Spring 2012

Math 627B: Modern Algebra II Homework VIII

Due Tu 5/1, 2012.

Problem 1: Infinite algebraic extensions.

- (a) Find a sequence of fields $\mathbb{Q} \leq F_1 \leq F_2 \leq \cdots$ such that each F_i is a normal extension of \mathbb{Q} . Justify your answer. [See 6.3#5 for inspiration.]
- (b) Find a sequence of fields $\mathbb{Q} \leq F_1 \leq F_2 \leq \cdots$ such that each F_{i+1} is a normal extension of F_i but not of F_{i-1} . [See 6.3#9 for inspiration.]

Problem 2: Let E be a Galois extension of F. Let E_1 and E_2 be two intermediate fields and let $H_i = \text{Gal}(E/E_i)$ for i = 1, 2. Let $E_1 \vee E_2$ be the compositum of E_1 and E_2 —the smallest field containing them both. Let $H_1 \vee H_2$ be the smallest group containing H_1 and H_2 .

- (a) Explain why $\operatorname{Gal}(E/E_1 \vee E_2) = H_1 \cap H_2$. [One direction is easy, the other just requires an understanding of the elements of $E_1 \vee E_2$.]
- (b) Explain why $Fix(H_1 \vee H_2) = E_2 \cap E_2$. [Again, one direction is easy, the other just requires an understanding of the elements of $H_1 \vee H_2$.]
- (c) Now use Galois' main theorem to show that $E_1 \vee E_2 = Fix(H_1 \cap H_2)$ and $H_1 \vee H_2 = Gal(E_1 \cap E_2)$.

Problem 3: Let $E = \mathbb{Q}(i + \sqrt{2})$.

- (a) Show that i and $\sqrt{2}$ are both in E.
- (b) Find the minimum polynomial of $i + \sqrt{2}$.
- (c) Show this polynomial splits in E.
- (d) Find the Galois group and map out the relationship between subfields and subgroups for E/\mathbb{Q} .

Problem 4: Let *E* be the splitting field of $x^6 - 2$

- (a) Explain why the Galois group is isomorphic to D_{12} , the dihedral group on 6 elements.
- (b) Find the Galois group and map out the relationship between subfields and subgroups for E/\mathbb{Q} .