Mike O'Sullivan
Department of Mathematics
San Diego State University

Math 627B: Modern Algebra II Homework VII

Due Th. 4/19 2012.

Problem 1: Minimal polynomials for elements of $\mathbb{Q}(\sqrt[3]{2})$ (see [A] 3.1\#4,5).
(a) Find the minimum polynomial of $\sqrt[3]{2}+1$ over \mathbb{Q}. [There is a clever way that involves little computation, but don't feel obliged to use it!]
(b) Find the minimum polynomial of $\sqrt[3]{2}+\sqrt[3]{4}$ over \mathbb{Q}.

Problem 2: Sixth roots of unity.
(a) Factor $x^{6}-1$ completely over \mathbb{Q}.
(b) Show that the splitting field of $x^{6}-1$ is of degree 2 over \mathbb{Q}.

Problem 3: Let E be the splitting field of $x^{6}-2$.
(a) Show that $x^{6}-2$ is irreducible over \mathbb{Q}.
(b) Analyze the splitting field E of $x^{6}-2$ over \mathbb{Q} in four ways. In each case, (1) refactor $x^{6}-2$ over any intermediate fields and (2) compute the dimensions of the intermediate fields over \mathbb{Q}.

- Adjoin $\sqrt[6]{2}$ then adjoin a root of a factor of $x^{6}-2$.
- Adjoin a sixth root of unity, then split $x^{6}-2$.
- Adjoin $\sqrt{2}$ and refactor $x^{6}-2$. Then split the factors.
- First construct the splitting field, K, of $x^{3}-2$ in two steps. For each step, refactor $x^{6}-2$. Finally split the irreducible factors of $x^{6}-2$ over K.
(c) Compute $[E: \mathbb{Q}]$
(d) Identify all of the subfields of E that you encountered.

