Mike O'Sullivan
Department of Mathematics
San Diego State University

## Math 627B: Modern Algebra II Homework I

Problem 1: Problem 3.12 in my notes.
Let $\pi \in S_{n}$. For any $\sigma \in S_{n}$, the signature of $\sigma$ and the signature of $\pi \sigma \pi^{-1}$ are the same.
(a) Consider first the case where $\sigma$ is a $t$-cycle and $\pi$ is a transposition. Show that $\pi \sigma \pi^{-1}$ is a $t$-cycle. [You will have to consider 3 cases based on $\operatorname{supp}(\sigma) \cap \operatorname{supp}(\pi)$.]
(b) Extend to arbitrary $\pi$ by noting that every permutation is the product of transpositions.
(c) Extend to arbitrary $\sigma$ by writing $\sigma$ as the product of disjoint cycles and using the fact that conjugation by $\pi$ "respects products."

## Problem 2:

(a) Identify all possible signatures for elements of $S_{5}$.
(b) For each signature, count how many elements have that signature. Check that you get the correct total number of elements in $S_{5}$.

## Problem 3:

(a) Show that $A_{n}$ is invariant under conjugation: for any $\pi \in S_{n}, \pi A_{n} \pi^{-1}=A_{n}$. (Problem 3.13a)
(b) Let $C_{n}$ be the cyclic subgroup of $D_{n}$. Find two elements of $C_{4}$ that are conjugate as elements of $D_{4}$ but are not conjugate as elements of $C_{4}$.
(c) Find two elements of $D_{4}$ that are conjugate as elements of $S_{4}$ but are not conjugate as elements of $D_{4}$. You may use sage.

## Problem 4:

(a) Show that the subgroup of upper triangular $2 \times 2$ matrices is conjugate to the group of lower triangular matrices. [Hint: $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.]
(b) Show that the set of matrices with nonzero determinant of the form $\left[\begin{array}{ll}0 & a \\ b & c\end{array}\right]$ is a coset of the upper triangular matrices.

