Math 627B: Modern Algebra II Homework I

Problems 1 and 2: Due Th. 3/25 2012.

Problem 1: The dicyclic group Di_n is defined by the following generators and relations:

$$\langle a,d \mid a^{2n} = e, d^2 = a^n, da = a^{-1}d \rangle$$

- (a) Show that Di_n has 4n elements, by showing that each element can be represented in the form $a^i d^j$ (and derive a uniqueness result relative to this form). Find the product of two arbitrary elements, written in this form.
- (b) For *n* prime, compute the order of each element of Di_n , using the form in (a). Make a table for Di_n showing (1) each order that is possible, (2) the number of elements of that order, (3) the elements of that order.
- (c) Use part (b) to show that Di_3 is not isomorphic to D_6 . (Use sage as an aid, but you will have to work with the representation from part (a)).
- (d) Show that there is a surjective homomorphism from Di_n to the dihedral group D_n . What is the kernel?
- (e) Show that Di_2 is isomorphic to the quaternions.
- (f) Use sage, and your wits, to draw the subgroup lattice diagram for Di_3 . Remark on the correspondence theorem relative to part (d).
- (g) Show that Di_3 is a semidirect product of two smaller groups.

Problem 2: Shorties.

- (a) Show that the intersection of two normal subgroups of G is normal in G.
- (b) If every element in G has order 2 show that G is ableian.
- (c) If G has even order then G has an element of order 2. (Consider the pairing of g with g^{-1}).

Problem 3: A group is *metabelian* when it has a normal subgroup N such that N and G/N are both abelian. A group is *metacyclic* when it has a normal subgroup N such that N and G/N are both cyclic.

- (a) Show that S_3 is metacyclic.
- (b) Show that A_4 is metabelian but not metacyclic.
- (c) Prove that any subgroup of a metabelian group is also metabelian.
- (d) Prove that any quotient group of a metabelian group is metabelian. [Look carefully at the proof of the 2nd isomorphism theorem and adapt it to this question.]