgroup K of G

corresponds to the subgroup K/N of G/N . Thus G/K ∼= (G/N)
/

(K/N).

3 Interaction between Two Subgroups: The Second
Isomorphism Theorem

We now consider two subgroups of a group G and prove several results about the
interaction between them. At first we make no additional assumptions on the two
groups, then we assume that one is normal, and finally that both are.

Lemma 3.1. Let K,H be subgroups of G. The following are equivalent:

(1) G = KH and K ∩H = {eG}

(2) Every element of G can be uniquely written as kh for k ∈ K and h ∈ H.

Proof. G = KH is equivalent to saying that every element of G can be written in
the form kh.

We’ll next show K ∩ H = {eG} iff any expression for g ∈ G as kh is unique.
Suppose K ∩H = {eG} and k1h1 = k2h2. Then k−11 k2 = h1h

−1
2 . Since this is in
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both K and in H, it must be the identity. Therefore, h1 = h2 and k1 = k2, which
proves uniqueness.

Now suppose that, K ∩ H 6= eG; say g ∈ K ∩ H is not equal to eG. Setting
h = g and k = eG or h = eG and h = g gives two different ways to express g in
the form kh. Thus we have non-uniqueness.

As a prelude to the second isomorphism theorem we have the following lemma.

Lemma 3.2 ([A] 1.3.6). Let H,K be subgroups of G.

HK = KH ⇐⇒ HK is a subgroup of G

Proof. Suppose HK = KH. Then HK is closed under inversion: (hk)−1 =
k−1h−1 ∈ KH = HK.
HK is also closed under multiplication: HKHK = HHKK = HK. This shows
HK is a subgroup of G.

Suppose HK is a subgroup of G. Since HK is closed under inversion, HK =
(HK)−1 = K−1H−1 = KH.

Suppose now that H,N are subgroups of G with N normal in G. We can
conclude the following.

• HN = NH since gN = Ng for any g ∈ G.

• HN is therefore a subgroup of G by the lemma.

• N is normal in HN , since it is normal in any subgroup of G that contains it.

Theorem 3.3 (Second Isomorphism). Let N be normal in G and H a subgroup
of G. Then H ∩N is normal in H and H/(H ∩N) ∼= HN/N .

Proof. Consider G
π−→ G/N restricted to the subgroup H, call the homomorphism

π′ : H −→ G/N . The kernel is H ∩N . The image is HN/N = {hN : h ∈ H}. By
the 1st isomorphism theorem, H/(H ∩N) ∼= HN/N .

The following special case is of interest.

Corollary 3.4. Let H ≤ G and N E G. If G = HN and H ∩ N = {eG} then
G/N ∼= H. In other words, there is an exact sequence

0 −→ N −→ G −→ H −→ 0

Definition 3.5. In the situation of the corollary we say that G is the internal
semi-direct product of N by H and we write G ∼= N nH.
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Note the order is important: N n H and H n N mean two different things.
The first assumes N is normal in G and the second assumes H is normal in G.
If both H and N are normal then the two semidirect products are isomorphic to
each other and to the direct product, as the following corollary shows.

Corollary 3.6. Suppose K E G and N E G and G = KN and K ∩ N = {eG}.
Then elements of K and N commute: for any k ∈ K and n ∈ N , kn = nk.
Furthermore, G ∼= K ×N .

Proof. It is sufficient to show that knk−1n−1 = e. Since N is normal, knk−1 ∈ N
and therefore knk−1n−1 ∈ N . Similarly, since K is normal, nk−1n−1 ∈ K so
knk−1n−1 ∈ K. Now K ∩N = {e} gives the result.

Consider the map K × N ϕ−→ G defined by (k, n) 7−→ kn. The map is well
defined. It is injective since kn = e gives k = n−1 ∈ K ∩N = {e}. It is surjective
since G = KN . It respects multiplication (so is a homomorphism):

ϕ((k1, n1)(k2, n2)) = ϕ((k1k2, n1n2))

= k1k2n1n2 = k1n1k2n2

= ϕ((k1, n1))ϕ((k2, n2))

Thus ϕ is an isomorphism.

Definition 3.7. In the situation of the last corollary, G is often called the internal
direct product of K and N .

The distinction between internal direct product and the usual (external) direct
product of two arbitrary groups G and H is subtle, and not, to my mind very
important. In G×H, let G = G× {eH} and similarly for H. Then G×H is the
internal direct product of G and H.

One can also define the external semi-direct product of of two groups. Sorry,
no time to write about that now.

4 Finitely Generated Abelian Groups

We will write the group operation additively. For A an abelian group, a ∈ A, and
m an integer, mA = a+ · · ·+ a with m summands. The order of a is the smallest
positive integer m such that ma = 0. One can check that ma + na = (m + n)a
and (mn)a = m(na).

Definition 4.1. Let p be a prime. A p-group is one in which all elements have
order a power of p. For A an abelian group we define the p-group of A to be
A(p) =

{
a ∈ A : ord(a) = pk for some k

}
.
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The fact that A(p) is a group follows from the basic result that if a and b
commute, then the order of a+ b divides lcm(ord(a), ord(b)).

Lemma 4.2. Let A be an abelian group and let p be a prime number. We may
write the order of A as n = pkm with m not divisble by p. Let A(p) be the p-group
of A and let B = {a ∈ A : ma = 0}. Then A ∼= A(p)×B.

Note that k may be 0, in which case A(p) = {0}, which is not interesting!

Proof. First of all we note that B is a group. The proof is similar to the observation
we made for A(p). For b, b′ ∈ B, the order of b + b′ divides lcm(ord(b), ord(b′)).
This last expression is a factor of m since both ord(b) and ord(b′) divide m. Thus
b+ b′ ∈ B.

We will show that A(p) ∩ B = {0} and A(p) + B = A and conclude, by
Corollary 3.6, that A ∼= A(p) × B. An element of A(p) ∩ B has order that is
a power of p and also divides m. Since p and m are coprime this element can
only be the identity. Let a be an arbitrary element of A, and let its order be
pst with t | m. We have psa ∈ B and ta ∈ A(p) since psa has order t and ta
has order ps. Since p - t there are integers x, y such that 1 = xps + yt. Then
a = (xps + yt)a = x(psa) + y(ta) can be expressed as a sum of an elment in A(p)
and one in B.

Theorem 4.3. Let A be a finite abelian group. The A is isomorphic to the direct
product of its p-groups. That is, if |A| = pe11 . . . perr then A ∼= A(p1)× · · · ×A(pr).

Proof. For the purposes of this proof, lets define the index of A to be the number
of distinct primes for which there exists an element of A with that order. Notice
that if ord(a) = qm then ord(ma) = q so if any element has order divisible by q
then there is an element of order q. Consequently, if the index is 1, then every
element of A has order a power of some prime p. Thus the base case is immediate:
if the index is 1, then A = A(p) for some prime p.

Assume that the statement of the theorem is true for all primes with index less
than r, let A have index r, and let p be a prime for which A(p) is nonempty. By
the lemma A ∼= A(p)×B where B is the subgroup of elements of A with order not
divisible by p. The index of B is less than r, so the induction applies. Clearly, for
any q 6= p, B(q) = A(q). This gives the result.

The previous theorem is the first step in the classification of finite abelian
groups. The next step is to classify p-groups. The key lemma follows. Its proof
is quite technical and not very illuminating, so we state it without proof (see
Hungerford).
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Lemma 4.4. Let A be a p-group and let a be an element of maximal order. Then
A = 〈a〉+K for some subgroup K of A.

Theorem 4.5. Let A be a p-group. Then A is the direct product of cyclic groups
each of which has order a power of p. Consequently, the order of A is also a power
of p.

The decomposition is unique (up to reordering). Put another way, two p-groups
are isomorphic iff their decompositions have the same number of factors for each
power of p.

Proof. The proof is by induction. Using the lemma we can write A = 〈a〉+K. The
subgroup 〈a〉 is cyclic of order pk for some k. Applying the induction hypothesis
to K gives the result. Since A is the direct product of groups of order a power of
p, A itself must have order a power of p.

Clearly, if two groups have the same number of factors for each power of p they
are isomorphic. To prove the converse, consider the groups piA and the quotients
piA/pi−1A. It can be shown that each of the quotients is a vector space over Fp
(which is just Zp considered as a field). The list of dimensions dimFp p

i−1A/piA
can be used to recover the number of Zpi-factors for each i.

From the two previous theorems we obtain the fundamental theorem.

Theorem 4.6 (Fundamental Theorem of Finite Abelian Groups). Let A be an
abelian group of order pe11 . . . perr . Then A is a direct product of cyclic groups, each
having order a power of one of the pi. If we write

A(pi) ∼= Z
p
ai,1
i
× Z

p
ai,2
i
× . . .Z

p
ai,si
i

then for each i,
∑si

`=1 ai,` = ei. The decomposition is unique, up to reordering.

Definition 4.7. The groups Zpa occurring in the decomposition are called the
elementary divisors of A.

8


