Mike O'Sullivan
Department of Mathematics
San Diego State University

Math 627B: Modern Algebra II Homework VIII

Due Tu 5/1, 2012.

Problem 1: Infinite algebraic extensions.
(a) Find a sequence of fields $\mathbb{Q} \leq F_{1} \leq F_{2} \leq \cdots$ such that each F_{i} is a normal extension of \mathbb{Q}. Justify your answer. [See $6.3 \# 5$ for inspiration.]
(b) Find a sequence of fields $\mathbb{Q} \leq F_{1} \leq F_{2} \leq \cdots$ such that each F_{i+1} is a normal extension of F_{i} but not of F_{i-1}. [See $6.3 \# 9$ for inspiration.]

Problem 2: Let E be a Galois extension of F. Let E_{1} and E_{2} be two intermediate fields and let $H_{i}=\operatorname{Gal}\left(E / E_{i}\right)$ for $i=1,2$. Let $E_{1} \vee E_{2}$ be the compositum of E_{1} and E_{2}-the smallest field containing them both. Let $H_{1} \vee H_{2}$ be the smallest group containing H_{1} and H_{2}.
(a) Explain why $\operatorname{Gal}\left(E / E_{1} \vee E_{2}\right)=H_{1} \cap H_{2}$. [One direction is easy, the other just requires an understanding of the elements of $E_{1} \vee E_{2}$.]
(b) Explain why $\operatorname{Fix}\left(H_{1} \vee H_{2}\right)=E_{2} \cap E_{2}$. [Again, one direction is easy, the other just requires an understanding of the elements of $H_{1} \vee H_{2}$.]
(c) Now use Galois' main theorem to show that $E_{1} \vee E_{2}=\operatorname{Fix}\left(H_{1} \cap H_{2}\right)$ and $H_{1} \vee H_{2}=$ $\operatorname{Gal}\left(E_{1} \cap E_{2}\right)$.

Problem 3: Let $E=\mathbb{Q}(i+\sqrt{2})$.
(a) Show that i and $\sqrt{2}$ are both in E.
(b) Find the minimum polynomial of $i+\sqrt{2}$.
(c) Show this polynomial splits in E.
(d) Find the Galois group and map out the relationship between subfields and subgroups for E / \mathbb{Q}.

Problem 4: Let E be the splitting field of $x^{6}-2$
(a) Explain why the Galois group is isomorphic to D_{12}, the dihedral group on 6 elements.
(b) Find the Galois group and map out the relationship between subfields and subgroups for E / \mathbb{Q}.

