Spring 2012

Math 627B: Modern Algebra II Homework VII

Due Th. 4/19 2012.

Problem 1: Minimal polynomials for elements of $\mathbb{Q}(\sqrt[3]{2})$ (see [A] 3.1#4,5).

- (a) Find the minimum polynomial of $\sqrt[3]{2}+1$ over \mathbb{Q} . [There is a clever way that involves little computation, but don't feel obliged to use it!]
- (b) Find the minimum polynomial of $\sqrt[3]{2} + \sqrt[3]{4}$ over \mathbb{Q} .

Problem 2: Sixth roots of unity.

- (a) Factor $x^6 1$ completely over \mathbb{Q} .
- (b) Show that the splitting field of $x^6 1$ is of degree 2 over \mathbb{Q} .

Problem 3: Let *E* be the splitting field of $x^6 - 2$.

- (a) Show that $x^6 2$ is irreducible over \mathbb{Q} .
- (b) Analyze the splitting field E of $x^6 2$ over \mathbb{Q} in four ways. In each case, (1) refactor $x^6 2$ over any intermediate fields and (2) compute the dimensions of the intermediate fields over \mathbb{Q} .
 - Adjoin $\sqrt[6]{2}$ then adjoin a root of a factor of $x^6 2$.
 - Adjoin a sixth root of unity, then split $x^6 2$.
 - Adjoin $\sqrt{2}$ and refactor $x^6 2$. Then split the factors.
 - First construct the splitting field, K, of $x^3 2$ in two steps. For each step, refactor $x^6 2$. Finally split the irreducible factors of $x^6 2$ over K.
- (c) Compute $[E:\mathbb{Q}]$
- (d) Identify all of the subfields of E that you encountered.