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The principle objects of study in algebra are groups, rings and fields. This
course will focus on Galois theory, which involves the interplay between field theory
and group theory. We will need a small amount of ring theory.

In the first part of the course, I’m going to define all three algebraic structures,
and briefly discuss their most basic properties. The presentation will start abstract,
but we will develop lots of examples to illustrate the core concepts. The purpose is
to set the context for this course, and to establish some fundamental terminology.
My goal is that at the end of three weeks I can explain several core problems that
Galois theory solves.

For each type of algebraic structure, we are interested in subsets that have the
same algebraic structure: subgroups, subrings, subfields. We are also interested
in functions that “respect the operations” for that structure. Such functions are
called homomorphisms.

The first three weeks are therefore devoted to developing fluency with groups,
subgroups and group homomorphisms, and fields, subfields and field homomor-
phisms. We will also discuss polynomial rings over a field since these are used to
construct new fields.

The second part of the course will be a thorough treatment of group theory,
primarily following Ash’s Algebra Chapters 1 and 5. I suggest having a good under-
graduate text to supplement the graduate text by Ash, such as those by Hungerford
or Gallian, or the free text by Judson (updated by Beezer) http://abstract.ups.edu/.
The core topics are normal subgroups and quotient groups, the isomorphism and
correspondence theorems, classification of abelian groups, groups actions and the
orbit-stabilizer theorem, the Sylow theorems.

The third part of the course will focus on field theory leading to climax of
the course Galois’s main theorem: Chapters 3 and 6 of Ash. We will then apply
Galois theory to as many examples as we have time to cover. In particular: solu-
tion of equations by radicals, cyclotomic extensions, finite fields, and constructible
numbers.
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1 Groups, Subgroups, and Homomorphisms

Definition 1.1. A group is a set G with an operation ∗ satisfying the following
properties.

(1) Associativity of ∗: for all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

(2) Identity for ∗: There is an element, usually denoted e, such that e ∗ a = a =
a ∗ e for all a ∈ G.

(3) Inverses for ∗: For each a ∈ G there is an element, usually denoted a−1 such
that a ∗ a−1 = e = a−1a.

A group which also satisfies a ∗ b = b ∗ a is called commutative or abelian (after
the mathematician Abel).

The most basic properties are contained in the following proposition. The
proofs of all of these are simple “card tricks.” It’s worthwhile reviewing them, but
I leave them as exercises (see any text book).

Proposition 1.2. Let G, ∗ be a group. Then

(1) The identity element is unique.

(2) The inverse of any element is unique.

(3) The cancellation law holds: a ∗ b = a ∗ c implies b = c (and similarly for
cancellation on the right).

(4) If a ∗ g = g for some g ∈ G, then a = eG.

(5) (a ∗ b)−1 = b−1 ∗ a−1.

(6) (a−1)−1 = a.

When there is risk of confusion we will use ∗G for the operation on the group G.

Definition 1.3. A subset H of a group G is a subgroup, when H is a group using
the operation ∗G on G.

If H is a subgroup of G then it must have an identity element, and Proposi-
tion 1.2 (item 4) shows that it must be eG. Each h ∈ H must have an inverse, but
the inverse in G is uniquely determined. Thus we must have h−1 ∈ H. Finally ∗G
must be an operation on H, so for h, h′ ∈ H, we must have h ∗G h′ ∈ H.
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Proposition 1.4. If H is a nonempty subset of G that is closed under inversion
and closed under ∗G then H is a subgroup of G (i.e. it also contains eG).

If H is a nonempty subset of G such that h′ ∗G h−1 ∈ H for all h, h′ ∈ H then
H is a subgroup of G.

Proof. Since H is nonempty, it contains some element h. Since H is closed under
inversion, h−1 ∈ H. Since H is closed under ∗G, h ∗G h−1 = eG ∈ H.

To prove the second statement, suppose h ∈ H. Letting h′ = h in the assumed
property gives h ∗G h−1 = eG ∈ H. Letting h′ = eG gives eG ∗ h−1 = h−1 ∈ H,
so H is closed under inversion. Now for any h′, h ∈ H we know h−1 ∈ H, so
h′ ∗G (h−1)−1 = h′ ∗G h ∈ H. This shows H is closed under multiplication.

Definition 1.5. For groups G,H a function ϕ : G −→ H is a homomorphism iff

(1) ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2) for all g1, g2 ∈ G, and

(2) ϕ(eG) = eH , and

(3) ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

A homomorphism ϕ that is also a bijection (one-to-one and onto) is called an
isomorphism.

It is fairly easy to show that the first item in the definition of homomorphism
implies the other two. The following three results are a worthwhile exercise.

Proposition 1.6. If ϕ : G −→ H is a function such that ϕ(g1 ∗G g2) = ϕ(g1) ∗H
ϕ(g2) then ϕ is a homomorphism.

If ϕ : G −→ H and θ : H −→ K are group homomorphisms then the composi-
tion θ ◦ ϕ is also a group homomorphism.

If ϕ is an isomorphism, then the inverse function ϕ−1 is also an isomorphism.

If there is an isomorphism between A and B then A and B have the same
algebraic structure, so we consider them equivalent.

Example 1.7. The integers, Z, the rational numbers, Q, the real numbers R and
the complex numbers C are all abelian groups under addition. We sometimes write
Z,+ to emphasize that we are are ignoring multiplication, and just considering the
additive properties of Z.

Exercises 1.8.

(a) Check that the function ϕ : Z −→ Z such that ϕ(a) = −a is an isomorphism
from Z to Z.

(b) Identify all homomorphisms from Z to Z.
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Example 1.9. The set of integers modulo n forms a group under addition. This
group is called the cyclic group of order n and written Zn,+ or Cn (I will just use
Zn).

Exercises 1.10.

(a) Show that for each a ∈ Zn there is a unique homomorphism
ϕa : Zn −→ Zn such that ϕa(1) = a.

(b) Under what conditions on a is ϕa an isomorphism?

(c) Identify all subgroups of Zn.

Example 1.11. The dihedral group of order 2n is the group of symmetries of a
regular n-gon. Some sources, including Hungerford, write this group as Dn. The
group has 2n elements: the identity, n− 1 non-trivial rotations, and n reflections.
Consequently, some authors, including Ash, write this group as D2n. I will use
Dn.

Exercises 1.12.

(a) There is a natural injective homomorphism from Zn into Dn taking 1 to
rotation by 2π/n.

(b) Identify all subgroups of Dn for n = 3, 4, 5, 6. Draw a diagram showing
containment of subgroups (I’ll explain in class).

Example 1.13. Let S be any set. Let’s show that the set Bij(S) of bijections from
S to itself forms a group using composition of functions as the operation. The
identity map idS is the identity element of Bij(S). If ϕ : S −→ S is a bijection,
there is an inverse function to ϕ, written ϕ−1, and ϕ−1 ◦ ϕ = idS . Finally, the
composition of two bijections is also a bijection.

The most important special case is the symmetric group on n elements, Sn,
which is the set of bijections on {1, . . . , n}. The next section is devoted to an
extensive study of the symmetric group and subgroups of it.

The following result is a straightforward exercise, but well worth doing care-
fully.

Proposition 1.14. Let G be a group, show that the set of all isomorphisms from G
to itself is a group. This new group is called Aut(G), the group of automorphisms
of G.

Exercises 1.15.

(a) Show that Aut(Z) has two elements and Aut(Z) ∼= Z2.

(b) Compute Aut(Zn) for n = 2, 3, 4, 5, 6. [In each case the answer is a cyclic
group.]
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Notation 1.16. Let G be a group. Unless there is some reason to be very clear
(as there is in the next example), we rarely write the group operation: g1g2 means
g1 ∗G g2. For a positive integer n, gn is shorthand for gg · · · g

︸ ︷︷ ︸

n factors

and g−n is shorthand

for g−1g−1 · · · g−1

︸ ︷︷ ︸

n factors

. It is straightforward to check that the usual rules for exponents

apply.
For an additive group, g + g + · · ·+ g

︸ ︷︷ ︸

n terms

is written ng. Think of this as repeated

addition, not as multiplication: the group just has one operation, and n is an
integer, not necessarily an element of the group.

Example 1.17. Let G and H be groups. The Cartesian product of the sets G
and H, G ×H, can be made into a group by using componentwise inversion and
multiplication.

(g, h)−1 = (g−1, h−1)

(g1, h1) ∗G×H (g2, h2) = (g1 ∗G g2, h1 ∗H h2)

The identity element is of course (eG, eH).

Exercises 1.18.

(a) Check that the above definition does, indeed, make G×H a group.

(b) The associative law holds: G1 × (G2 ×G3) ∼= (G1 ×G2)×G3.

(c) The construction can be generalized to the direct product of any set of groups
{Gi : i ∈ I} indexed by some set I.

(d) If A and B are abelian groups show that A×B is also abelian.

(e) If G′ is a subgroup of G and H ′ is a subgroup of H then G′×H ′ is a subgroup
of G×H.

(f) Not all subgroups of G ×H are direct products of subgroups of G and H.
Illustrate with some examples: Z2 × Z2, Z4 × Z4.

Definition 1.19. The order of a finite group G—written |G| or #G—is the num-
ber of elements of G.

For g ∈ G the order of the element g is the smallest positive integer n such
that gn = e, if such an n exists. If no such n exists then g has infinite order. We
use |g| or ord(g) for the order of g.

The exponent of A is the least common multiple of the orders of the elements
of A, if such an integer exists. We write exp(A) = lcm {ord(a) : a ∈ A}.

Only the identity element of a group has order 1. Every nonzero element of Z
has infinite order. In Zn some elements have order n, but others may a different
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order. For any finite group there is a well defined exponent, but an infinite group
may not have one.

If g ∈ G has order n then the set of powers of g is
{
g0 = eG, g, g

2, . . . , gn−1
}

(any other power of g is one of these). This set is a subgroup of G of order n. It
is called the cyclic subgroup generated by g and is written 〈g〉.
Exercises 1.20.

(a) If g has order m and h has order n, find the order of (g, h) ∈ G×H.

(b) Suppose that a, b ∈ G commute (that is ab = ba). If ord(a) and ord(b) are
coprime find the order of ab.

(c) Let A be an abelian group. Show that there is some a ∈ A such that
ord(a) = exp(A).

(d) Show that S4 has no element with order equal to exp(S4).

Theorem 1.21 (Order Theorem: A. 1.1.5, H 7.8). Let g be an element of the
group G.

(1) If g has infinite order then elements gt for t ∈ Z are all distinct. The function
below is an injective homomorphism.

ϕ : Z −→ G

t 7−→ gt

(2) If g has order n then

(a) gi = gj iff i ≡ j mod n;

(b) ord(gr) = n
gcd r,n .

(c) The function below is an injective homomorphism.

ϕ : Zn −→ G

t 7−→ gt

Proof. See Hungerford.

Exercises 1.22.

(a) If ϕ : G −→ H is a homomorphism, then ord(ϕ(g)) divides ord(g).

(b) If ϕ : G −→ H is an isomorphism, then ord(ϕ(g)) = ord(g).

The previous exercises give important restrictions on homomorphisms. If you
want to create a homomorphism from G to H, each element g in G must go to an
element of H that has order dividing ord(g).
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Exercises 1.23.

(a) Show that there is a nontrivial homomorphism from D3 to Z2 but that any
homomorphism from D3 to Z3 is trivial.

The next proposition is a key result about the relationship between homomor-
phims and subgroups. Recall that for an arbitrary function f : X −→ Y , we define
f(X ′) = {f(x) : x ∈ X ′}. In general f−1 may not be a function, but for a subset
Y ′ of Y we define f−1(Y ) to be {x ∈ X : f(x) ∈ Y ′}.

Proposition 1.24. Let ϕ : G −→ H be a homomorphism.

• If G′ is a subgroup of G then ϕ(G′) is a subgroup of H.

• If H ′ is a subgroup of H then ϕ−1(H ′) is a subgroup of G.

Definition 1.25. Let ϕ : G −→ H be a homomorphism. The kernel of ϕ is
{g ∈ G : ϕ(g) = eH}. Since eH is a subgroup of H, ker(ϕ) is a subgroup of G by
the previous proposition.

Proposition 1.26. Let ϕ : G −→ H be a homomorphism of groups. The kernel
of ϕ is trivial (just {eG}) iff ϕ is injective.

Proof. Suppoe ϕ is injective. Then only one element of G has image eH , but we
already know that ϕ(eG) = eH , so ker(ϕ) = {eG}.

Conversely, assume ker(ϕ) = {eG}. Suppose that ϕ(g) = ϕ(a). Then

eH = ϕ(g) ∗ ϕ(a)−1 = ϕ(ga−1)

using the properties of homomorphisms. By assumption ga−1 = eG, so g = a.
This shows ϕ is injective.

An injective homomorphism ϕ : G −→ H gives a bijection from G to ϕ(G),
which by proposition 1.24 is a subgroup ofH. Thus ϕ : G −→ G is an isomorphism.
We will often call an injective homomorphism an embedding since the image is a
“copy” of G inside of H.

Proposition 1.27. Let H1, . . . ,Ht be subgroups of G. The intersection
⋂t

i=1 Hi

is a subgroup of G.
More generally if H is a set of subgroups of G then

⋂

H∈HH is a subgroup of
G.

Let S be an arbitrary subset of a group G. Let H be the set of all subgroups
of G containing S. Then

⋂

H∈HH is a group of G, and it contains S, since each
H ∈ H contains S. Furthermore, any subgroup K of G containing S is in H so
⋂

H∈H H ⊆ K. This argument justifies the following definition.
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Definition 1.28. Let G be a group and let S be a subset of G. By 〈S〉 we mean
the smallest subgroup of G containing S. It is the intersection of all subgroups of
G containing S.

We are often interested in finding a minimal size set that generates a group.
For example the elements 1 and −1 both generate Z. The element 1 generates Zn

as does any a ∈ Zn that is coprime to n.
If a group G is generated by a single element, say a ∈ G, then G =

{
ai : i ∈ Z

}

so G is equal to the cyclic subgroup generated by a. We call G a cyclic group. It is
isomorphic to Z if a has infinite order, or to Zn if a has order n. So, cyclic groups
are not that complicated.

Groups generated by two elements can be quite complicated. We will see that
Dn and Sn are each generated by two elements.

2 Permutation Groups

For n an integer, the symmetric group Sn is the set of all bijections on {1, . . . , n}.
These are also called permutations of {1, . . . , n}. The number of elements in Sn

is n!. Informally, we may justify this by noting that there are n possible images
for the number 1. Once the image for 1 is chosen, there are n− 1 choices for the
number 2. Continuing in this manner we count n! bijections from {1, . . . , n} to
itself. We can give a more formal inductive proof later.

We will sometimes write an element π of Sn in tabular form with i in the top
row and π(i) in the bottom row.

Exercises 2.1.

(a) Here are two elements of S5:

π =

(
1 2 3 4 5
3 5 1 2 4

)

and σ =

(
1 2 3 4 5
1 3 4 2 5

)

.

(b) Compute the inverse of each.

(c) Compute the products πσ and σπ, using the usual convention for composi-
tions: (πσ)(i) = π(σ(i)). You should see that the results are not equal.

Let n = 3, and enumerate the vertices of a triangle clockwise as 1, 2, 3. Each
element of D3 gives rise to a permutation of {1, 2, 3}.

Let r be rotation clockwise by 2π/3. Then

r =

(
1 2 3
2 1 3

)

and r2 =

(
1 2 3
3 1 2

)

.
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There are three reflections, each fixes one element of {1, 2, 3} and transposes the
other two

u1 =

(
1 2 3
1 3 2

)

u2 =

(
1 2 3
3 2 1

)

u3 =

(
1 2 3
2 1 3

)

.

This exhausts all permutations of {1, 2, 3} so by enumerating the vertices of the
triangle we have established a bijection between D3 and S3. This is actually an
isomorphism since the operation for D3 is composition, as it is for Sn.

Exercises 2.2.

(a) How many ways are there to embed Z4 in S4?

(b) How many ways are there to embed D4 in S4?

Definition 2.3. Let a1, a2, . . . , at be distinct elements of {1, . . . , n}. We use the
notation (a1, a2, . . . , at) to define an element of Sn called a t-cycle. This permuta-
tion takes ai to ai+1, for i = 1, 2, 3 . . . , t − 1 and it takes at to a1. Every element
of {1, . . . , n} \{a1, . . . , at} is fixed (i.e. taken to itself) by the cycle (a1, a2, . . . , at).
We will call the set {a1, . . . , at} the support of the cycle (a1, a2, . . . , at).

A two-cycle is often called a transposition.
Two cycles are called disjoint when there supports are disjoint sets.
Let π ∈ Sn. A cycle decomposition for π is a product of disjoint cycles that is

equal to π.

Exercises 2.4.

(a) A t-cycle has order t.

(b) The cycles (a1, . . . , as) and (b1, b2, . . . , bt) commute if their support is dis-
joint.

Proposition 2.5. Every permutation has a unique cycle decomposition.

Definition 2.6. We will call the list of cycle lengths, in decreasing order, the
signature of the permutation.

We will include one-cycles in the definition of the cycle decomposition, although
we will not write them unless it is needed for clarity. For example, the permutation
π in S5 from Exercise 1 has cycle decomposition π = (1, 3)(2, 5, 4) and signature
3, 2. If we consider π as an element of S6, we have π = (1, 3)(2, 5, 4)(6) and the
signature is 3, 2, 1.

Exercises 2.7.

(a) For π ∈ Sn, the sum of the signature list is n.

(b) The order of π is the lcm of the signature list.
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There is a another factorization that is important.

Proposition 2.8. Every permutation can be written as a product of transpositions.

Proof. Since every permutation is a product of cycles, it is enough to show that
every cycle is a product of transpositions. This is shown by verifying that

(a1, a2, . . . , at) = (a1, a2) ∗ (a2, a3) ∗ · · · ∗ (at−2, at−1) ∗ (at−1, at)

We may interpret the previous result as saying that Sn is generated by trans-
positions. That is somewhat good news: there are n! elements of Sn but we only
need

(n
2

)
elements to generate Sn. In fact we can do much better!

Exercises 2.9.

(a) Show that Sn is generated by the n − 1 elements (1, k) for k = 2, . . . , n.
[Show that you can get an arbitrary transposition by conjugating (1, k) by
some (1, j).]

(b) Show that Sn is generated by 2 elements: (1, 2) and (1, 2, 3, . . . , n − 1, n).
[Show that you can get all (1, k) from these two.]

We know from the previous proposition that a permutation can be written
as a product of transpositions. This “factorization” is not unique, for example
id = (1, 2)(2, 1) = (1, 3)(3, 1), but the parity of the factorization is.

Proposition 2.10. The identity element of Sn cannot be written as the product
of an odd number of transpositions.

Consequently, any permutation can be written as a product of an even number
of transpositions, or an odd number of transpositions, but not both.

Proof. I refer you to the standard texts for the proof of the first part of this result.
Suppose that π is the product of transpositions in two ways: π = σ1σ2 . . . σm =

θ1θ2 . . . θk. Then id = σ1σ2 . . . σmθ−1
1 θ−1

2 . . . θ−1
k . So m + k is even and m and k

must have the same parity.

We now have an important and easy consequence.

Theorem 2.11. The set of even parity permutations forms a subgroup of Sn. This
is called the alternating group and is denoted An.

Exercises 2.12.

(a) Show that there is a homomorphism from Sn to Z2. The preimage of 0 ∈ Z2

is An.

(b) Find all subgroups of A4.

(c) What is the intersection of A4 and D4?
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3 Cosets and Conjugates

The following bit of notation is useful.

Notation 3.1. Let S and T be subsets of a group G.

ST = {st : s ∈ S, t ∈ T}

We may use analogous notation for the set of all products from 3 or more sets.
Similarly, gS = {gs : s ∈ S} .

Notice that ST and TS are not necessarily equal when a a group is not abelian.
It is sometimes useful to have notation that says that H is a subgroup of G.

Notation 3.2. Henceforth, H ≤ G means H is a subgroup of G and H < G
means H is a proper subgroup of G.

The first use of this notation is to define a coset of a group H in a group G
containing H.

Definition 3.3. Let H ≤ G and let g ∈ G. Then gH is called a left coset of H in
G. and Hg is called a right coset of H in G.

We will prove several results for left cosets. There are analogous results for
right cosets.

Lemma 3.4. The function

λg : H −→ gH

h 7−→ gh

is a bijection.

Proof. It is a surjection by definition of gH. Suppose gh = gh′, multiplying on the
left by g−1 gives h = h′, so λg is injective.

Lemma 3.5. If gH ∩ aH 6= {} then gH = aH.

Proof. First we show that if g ∈ aH then gH ⊆ aH. For g ∈ aH, we have g = ak
for some k ∈ H. Now for any h ∈ H, any gh = akh ∈ aH. This shows gH ⊆ aH.

Suppose x ∈ gH ∩ aH. Then there are h, k ∈ H such that x = gh = ak.
Then g = akh−1 ∈ aH and similarly a = ghk−1 ∈ gH. By the previous paragraph
aH = gH.

Proposition 3.6. For any H ≤ G the set of cosets of H partition H.
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Proof. Any g ∈ G is in some coset, namely gH, so the cosets cover G. The previous
lemma shows that any two unequal cosets are disjoint. Thus the cosets partition
G.

Proposition 3.7 (Lagrange). If G is a finite group with subgroup G then the order
of H divides the order G. In particular the order of any element of G divides |G|.

Proof. By the previous proposition the cosets ofH partition G, say G is the disjoint
union of a1H, a2H, . . . , atH. The cosets of H all have the same number of elements
by Lemma 3.4. Thus |G| =

∑t
i=1|aiH| = t|H|. Thus the number of elements of G

is a multiple of |H|.
For any a ∈ G the number of elements in the subgroup 〈a〉 is ord a. So ord a

divides |G|.

Definition 3.8. Let H ≤ G. The index of H in G, written [G : H], is |G|/|H|. It
is an integer by the previous proposition.

Now we consider conjugation.

Definition 3.9. Let a ∈ G and g ∈ G. The element aga−1 is called the conjugation
of g by a. If S is a subset of G, we define aSa−1 to be

{
asa−1 : s ∈ S

}
. It is the

conjugation of S by a.

Exercises 3.10.

(a) Let a ∈ G. For H a subgroup of G show that aHa−1 is a subgroup of G.

(b) Define a function ϕa : G −→ G by ϕ(g) = aga−1. Show that ϕa is an
automorphism of G.

(c) Show that aHa−1 has the same number of elements as H.

(d) Show that {ϕa : a ∈ G} is a subgroup of Aut(G). It is called Inn(G), the
group of inner automorphisms of G.

Proposition 3.11. Let π ∈ Sn. For any σ ∈ Sn, the signature of σ and the
signature of πσπ−1 are the same.

One proof is contained in the following exercise.

Problems 3.12.

(1) Consider first the case where σ is a t-cycle and π is a transposition. Show
that πσπ−1 is a t-cycle. [You will have to consider 3 cases based on supp(σ)∩
supp(π).]

(2) Extend to arbitrary π by noting that every permutation is the product of
transpositions.
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(3) Extend to arbitrary σ by writing σ as the product of disjoint cycles and
using the fact that conjugation by π “respects products.”

Problems 3.13.

(1) Show that An is invariant under conjugation: for any π ∈ Sn, πAnπ
−1 = An.

(2) Now consider Dn as a subset of Sn by enumerating the vertices of an n-gon
clockwise 1, 2, . . . , n. Show that the n-cycle (1, 2, . . . , n) and any reflection
generate Dn.
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4 Rings and Unit Groups

Definition 4.1. A ring is a set R, with two operations + and ∗ satisfying the
properties

(1) Associativity of + and ∗.

(2) Commutativity of +.

(3) Identities for + and ∗: Usually denoted 0 and 1, respectively.

(4) Inverses for +: The inverse of r ∈ R is usually written −r.

(5) Distributivity of ∗ over +: For all a, b, c ∈ R, a ∗ (b+ c) = a ∗ b+ a ∗ c.

[Strictly speaking this is a ring with identity; among those who study such rings
it is usual to just call them rings.]

A commutative ring is a ring in which multiplication is commutative.

One may also say that a ring R is an abelian group under + and a monoid
(look it up!) under ∗, with the additional property that ∗ distributes over +.

Definition 4.2. An element u of a ring R is a unit when there is another element
v such that uv = vu = 1. An element a of a ring R is a zero divisor when a 6= 0
and there is some b 6= 0 in R such that ab = 0 or ba = 0.

Exercises 4.3.

(a) Show that the identity for multiplication in a ring R is unique. If x satisfies
xa = ax = a for all a ∈ R then x = 1.

(b) The inverse of a unit is unique.

(c) The inverse of a unit is also a unit.

(d) A unit cannot be a zero divisor.

Proposition 4.4. Let R be a ring (not necessarily commutative). The set U(R)
of units in R forms a group.

Proof. The main thing we have to prove is that multiplication is an operation on
U(R). We need to show the product of two units is a unit. But this is clear. If u, v ∈
U(R) then (uv) is also a unit, with inverse v−1u−1 since v−1u−1uv = v−1v = 1
and uvv−1u−1 = uu−1 = 1. By the definition of ring, multiplication is associative.
So we have an operation that is associativite, an identity element, 1, and each
element has an inverse, by the definition of U(R) and the previous exercise.
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Definition 4.5. A division ring is a ring in which each nonzero element is a unit.
A field is a commutative division ring.

Exercises 4.6.

(a) Let D be a division ring. Show that D \{0}, which we denote D∗, is a group
under ∗.

(b) Show that a division ring has no zero divisors. That is: if ar = 0 for some
a, r ∈ R

Of particular interest are the following groups derived from rings.

• Un the unit group of Zn.

• The set of nonzero elements of a field is a group under multiplication. We de-
note it with a ∗, for example: Q∗, R∗, C∗. In addition we have the subgroups
Q∗∗ and R∗∗ consisting of the positive field elements.

• For F a field, we may form the ring M(n, F ) of n × n matrices over F . A
matrix is invertible if and only if its determinant is nonzero. So the unit
group of M(n, F ) is the set of matrices with nonzero determinant. It is
called the general linear group and is written Gl(n, F ).

There are many interesting subgroups of the general linear group.

Exercises 4.7.

(a) Show that the general linear group has these subgroups:

• The diagonal matrices with nonzero entries.

• The upper triangular matrices.

• The special linear group Sl(n, F ) is the group of matrices with determi-
nant 1.

• The orthogonal group O(n, F ) is the group of matrices Q such that Q−1

is the transpose of Q.

(b) Show that det is a homomorphism from Gl(n, F ) to F ∗.

(c) For any subgroup H of F ∗ the set of all matrices with determinant in H is
a subgroup of Gl(n, F ).

Example 4.8. In Gl(2,C) consider the matrices

1 =

[
1 0
0 1

]

i =

[
i 0
0 −i

]

j =

[
0 1
−1 0

]

k =

[
0 i
i 0

]

The set of matrices Q = {±1,±i,±j,±k} is a group called the Quaternions.
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Exercises 4.9.

(a) Show that the quaternions are indeed a group.

(b) Find the order of each element of Q.

(c) Show that no two of the groups Z2 × Z2 × Z2, Z4 × Z2, Z8, D4, and Q are
isomorphic. [Investigate the number of elements of order 4.]

Problems 4.10.

(1) Show that the subgroup of upper triangular 2 × 2 matrices is conjugate to

the group of lower triangular matrices. [Hint:

[
0 1
1 0

]

.]

(2)

(3) Show that the set of matrices with nonzero determinant of the form

[
0 a
b c

]

is a coset of the upper triangular matrices.

Definition 4.11. For rings R,S a function ϕ : R −→ S is a homomorphism iff

(1) ϕ is a homomorphism of the groups R,+R and S,+S , and

(2) ϕ(r1 ∗R r2) = ϕ(r1) ∗S ϕ(r2) for all r1, r2 ∈ R, and

(3) ϕ(1R) = ϕ(1S).
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5 The Polynomial Ring F [x] and Irreducibility

Henceforth we are primarily interested in commutative rings. Indeed, our objective
is to study fields, and the main interest in rings is the properties of the polyno-
mial ring F [x] for F a field. Please see the material on polynomial rings in the
“prerequisite” notes from last semester. That material is extremely important.

A key issue for us will be indentifying when some f(x) ∈ F [x] is irreducible.
We summarize a number of results in this section. I think we proved all of these
last semester. In any case we accept them now without proof. We start with some
general properties of polynomial rings.

Notation 5.1. We will often use simplifying notation when working with polyno-
mials. We will write f ∈ F [x], and use f(x) when we need to be very clear. I will
always use fi for the coefficients of f , and I will write f =

∑

i fix
i. The sum is

implicitly for i = 0 to ∞, but only a finite number of terms are nonzero.

Here is an additional result about polynomial rings that will be useful.

Proposition 5.2 (Universal property of polynomial rings). Let R,S be rings and
let ϕ : R −→ S be a ring homomorphism. For any s ∈ S there is a unique
homomorphism from R[x] to S that agrees with ϕ on R and takes x to s, namely

ϕ : R[x] −→ S
(∑

i

rix
i
)

7−→
∑

i

ϕ(ri)s
i

Proof. If there is a homomorphism ϕ taking x to s and agreeing with ϕ on R then
we must have

ϕ
(∑

i

rix
i
)

=
∑

i

ϕ(rix
i) =

∑

i

ϕ(ri)ϕ(x)
i =

∑

i

ϕ(ri)s
i

To show this function is a homomorphism we check that it respects the operations.
I leave sums to you. Notice that

(
∑

i

aix
i)(
∑

i

rix
i) =

∑

i

∑

j

airjx
i+j

Set k = i+ j and gather terms in xk,

=
∑

k

xk
k∑

i=0

(airk−i)
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A similar derivation shows that for bi, ti ∈ S

(
∑

i

bis
i)(
∑

i

tis
i) =

∑

k

sk
k∑

i=0

bitk−i

Thus we have

ϕ
((∑

i

aix
i
)(∑

i

rix
i
))

= ϕ
(∑

k

xk
( k∑

i=0

airk−i

))

=
∑

k

sk
( k∑

i=0

ϕ(airk−i)
)

=
(∑

i

ϕ(ai)s
i
)(∑

j

ϕ(rj)s
j
)

= ϕ
(∑

i

aix
i
)

ϕ
(∑

i

rix
i
)

This shows ϕ respects products

Here is a fundamental application of the universal property. In the proposition
we are extending the identity map on F .

Proposition 5.3. Let g(x) ∈ F [x]. There is a homomorphism F [x] −→ F [x]
taking f(x) to f(g(x)). This map is an isomorphism iff g(x) has degree 1.

One more consequence of the universal property follows. This result is similar
to the order theorem, following the general theme that the of the analogies between
results for Z and for polynomial rings over a field.

Proposition 5.4. Let R be a ring and containing a field F . For any r ∈ R there
is a unique homomorphism ϕ from F [x] to R that is the identity on F and takes
x to r. If the kernel of ϕ is not just 0 then there is some polynomial m(x) such
that every element of the kernel is a multiple of m(x).

Proof. The existence of the homomorphism is guaranteed by the universal prop-
erty. Suppose that the kernel is non-trivial and let m(x) be a nonzero polyno-
mial of minimal degree in the kernel. For any f(x) in the kernel, write f(x) =
q(x)m(x) + r(x) with deg(r(x)) < deg(m(x). Then r(x) = f(x) − q(x)m(x) is
also in the kernel, so ϕ(r(x)) = 0. Since m(x) was chosen to have minimal degree,
r(x) = 0, and f(x) is a multiple of r(x).
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The proposition may be proven more quickly by noting that the kernel is an
ideal in F [x] and all ideals in F [x] are principal.

Definition 5.5. In the situation of the previous proposition, the polynomial m(x),
when it exists, is called the minimal polynomial of r. If m(x) = xd +md−1x

d−1 +
m1x+m0 then applying ϕ we have rd +md−1r

d−1 +m1r +m0 = 0 in R. We say
r is a root of m(x) and that r is algebraic of degree d over F . If the kernel of ϕ is
trivial r is said to be transcendental over F .

Now to the question of irreducibility. It is not always easy to check whether
a polynomial is irreducible, but here is one easy case: If a polynomial of degree 2
or 3 factors, then one of the factors must be linear. The linear factor then has a
root, which is also a root of the original polynomial. Thus, we have:

Proposition 5.6. Let f(x) ∈ F [x] have degree 2 or 3. If f(x) has no roots then
it is irreducible.

Proposition 5.7. Let f(x) ∈ F [x] have degree n. If f(x) is not divisible by any
irreducible polynomial of degree d for all d ≤ n/2 then f(x) is irreducible.

Proposition 5.8. Let f(x) ∈ F [x] and a ∈ F . Then f(x) is irreducible iff f(x−a)
is irreducible.

Proof. There is an isomorphism ϕ from F [x] to itself taking x to x − a. If f(x)
factors then ϕ(f) = f(x− a) also factors, and conversely.

Definition 5.9. Let f ∈ Z[x]. The gcd of the coefficients of f is called the content
of f : gcd {fi : i ∈ N0} = c(f). A polynomial whose content is 1 is called primitive,
but we will use that term for a different meaning later, so we just say content 1.
We can factor any f ∈ Z[x] as c(f)f∗ where f∗ has content 1.

These definitions and the following results may be extended to any unique
factorization domain D and its field of quotients K(D).

Proposition 5.10. Let f = f0+f1x+· · ·+fdx
d ∈ Z[x] have degree d and content 1.

If r/s ∈ Q is a root of f then r | f0 and s | fd.

Proposition 5.11. Let f ∈ Z[x] have content 1. f is irreducible in Z[x] iff f is
irreducible in Q[x].

There is a natural homomorphism Z −→ Z/n and from Z/n to Z/n[x]. Conse-
quently, Proposition 5.2 tells us there is a homomorphism, Z[x] −→ Z/n[x] taking
x to x. This map is simply reducing the coefficients modulo n. For n a prime, we
will write Fp instead of Z/p to emphasize that it is a field.
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Proposition 5.12. Let f ∈ Z[x] have degree d and content 1. Let f̄ be the image
of f in Fp[x] for some prime p that doesn’t divide fd. If f̄ is irreducible in Fp[x]
then f is irreducible in Z[x] and also in Q[x].

Proposition 5.13 (Eisenstein’s criterion). Let f ∈ Z[x] had degree d ≥ 1 and
content 1. If there is a be a prime number p such that

• p ∤ ad

• | ai for i < d

• p2 ∤ a0

then f is irreducible.

Problems 5.14.

(1) Let p be prime. It is clear that (xp − 1) is not irreducible since it has a
root, 1. Show that xp−1

x−1 = xp−1 + xp−2 + · · · + 1 is irreducible. Use the
isomorphism x 7−→ (x+ 1) and Eisenstein’s criterion.

(2) Test whether the following polynomials are irreducible.

• 3x2 − 7x− 5

• 2x3 − x− 6

• x3 − 9x− 9

(3) Show that x4 − 10x+ 1 is irreducible as follows.

• Show it has no roots.

• Try to factor it as a product of quadratics and derive a contradiction.

(4) Quadratic fields over F3.

• Find all monic irreducibles of degree 2 over F3.

• Let α be the class of x in the field F3[x]/(x
2 − 2x− 2). Show that the

powers of α give all nonzero element of this field.

• Show that all the monic irreducibles found earlier have two roots in this
field.

(5) A field with 32 elements.

• Using arguments similar to what we did in class, find all irreducible
polynomials of degree 5 over F2.

• Let m(x) be one of the polynomials you found. Use sage to create the
field F2[x]/m(x). Let a be the class of x.
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• Explain why the powers of a give all elements of this field.

• Use sage to show that all the irreducibles of degree 5 have 5 roots in
this new field.
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6 First Fields and Automorphisms

There are a few fields that should be familiar to you. We are going to start the
semester by enlarging our collection of fields and by studying their automorphisms.

The fields you should know are:

• The rational numbers Q. This is the smallest field that contains the integers.

• The prime fields Fp for each prime number p. A fundamental result from
modular arithmetic is that each nonzero element in the ring of integers mod-
ulo p, Zp, is invertible. You can compute the inverse using the extended
Euclidean algorithm. This shows that Zp is a field. When studying fields we
will write Fp instead of Zp.

• The real field, R.

• The field of complex numbers C. The complex numbers is a vector space of
dimension 2 over R with basis {1, i} where i =

√
−1. That is, every element

of C may be written in a unique way as a+ bi for a, b ∈ R.

Definition 6.1. For fields (or division rings) F and K, a function ϕ : F −→ K is
a homomorphism iff

(1) ϕ is a homomorphims of the groups F,+F and K,+K , and

(2) ϕ is a homomorphism of the groups F ∗, ∗F and K∗, ∗K .

Applying Proposition 1.6, ϕ : F −→ K is a homomorphism of fields if it
respects addition and multiplication: ϕ(a1 + a2) = ϕ(a1)+ϕ(a2) and ϕ(a1 ∗ a2) =
ϕ(a1) ∗ ϕ(a2). Note: In the last two equations the addition and multiplication
on the left is done in F and the addition and multiplication on the right is in K.
Henceforth I’m going to follow standard practice and not write the subscripts on
the operation signs to make the equations more legible. BUT, don’t forget the
disctinction! We will also usually not write the multiplication sign, unless there is
some important reason to use it.

It turns out that a homomorphisms of fields is always injective!

Proposition 6.2. Let ϕ : F −→ K be a homomorphism of fields. Then ϕ(a) =
ϕ(b) implies a = b.

Proof. Let ϕ : F −→ K be a homomorphism. Let a be a nonzero element of F .
Since aa−1 = 1F , applying ϕ we get ϕ(a)ϕ(a−1) = 1K . Since 0K does not have a
multiplicative inverse, ϕ(a) cannot be 0K . Thus a 6= 0F implies ϕ(a) 6= 0K .

Now suppose ϕ(a) = ϕ(b). Then ϕ(a−b) = 0K , and the contrapositive of what
we showed in the previous paragraph gives a− b = 0, so a = b.
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Of particular interest is the set of all isomorphisms from a field F to itself. The
following proposition is another very worthwhile exercise.

Proposition 6.3.

(1) The composition of two field homomorphisms is a field homomorphism.

(2) The composition of two isomorphisms of fields is an isomorphism of fields.

(3) Let ϕ : F −→ K be an isomorphism of fields. The inverse function ϕ−1 :
K −→ F is also an isomorphism of fields.

And now the culmination of this section!

Definition 6.4. Let F be a field. The automorphism group of F is the set of all
isomorphisms from F to itself, with the operation of composition. It is written
Aut(F ).

Proposition 6.5. For F a field, Aut(F ) is indeed a group.

What can we say about automorphisms of the fields introduced above? First
note that any automorphism has to take 1 to itself. Consider an automorphism ϕ
of Q. We must have ϕ(1) = 1. Since ϕ respects addition,

ϕ(1 + · · ·+ 1
︸ ︷︷ ︸

b terms

) = 1 + · · ·+ 1
︸ ︷︷ ︸

b terms

which shows that ϕ(b) = b for each positive integer b. Since ϕ also respects
additive inverses, ϕ(−b) = −b for positive integers b, so ϕ is the identity map on
the integers. Since ϕ respects multiplicative inverses, ϕ(1/b) = 1/b for any integer
b, and since ϕ respects products ϕ(a/b) = ϕ(a)ϕ(1/b) = a/b. Thus we have shown
that the only automorphism of Q is the identity map. A similar (shorter argument)
shows that the only automorphism of Fp is the identity map.

Notice also that there can be no homomorphism from Q to Fp since any ho-
momorphism must be injective.

The reals are vastly more complicated, so let’s consider automorphims of C
that fix R. By “fix” we mean that the automorphism ϕ of C is the identity map on
the reals, ϕ(r) = r for r ∈ R. We know that i∗i = −1 so ϕ(i)∗ϕ(i) = ϕ(−1) = −1.
Thus there are only two possibilities, ϕ(i) is either i itself or −i. In the first case
ϕ has to be the identity map, ϕ(a + bi) = ϕ(a) + ϕ(b)ϕ(i) = a + bi since ϕ fixes
the reals. In the second case ϕ is the conjugation map: ϕ(a+ bi) = a− bi.

This simple example is the model for our work this semester. For a field K
containing another field F , we seek to understand the automorphisms of K that
fix F , and to use that knowledge to better understand the field K.
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7 Constructing Fields: Quadratic Fields

We have two main tools for constructing new fields.
Construction I: The first method is to work inside a known field, usually the

complex numbers, and find the smallest field containing some specified elements.
Construction II: The second method is based on the following proposition

that is analogous to the result that Z/p is a field.

Proposition 7.1. Let F be a field and let p(x) be an irreducible polynomial in
F [x]. The ring F [x]/p(x) is a field.

Let’s start with Construction I.

Example 7.2. Consider the smallest field inside the complex numbers that contains
Q and i. I claim this is F = {a+ bi : a, b ∈ Q}. Certainly this set is a small as
possible, since any field in C must contain Q and any field containing i must
contain a + bi for any rationals a, b. To show this set is a field we have to show
that it satisfies the field axioms.

• Associativity and commutativity of +, ∗ (and distributivity of ∗ over +) are
immediate, since they hold in C.

• The additive indentity 0+ 0i and the multiplicative identity 1+ 0i are in F .

• For a+ bi ∈ F , the additive inverse of a+ bi is (−a)+ (−b)i, which is also in
F . The multiplicative inverse of a+ bi is a

a2+b2
+ −b

a2+b2
i, which is also in F .

• We must also check that + and ∗ operations on F . This means that we must
check closure: for a + bi and r + si in F their sum and their product must
be in F .

(a+ bi) + (r + si) = (a+ r) + (b+ s)i

(a+ bi) ∗ (r + si) = (ar − bs) + (as+ br)i

These are in F since a+ r and b+ s and ar− bs and as+ br are all rational.

This field is called the Gaussian integers and is usually written Q[i]. We can show
that Aut(Q[i]) just has two elements—the identity map, and the map taking a+bi
to a− bi. The argument is exactly the same as used above for the automorphisms
of the complex numbers that fix the reals.

Now let’s consider Construction II.
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Example 7.3. The polynomial x2 + 1 is irreducible as an element of Q[x] since
it has no roots. Thus Q[x]/(x2 + 1) is a field. The rule for addition is simple
(a+ bx) + (r + sx) = (a+ r) + (b+ s)x. The rule for multiplication of a+ bx and
r + sx is: compute the product, then take the remainder after division by x2 + 1.
We get (a+ bx)(r+ sx) = ar+ (as+ br)x+ bsx2, and dividing by x2 +1 gives the
remainder (ar − bs) + (as+ br)x.

I leave it to you to check that there is an isomorphism

Q[x]

x2 + 1
−→ Q[i]

a+ bx 7−→ a+ bi

Show this functions respects + and respects ∗.
More generally, we have the following, which you should prove. The main issue

in (1) is to show that the set given is closed under multiplication and (multiplica-
tive) inversion.

Proposition 7.4. Let D be a rational number that is not a perfect square.

(1) The set
{

a+ b
√
D : a, b ∈ Q

}

is a field (it is denoted Q[
√
D]).

(2) The polynomial x2 −D is irreducible.

(3) The field Q[x]/(x2 −D) is isomorphic to Q[
√
D].

(4) The field Q[
√
D] is isomorphic to Q[

√
a] for some square free integer a.

(5) There are two automorphisms of Q[
√
D]. The nontrivial one takes

√
D to

−
√
D.

The quadratic formula

There is a relationship between the quadratic formula and field extensions.
Consider a quadratic m(x) = ax2 + bx + c with a, b, c ∈ Q. The roots of this

polynomial are r = −b/2a +
√
b2 − 4ac/2a and r̄ = −b/2a −

√
b2 − 4ac/2a. Let

D = b2 − 4ac be the discriminant of m(x) and suppose D is not a perfect square
(Then

√
D is irrational).

I claim that Q[r] = {a+ br : a, b ∈ Q} and Q[
√
D], are the same (not just

isomorphic, they include the same elements from C). One inclusion is easy, r is
evidently in Q[

√
D] since r is the sum of a rational number, −b/2a, and a rational

multiple of
√
D. Consequently any s+ tr with s, t ∈ Q is also in Q[

√
D].
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To prove the reverse inclusion, note that b + 2ar =
√
D so

√
D ∈ Q[r]. Then

s + t
√
D = s + t(2ar + b) = (s + tb) + (2at)r will also be in Q[r]. Thus the two

fields are equal.
Sincem(x) has no rational roots, it is irreducible. Consider the field Q[x]/m(x).

It is a straightforward calculation to show that it is isomorphic to Q[r]. We now
know that Q[x]/m(x) is isomorphic to Q[r] that Q[r] is isomorphic to Q[

√
D] and

by Proposition 7.4 that Q[
√
D] is isomorphic to Q[

√
a] for some square free integer

a. Furthermore the automorphism group of Q[x]/m(x) has just two elements.
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8 Cubic Extensions of the Rationals

In this section we take what may seem a modest step forward. We look at ex-
tending Q by the cube root of a rational number, and we consider Q[x] modulo an
irreducible cubic. The story is more subtle than you might expect!

Let’s start by studying the smallest field in C that contains 3
√
2.

Example 8.1. Let Q[ 3
√
2] denote the smallest field in C that contains 3

√
2. Clearly,

Q[ 3
√
2] must also contain ( 3

√
2)2 = 3

√
4. I claim that

Q[
3
√
2] =

{

a+ b
3
√
2 + c

3
√
2 : a, b, c ∈ Q

}

.

As in the discussion of Q[
√
i], several field properties are immediate: associa-

tivity, commutativity, distributivity hold because they hold in C and the identity
elements 0 and 1 are clearly in Q[ 3

√
2]. The only thing we need to check is that

addition and multiplication are indeed operations on Q[ 3
√
2] (in other words Q[ 3

√
2]

is closed under + and ∗) and that Q[ 3
√
2] is closed under taking inverses (additive

and multiplicative). Closure under addition and taking additive inverses is clear.

(a+ b
3
√
2 + c

3
√
4) + (r + s

3
√
2 + t

3
√
4) = (a+ r) + (b+ s)

3
√
2 + (c+ t)

3
√
4

−(a+ b
3
√
2 + c

3
√
4) = −a+ (−b)

3
√
2 + (−c)

3
√
2

Closure under multiplication, and the formula for computing products follows.

(a+ b
3
√
2 + c

3
√
4)(r + s

3
√
2 + t

3
√
4)

= (ar) + (as+ br)
3
√
2 + (at+ bs+ cr)

3
√
4 + (bt+ cs)

3
√
8 + ct

3
√
16

= (ar + 2bt+ 2cs) + (as+ br + 2ct)
3
√
2 + (at+ bs+ cr)

3
√
4

To establish closure under the multiplicative inverse, consider a, b, c as given
and r, s, t as unkowns in the previous equation. We need to solve

(ar + 2bt+ 2cs) + (as+ br + 2ct)
3
√
2 + (at+ bs+ cr)

3
√
4 = 1 + 0

3
√
2 + 0

3
√
4

This gives three equations in the three unkowns.





a 2c 2b
b a 2c
c b a









r
s
t



 =





1
0
0





There is a unique solution provided the determinant is nonzero. The determinant
is a3 + 2b3 + 4c3 + 8abc.
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We need to modify the question. It should be clear that if I can invert a +
b 3
√
2+c 3

√
4 then I can invert any rational multiple of it. This allows us to reduce to

the case a+ b 3
√
2+ c 3

√
4 for mutually coprime integers a, b, c. One of these integers

must be odd.

• If a is odd, then a3 + 2b3 + 4c3 + 8abc is odd, and is therefore nonzero.

• If a is even, and b is odd then a3 is a multiple of 8, and a3+2b3+4c3+8abc =
2(a3/2 + b2 + 2c2 + 4abc) is divisible by 2 but not 4, so it cannot be 0.

• If a and b are both even and c is odd, then a3+2b3+4c3+8abc is a multiple
of 4, but not of 8, so it is nonzero.

Thus we have shown that a+b 3
√
2+c 3

√
4 has an inverse in Q[ 3

√
2], which completes

the proof that Q[ 3
√
2] is a field.

Now let’s consider automorphisms of Q[ 3
√
2]. Reflect for a minute to guess how

many automorphisms there are.
Let ϕ be an automorphism of Q[ 3

√
2]. Since ( 3

√
2)3 = 2, it must be the case

that
(
ϕ( 3

√
2)
)3

= 2. You can try setting ϕ( 3
√
2) = a + b 3

√
2 + c 3

√
4, then cubing

setting the result equal to 2, and solving for a, b, c. Alternatively, let’s think: we
are working in the complex numbers, and we know that there are 3 cube roots of

2—the others are 3
√
2ω and 3

√
2ω2 where ω = e2πi/3 = −1

2 +
√
3
2 i. Since Q[ 3

√
2] is

contained in R, these other square roots—which are not real—are not in Q[ 3
√
2].

Thus the only possible value for ϕ( 3
√
2) is 3

√
2 and ϕ must be the identity map.

Finally, we note that there is an isomorphism:

Q[x]/(x3 − 2) −→ Q[
3
√
2]

a+ bx+ cx2 7−→ a+ b
3
√
2 + c

3
√
4

Check that this maps respects addition (easy) and multiplication.

More generally, we have the following.

Proposition 8.2. Let B be a rational number that is not a perfect cube.

(1) The set
{

a+ b 3
√

+ c
3
√
B2 : a, b, c ∈ Q

}

is a field (it is denoted Q[ 3
√
B]).

(2) The polynomial x3 −B is irreducible.

(3) The field Q[x]/(x3 −B) is isomorphic to Q[ 3
√
B].

(4) The field Q[ 3
√
B] is isomorphic to Q[ 3

√
a] for some cube free integer a.

(5) identity map is the only automorphism of Q[ 3
√
B].
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The solution of a cubic polynomial

In the 16th and 17th centuries, there was a great deal of interest in deriving for-
mulas, like the one for quadratics, for the solution of arbitrary cubic, quartic and
higher degree equations. Several solutions of the cubic equation were discovered.
I’m presenting one that is on the Wolfram MathWorld site and attributed to Vieta.

Consider the general cubic equation

x3 + ax2 + bx+ c = 0

Substitute x = y − a
3 , to get

0 = (y − a

3
)3 + a(y − a

3
)2 + b(y − a

3
) + c

= y3 − ay2 +
a2

3
y − a3

27
+ ay2 − 2a

a

3
y + a

a2

9
+ by − b

a

3
+ c

= y3 +

(

−a2

3
+ b

)

y +
2a3

27
− ab

3
+ c

Setting p = −a2

3 +b and q = 2a3

27 − ab
3 +c, we can write the last equation as y3+py+q.

It should be clear that a solution to this equation (ȳ(p, q) an expression for y in
terms of p and q), can be transformed to a solution to the original equation by a
number of substitutions.

x = ȳ(p,w)− a

3
= ȳ(−a2

3
+ b,

2a3

27
− ab

3
+ c)− a

3

We proceed now to the solution of

y3 + py + q

This is somewhat easier than the general equation since there is no y2 term. We
may assume p and q are both nonzero since q = 0 gives solutions y = 0 and
y = ±√

p and p = 0 is the case dealt with in Proposition 8.2. The trick here is to
substitute

y = z − p

3z

This may seem odd, but notice that clearing fractions gives z2−3yz−p = 0. Thus
for each y the quadratic formula gives two values of z such that y = z− p

3z—unless
9y2 + 4p = 0 in which case there is a single value of z. Note that this value of z
cannot be zero since p 6= 0.

We have

y3 = z3 − 3z2
p

3z
+ 3z

p2

9z2
− p3

27z3
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so substituting y = z − p
3z in y3 + py + q gives

y3 + py + q = z3 − pz +
p2

3z
− p3

27z3
+ pz − p

p

3z
+ q

= z3 − p3

27z3
+ q

Multiplying by z3 and setting the expression equal to 0 gives

0 = z6 + qz3 − p3

27

Now, as if by magic, we can use the quadratic formula to get two solutions for z3.

R =
1

2

(

−q +

√

q2 +
4p3

27

)

S =
1

2

(

−q −
√

q2 +
4p3

27

)

Let’s call the discriminant of the quadratic B = q2 + 4p3

27 . The solutions for z are
now

z = R
1

3 , R
1

3ω,R
1

3ω2, and S
1

3 , S
1

3ω, S
1

3ω2

Returning to the original question, solutions to y3 + py + q = 0, there is a bit of
a puzzle now—we seem to have 6 roots, y = z − p

3z for the 6 different values of z
above.

Some observations

• There is ambiguity in the notation R
1

3 . If R is real then this means the
real cubic root, but if R is not real then there is not clear way to identify a
particular cube root.

• RS = −p3/27 since the product of the roots of a quadratic is the constant
term of the quadratic.

• If R is real (and therefore S is also real) then R
1

3S
1

3 = −p/3 the unique real
root of −p3/27.

• If R is not real then we can still choose R
1

3 and S
1

3 so that their product is
−p/3.

Then we get three solutions for y

R
1

3 − p

3R
1

3

= R
1

3 + S
1

3 = S
1

3 − p

3S
1

3

R
1

3ω − p

3R
1

3ω
= R

1

3ω + S
1

3ω2 = S
1

3ω2 − p

3S
1

3ω2

R
1

3ω2 − p

3R
1

3ω2
= R

1

3ω2 + S
1

3ω = S
1

3ω − p

3S
1

3ω
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The following problems treat each of the possibilities for a cubic polynomial
with distinct roots: three rational roots, one rational and two complex roots,
one rational and two irrational roots, one irrational and two complex roots, three
irrational roots (there are actually two subcases here). Note: by irrational I mean
irrational real, and by complex I mean complex nonreal.

Problems 8.3.

(1) Consider x3 − 7x+ 6 = (x− 1)(x− 2)(x− 3). Use the cubic formula to find
the roots. Explain why you are surprised.

(2) Find the roots of x3 − 15x − 4 using the cubic formula. [Hint: compute
(2 + i)3.]

(3) Find the roots of

(4) Consider m(x) = x3 − 3x+ 1 ∈ Q[x].

• Show x3 − 3x+ 1 is irreducible.

• Find the roots using the cubic formula (they involve 9th roots of unity).

• For α any particular root, conclude that m(x) splits in Q[α]. [Hint: For
each root α show that α2 − 2 is also a root.]

• If α is one root, α2 − 1 is another. Find the third root in terms of α.

(5) Let m(x) = x3 − 6x− 6.

• Find the roots of m(x) using the cubic formula and show that exactly
one root is real.

• Let α be the real root. Show the other roots are not contained in Q[α].

• For this real root α show that Q[α] = Q[ 3
√
2].

(6) Let m(x) = x3 − 15x− 10.

• Find the roots of m(x) using the cubic formula and show they are all
real.
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9 Finite Fields

We have already seen that Z/p is a field for p a prime. We will write this field
as Fp to emphasize that it is a field. In this section we characterize finite fields
completely by proving the following theorem.

Theorem 9.1. Let F be a field with a finite number of elements.

1) F has pn elements where p is a prime.

2) There is an element α ∈ F whose powers α1, α2, . . . , αpn−1 = 1 give all the
nonzero elements of F . Consequently, F ∗ is cyclic of order pn − 1.

3) F is isomorphic to Fp[x]/m(x) for some irreducible polynomial m(x) of de-
gree n over Fp.

For any prime p and any positive integer n:

4) There exists a field with pn elements.

5) Any two fields with pn elements are isomorphic.

We use Fpn to denote the unique field with pn elements. The automorphism group
of Fpn satisfies:

(6) Aut(Fpn) is generated by the Frobenius map, ϕ(β) = βp.

(7) Aut(Fpn) ∼= Z/n.

As a first step we prove

Proposition 9.2. A finite field is a vector space over Fp for some prime p. Con-
sequently, the number of elements of F is a power of p.

Proof. Suppose that F is a finite field. Consider the additive subgroup generated
by 1, i.e. 1, 1 + 1, 1 + 1 + 1. Let m be the smallest positive integer such that the
sum of m 1’s is 0. If m where composite, m = ab, then we would have

0 = 1 + 1 + 1 + · · ·+ 1 + 1
︸ ︷︷ ︸

m terms

= (1 + 1 + · · ·+ 1
︸ ︷︷ ︸

a terms

)(1 + 1 + · · ·+ 1
︸ ︷︷ ︸

b terms

)

The two factors on the right would then be zero-divisors, contradicting the as-
sumption that F is a field. Thus m is in fact a prime, which we will now call
p.
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The set of elements 1 + 1 + · · · + 1
︸ ︷︷ ︸

a terms

for 0 ≤ a < p is a subset of F that is closed

under addition and multiplication, and it is routine to check that it is isomorphic
to Fp. So, we will think of F as containing Fp.

From the field axioms we see immediately that F satisfies the axioms for a
vector space over Fp. For example: if a ∈ Fp and β, γ ∈ F then a(β + γ) =
aβ + aγ follows from the distributive law, but may be also considered as property
concerning scalar multiplication (by α) of a sum of vectors, β+γ. If the dimension
of F over Fp is n then F has a basis u1, . . . , un and the elements of F are a1u1 +
. . . , anun for ai ∈ Fp. Thus F must have pn elements.

Definition 9.3. The prime p in the theorem is called the characteristic of the
field.

Suppose that q = pn is the number of elements in F . By the field axioms,
the set of nonzero elements of F is a group under multiplication. This group is
denoted F ∗. Recall that the order of an element α in a group G is the smallest
positive integer r such that αr is the identity, or infinity, if no such r exists. As
an exercise, review the following properties:

Lemma 9.4. Let α be an element of order r in a group G.

1) αi = αj iff i ≡ j mod r.

2) The order of αi is r/d where d = gcd(i, r).

3) Let G be abelian. Let β ∈ G have order s, coprime to r = ord(α). Then
ord(αβ) = rs.

4) Let G be abelian. If α1, . . . , αn have orders r1, . . . , rn where the ri are pairwise
coprime, then ord(

∏n
i=1 αi) =

∏n
i=1 ri.

Now we can establish item 2) of the Theorem.

Proposition 9.5. The multiplicative group of a finite field is cyclic.

Proof. Let F have pn elements and let the prime factorization of pn−1 be
∏r

i=1 q
ai
i .

We will show that for each i = 1 . . . , r there is an element bi ∈ F ∗ of order qaii . Since
the qaii are Lemma 9.4 shows that the order of b =

∏r
i=1 bi is

∏r
i=1 q

ai
i = pn − 1.

Thus b generates the multiplicative group of F .
Let qa||(pn − 1). Let t = (pn − 1)/qa and consider the set S = {αt : α ∈ F ∗}.

For any β ∈ S the polynomial xt − β has at most t roots so there can be at most
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t elements of F whose tth power is β. Therefore the cardinality of S is at least
(pn − 1)/t = qa. On the other hand, everything in S is a root of xq

a − 1 since

(αt)q
a

= αpn−1 = 1

There can be only qa roots of xq
a − 1, so S has at most qa elements. This shows

|S| = qa. Similarly, at most qa−1 of the elements in S can be roots of xq
a−1 − 1 so

there must be at least qa − qa−1 elements of S whose order in F is qa. This shows
what we wanted: there is some element of F of order qa.

Definition 9.6. An element of a finite field whose powers generate the nonzero
elements of the field is called primitive.

The theorem says that every finite field has a primitive element. Furthermore,
from the lemma, if α is primitive in a field of pn elements then αk is also primitive
whenever k is coprime to pn − 1. Thus there are ϕ(pn − 1) primitive elements,
where ϕ is the Euler totient function (ϕ(n) is the number of positive integers less
than n and coprime to n).

I will state the next result as a corollary, but it is really a more basic result
derived from Lagrange’s theorem. F ∗ has pn − 1 elements, the order of any given
element has to divide pn − 1. Thinking of this in terms of roots of polynomials,
we have the following.

Corollary 9.7. If F is a field with pn elements then

xp
n−1 − 1 =

∏

α∈F ∗

(x− α) and,

xp
n − x =

∏

α∈F
(x− α)

According to the following definition, the corollary shows that a field F of order
pn is a splitting field for xp

n−1 − 1 and for xp
n − x over Fp.

Definition 9.8. Let F be a field and let f(x) ∈ F [x]. A splitting field for f(x) is
a field K containing F such that

• f(x) factors into linear factors in K[x].

• Every element of K can be written as a polynomial in the roots of f(x).

To prove item 3) of the Theorem we need to use the minimal polynomial of a
primitive element (see Definition 5.5).
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Proposition 9.9. Let F be a finite field of pn elements. Let β be any primitive el-
ement of F and let M(x) be its minimal polynomial over Fp. Then F is isomorphic
to Fp[x]/M(x). In particular degM(x) = n.

Proof. Let M(x) = xr +ar−1x
r−1+ · · ·+a1x+a0 with ai ∈ Fp. We will show that

1, β, . . . , βr−1 is a basis for F over Fp. We first observe that 1, β, . . . , βr−1 must
be linearly independent over Fp. Suppose on the contrary that some nontrivial
linear combination is 0, br−1β

r−1+ · · ·+ b1β+ b0 = 0. Let k be the largest positive
integer such that bk 6= 0. Then

βk +
bk−1

bk
· · ·+ b1

bk
β +

b0
b0

= 0

This shows that β is a root of a polynomial over Fp of degree less than degM(x),
contradicting the minimality of M(x).

Next we show that any power of β can be written as a linear combination of
1, β, β2, . . . , βr−1. This is true trivially for βi for i = 0, . . . , r − 1. Assume that
for some k ≥ r, each ai for i < k can be written as a linear.combination as stated.
Since M(β) = 0, βr = −ar−1β

r−1 − · · · − a1β − a0. Multiplying by βk−r we can
write βk as a linear combination of lower powers of β. By the induction hypothesis
these are all linear combinations of 1, β, . . . , βr−1, so βk is also. Since every nonzero
element of F is a power of β, we have shown that 1, β, . . . , βr−1 span F as claimed.

Since F has pn elements r = n. Furthermore the arithmetic on F is completely
determined by its structure as a vector space and βn = −an−1β

n−1−· · ·−a1β−a0.
This is exactly the same structure that Fp[x]/M(x) has. In other words the map
from Fp[x]/M(x) to F taking the class of x to β is an isomorphism.

We can now prove existence and uniqueness for fields of prime power order.
We will need the “Freshman’s dream”:

Proposition 9.10. Let α, β be elements of a field of characteristic p. Then (α+
β)p = αp + βp.

Proof. Expand (α+ β)p using the binomial theorem and we get terms like

(
p

k

)

αkβp−k

The binomial coefficient really means 1 added to itself
(p
k

)
times. Since p divides

the binomial coefficient when 1 < k < p the coefficient is 0 unless k = 0 or k = p.
That gives the result.

Proposition 9.11. For any prime power there exists a unique field of that order.
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Proof. Uniqueness: Let F and F ′ be two fields with pn elements. Let α be a
primitive element in F and let M(x) be its minimal polynomial over Fp. Since α
is a root of xp

n − x, Lemma 5.4 says that M(x) divides xp
n − x. By Corollary 9.7,

xp
n −x factors into distinct linear factors in both F and F ′ so there must be a root

of M(x) in F ′. By Proposition 9.9, both F and F ′ are isomorphic to Fp[x]/M(x)
so they are isomorphic to each other.

Existence: By successively factoring xp
n −x and adjoining roots of a nonlinear

irreducible factor, we can, after a finite number of steps, arrive at a field in which
xp

n − x factors completely. I claim that the roots of xp
n − x form a field. Since

the derivative of xp
n − x is −1, xp

n − x does not have multiple roots, so by the
roots-factors theorem it has exactly pn roots. Thus we have a field of pn elements.

We need to show that the sum of two roots is a root, that the additive inverse of
a root is a root, that the product of two roots is a root and that the multiplicative
inverse of a root is a root. These are all trivial except for the case of the sum of
two roots, which can be proved using the “Freshman’s dream.”

The following example shows that there are many ways to construct a given
field.

Example 9.12. Let p = 3. We can construct the field F32 by adjoining to F3 a
root α of the irreducible polynomial x2 +2x+2. You can check by hand that α is
primitive in this field. If we had used x2 + 1, which is also irreducible, we would
get still get a field with 9 elements. But the root of x2 + 1 will only have order 4
since α2 = −1 implies α4 = 1.

Definition 9.13. Let F be a finite field and let p(x) be a polynomial over F . If
p(x) is irreducible and the class of x is primitive in F [x]/p(x), then we say p(x) is
a primitive polynomial.

Example 9.14. We can construct F36 by adjoining to the field of the previous
example a root β of the primitive polynomial (verified using Magma) x3 + αx2 +
αx + α3 over F32 . Elements of F36 are uniquely represented as polynomials in α
and β whose degree in α is at most 1, and whose degree in β is at most 2.

We could also construct F36 by first constructing F33 by adjoining a root α′ of
the primitive polynomial x3 +2x+1 and then adjoining a root β′ of the primitive
polynomial (verified using Magma) x2 + x+ (α′)7 over F33 .

Finally we could construct F36 directly by adjoining a root of the primitive
polynomial x6 + 2x4 + x2 + 2x+ 2.

In each of these fields you can find a root of any one of the polynomials, and
thereby define isomorphisms between the fields.

Now we consider the automorphism group of a finite field. Recall that any
automorphism has to take 1 to itself, and must therefore fix the subfield Fp.
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Lemma 9.15. Let σ ∈ Aut(Fpn). Let α ∈ Fpn have minimum polynomial m(x).
Then σ(α) is also a root of m(x).

Proof. Let m(x) = xd +md−1x
d−1 + · · ·+m0 be the mimimum polynomial for α.

Each mi ∈ Fp so

σ
(

m(α)
)

=

n∑

i=1

σ(miα)

=

n∑

i=1

miσ(α)

= m(σ(α))

Since m(α) = 0 we have m(σ(α)) is also 0.

Proposition 9.16. The automorphism group of Fpn is cyclic of order n, generated
by the Frobenius map ϕ : α 7−→ αp.

Proof. The Frobenius map respects addition, by the Freshman’s dream, and it
clearly respects multiplication: ϕ(αβ) = (αβ)p = αpβp = ϕ(α)ϕ(β). Thus ϕ is a
homomorphism of fields. Since a homomorphism of fields must be injective, and
since an injective function on a finite set is also surjective, we conclude that ϕ is
an automorphism.

Repeatedly composing the Frobenius with itself gives other automorphims and
one can inductively establish the formula: ϕt(α) = αpt . Since F∗

pn has order pn−1

we have for α 6= 0, ϕn(α) = αpn = αpn−1 ∗ α = α. Thus ϕn is the identity map.
I claim no lower power of ϕ is the identity map. Suppose that ϕr is the identity
automorphism and let η be primitive in Fpn. Then η = ϕr(η) = ηp

r

, so ηp
r−1 = 1.

Since η is primitive it has order pn − 1, so we see r ≥ n as claimed.
We need to show that there are no other automorphisms of Fpn . Let η be

primitive, and let m(x) = xn +mn−1x
n−1 + · · ·+m0 be its mimimum polynomial.

The lemma showed that ϕr(η) = ηp
r

is another root of m(x). Since η is primitive,
η, . . . , ηp

n−1

are all distinct and they form the complete set of roots of m(x). Any
automorphims σ must take η to one of these other roots of m(x). Since the action
of σ on η determines σ completely, if σ(η) = ηp

r

then σ = ϕr.
In conclusion Aut(Fpn) is cyclic of order n, and is generated by ϕ.

Problems 9.17.

(1) Factor x15 − 1 over F2. Construct F16 in three ways as a degree 4 extension
of F2 and show isomorphisms between the three representations.

(2) Here is some Sage code to use to study the field F81.
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F3 = FiniteField(3)

P.<x> = PolynomialRing(F3)

p = x^81 -x

p.factor()

m = x^4+x+2

F81.<a> = FiniteField(81,modulus=x^4+x+2)

• The polynomials x2 + 2x + 1 and x2 + x+ 2 are both irreducible over
F3. Can you construct F81 by using one of these polynomials and then
the other?

• Using Sage, use m(x) = x4+x+2 and r(x) = x4+2x2+2 to construct
two versions of F81 in Sage. Using a brute force search, find a root of
m(x) in the second field and a root of r(x) in the first field. These give
isomorphisms between the two fields. Check that the composition is
the identity.

• Factor x80 − 1 over F3. Find the roots of each of the irreducibles in
F3[x]/m(x).

(3) The field of 64 elements.

• The polynomials m(x) = x6+x+1 and r(x) = x6+x5+x4+x+1 are
both irreducible over F2. Using Sage, use m(x) and r(x) to construct
two versions of F64 in Sage. Using a brute force search, find a root of
m(x) in the second field and a root of r(x) in the first field. These give
isomorphisms between the two fields. Check that the composition is
the identity.

• Factor x63 − 1 over F2. Find the roots of each of the irreducibles in
F2[x]/m(x). Use Sage, but also use your understanding of the theory.

L= (x^63-1).factor()

[l[0] for l in L if l[0].is_primitive()]

• The field F64 can also be constructed as an extension of F4. Construct
F4, factor x

63− 1. Choose one of the factors to construct of degree 3 to
construct F64. The following code will show how Sage treats elements
of this new object. It appears that there is no way in Sage to create a
“field,” the code below only creates a ring. In particular FF.list() will
not work.

FF.<b> = F4.extension(x^3+a)

[b^i for i in [1..64] ]
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• Now create F8 using an irreducible polynomial of degree 3 over F2, then
factor x63 − 1, then creat F64 using an irreducible polynomial of degree
2 over F8.

(4) Make a table showing the possible orders and the number of elements of each
order for F64, F128, and F256.

(5) Prove that if r|n then Fqr is a subfield of Fqn .

(6) For a given prime p, let I(d) be the set of irreducible polynomials of degree
d over Fp. Show that for n > 0,

∏

d|n

∏

f∈I(d)
f = xp

n − x

(7) Show that for any α ∈ Fq,

1 + α+ α2 + α3 + · · ·+ αq−2 =







1 if α = 0

−1 if α = 1

0 otherwise
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