Lecture Notes for Math 627B Modern Algebra Groebner Bases

Michael E. O'Sullivan
mosulliv@math.sdsu.edu
wWWW-rohan.sdsu.edu/ ~mosulliv

February 20, 2013

1 Monomial Orderings

Definition 1.1. A monomial ordering $<$ (also called a term ordering) is a an ordering of \mathbb{N}_{0}^{n} such that
(1) $<$ is a total ordering: for any $\alpha, \beta \in \mathbb{N}_{0}^{n}$, either $\alpha<\beta$, or $\alpha=\beta$ or $\alpha>\beta$.
(2) $<$ respects addition: $\alpha<\beta$ implies $\alpha+\gamma<\beta+\gamma$.
$(3)<$ is a well ordering: any nonempty subset of \mathbb{N}_{0}^{n} has a least element.
Given a term ordering, for $f \in k\left[x_{1}, \ldots, x_{n}\right]$ we will write $\operatorname{LT}(f)$ for the leading term, $\mathrm{LM}(f)$ for the leading monomial, $\mathrm{LC}(f)$ for the leading coefficient, and $\mathrm{LE}(f)$ for the leading exponent (the exponent of the leading term). IVA calls LE (f) the multidegree and uses mdeg (f).

Here is a summary of a results concerning monomial orderings from Robbiano (Theory of graded structures, 1986, and Term orderings on the polynomial ring, 1985).
(1) Any term ordering on \mathbb{N}_{0}^{n} extends in a unique way to a term ordering on \mathbb{Z}^{n}.
(2) Any term ordering on \mathbb{Z}^{n} extends in a unique way to a term ordering on \mathbb{Q}^{n}.
(3) Any term ordering on \mathbb{Q}^{n} extends is such that $\left(\mathbb{Q}^{n}\right)^{+}$(the set of elements larger than $(0, \ldots, 0)$) is convex, and $\left(\mathbb{Q}^{n}\right)^{-}$(the set of elements smaller than $(0, \ldots, 0))$ is also convex.
(4) This implies that the ordering is continuous. That means $\forall \alpha \in \mathbb{Q}^{n}$ if ther exists a neighborhood U_{α} such that $U_{\alpha}-\{\alpha\} \subseteq\left(\mathbb{Q}^{n}\right)^{+}$then $\alpha \in\left(\mathbb{Q}^{n}\right)^{+}$(and similarly for -).
(5) Thus, every ordering on \mathbb{Q}^{n} extends to a continuous order on \mathbb{R}^{n}.

I will just explain the first step above (the second is similar, the rest are harder). Suppose that $<$ is an ordering on \mathbb{N}_{0}^{n}. Let $\alpha, \beta \in \mathbb{Z}^{n}$ (so α and β may have negative terms). There is some $\gamma \in \mathbb{N}_{0}^{n}$ such that $\alpha+\gamma$ and $\beta+\gamma$ both have positive components (Check this!). We will say that $\alpha<\beta$ if $\alpha+\gamma<\beta+\gamma$. Since there are many choices for γ, we have to check consistency: $\alpha+\gamma<\beta+\gamma$ iff $\alpha+\gamma^{\prime}<\beta+\gamma^{\prime}$ for all γ^{\prime} large enough so that $\alpha+\gamma^{\prime}$ and $\beta+\gamma^{\prime}$ are in \mathbb{N}_{0}^{n}. (Check this!)

Theorem 1.2. Every term ordering on \mathbb{N}_{0}^{n} is given by some sequence $u_{1}, u_{2}, \ldots, u_{s} \in$ \mathbb{R}^{n}, in the following sense. $\alpha<\beta$ iff there is some t such that $\alpha \cdot u_{i}=\beta \cdot u_{i}$ for $i<t$ and $\alpha \cdot u_{t}<\beta \cdot u_{t}$.

The \cdot means the dot product. In other words, $\alpha<\beta$ if $\alpha \cdot u_{1}<\beta \cdot u_{1}$ and $\alpha>\beta$ if $\alpha \cdot u_{1}>\beta \cdot u_{1}$. If this test is inconclusive, that is $\alpha \cdot u_{1}=\beta \cdot u_{1}$, then use u_{2} to compare. Continue on till you get a definitive answer.

If there are n vectors $u_{1}, \ldots u_{n}$ and they are linearly independent, then any unequal α and β will be distinguished by one of these tests (Check!). It is possible for fewer than n vectors to determine a total ordering. This is because α and β have integer entries. Find an example with $n=2$.

2 Groebner Bases

Fix a monomial ordering.
Theorem 2.1 (Dickson). Every monomial ideal has a finite generating set. More precisely, for $A \subseteq \mathbb{N}_{0}^{n}$ there is a finite $A^{\prime} \subseteq A$ such that

$$
\left\langle x^{\alpha}: \alpha \in A\right\rangle=\left\langle x^{\alpha}: \alpha \in A^{\prime}\right\rangle
$$

Furthermore, we may take A^{\prime} so that $x^{\alpha} \nmid x^{\beta}$ for all $\alpha, \beta \in A^{\prime}$.

The last sentence of the theorem should be fairly clear. If x^{α} divides x^{β} then any monomial divisible by x^{β} is also divisible by x^{α} so we may remove β from A^{\prime} and still have a generating set. Removing all such unnecessary exponents gives the result.

Every monomial ideal has a finite generating set.
Theorem 2.2 (Groebner Basis). Any ideal I in $k\left[x_{1}, \ldots, x_{n}\right]$ is finitely generated. There is a subset $G=\left\{g_{1}, \ldots, g_{t}\right\} \subseteq I$ such that $I=\left\langle g_{1}, \ldots, g_{t}\right\rangle$.

Proof. Let $x^{\alpha_{1}}, \ldots, x^{\alpha_{t}}$ generate $\langle\operatorname{LT}(I)\rangle$. By Diskson's lemma the x_{i}^{α} are leading terms of elements of I, say $x^{\alpha_{i}}=\operatorname{LT}\left(g_{i}\right)$. Now let $f \in I$. Dividing f by G we get $f=a_{1} g_{1}+\cdots+a_{t} g_{t}+r$ and the remainder r has no terms divisible by any of the $x^{\alpha_{i}}$ (terms are only placed in the remainder when they are not divisible by any leading term of a g_{i}). Now $f-\sum a_{i} g_{i}=r \in I$. If $r \neq 0$ then $\mathrm{LT}(r) \in\langle\mathrm{LT} I)\rangle$ so $\mathrm{LT}(r)$ is divisible by some $x^{\alpha_{i}}$. This gives a contradicition. Thus $r=0$.

There are several corollary results that we can derive with a careful look at the proof.

Definition 2.3. Given a term order on $k\left[x_{1}, \ldots, x_{n}\right]$ and ideal I let $\Delta(I)=$ $\mathbb{N}_{0}^{n}-\operatorname{LT}(I)$. We will call $\Delta(I)$ the footprint of I.

Proposition 2.4. Given $f \in I$ there is a unique $g \in I$ and unique $r=$ $\sum_{\alpha \in \Delta(I)} r_{\alpha} x^{\alpha}$ such that $f=g+r$. Furthermore, for any Groebner basis, G (and any ordering of G), r is the remainder when f is divided by G.

Proof. We can divide any $f \in k\left[x_{1}, \ldots, x_{n}\right]$ by a Groebner basis $G=$ $\left\{g_{1}, \ldots, g_{t}\right\}$ and get $f=\sum a_{i} g_{i}+r$ with remainder r having terms with exponents in $\Delta(I)$. Let $g=\sum a_{i} g_{i}$. We have shown existence of g, r; must show uniqueness. Suppose $f=g+r$ and $f=g^{\prime}+r^{\prime}$. Then $g+r-\left(g^{\prime}+r^{\prime}\right)=0$ so $g-g^{\prime}=r^{\prime}-r$. I claim $g=g^{\prime}$ and $r=r^{\prime}$. If not $g-g^{\prime} \in I$, so $\mathrm{LE}\left(g-g^{\prime}\right) \notin \Delta(I)$. On the other hand $\operatorname{LE}\left(r-r^{\prime}\right) \in \Delta(I)$ since all terms of r and r^{\prime} have exponents in $\Delta(I)$. This gives a contradiction.

We have also shown that r is the remainder when f is divided by G, for any Groebner basis G.

Note: this is all based on a fixed term order!.
Definition 2.5. A Groebner basis G for I is minimal when each $g \in G$ is monic and $\{\mathrm{LT}(g): g \in G\}$ satisfies the second sentence of Theorem 2.1, $L T(g) \nmid \operatorname{LT}\left(g^{\prime}\right)$ for all $g, g^{\prime} \in G$. A Groebner basis is reduced when in addition no term of $g \in G$ is divisible by $\operatorname{LT}\left(g^{\prime}\right)$ for $g^{\prime} \in G-\{g\}$.

Proposition 2.6. A nonzero ideal I has a unique reduced Groebner basis.
Proof. For existence, let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a minimal Groebner basis. Divide g_{1} by $g_{2}, \ldots g_{t}$. We get $g_{1}=\sum_{i-2}^{t} a_{i} g_{i}+r_{1}$. Furthermore $r_{1} \in I$ and r_{1} has the same leading term as g_{1}. Replace g_{1} with r_{1} and we still have a minimal Groeber basis, but no term of r_{1} is divisible by $\operatorname{LT}\left(g_{i}\right)$ for $i=2, \ldots, t$. Proceed similarly with g_{i} for $i=2, \ldots, t$.

These important results generalize the Division Theorem (we get a unique remainder, and element of I). We have also solved the ideal description problem in a satisfying way: there is a unique Groebner basis. We have an easy test for ideal membership, divide by the Groebner basis and see if the results is 0 .

The next and key question is how to compute a Groebner basis, akin to the question for $k[x]$: how do we compute the gcd of two polynomials in one variable? The answer in one indeterminate is the Euclidean algorithm. It is not so simple with several indeterminates.

3 S-polynomials

Definition 3.1. Let $\alpha, \beta \in \mathbb{N}_{0}^{n}$. For $i=1, \ldots, n$, let $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$. We will call γ the $\operatorname{LCM}(\alpha, \beta)$. We will also call x^{γ} the $\operatorname{LCM}\left(x^{\alpha}, x^{\beta}\right)$.

It should be clear that $\operatorname{LCM}\left(x^{\alpha}, x^{\beta}\right)$ is the smallest monomial that is a multiple of both x^{α} and x^{β}. Using LCM for α and β is a small abuse of terminology that may be useful at some point.

Definition 3.2. Let $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$. The syzygy polynomial of f and g (also called the S-polynomial is

$$
S(f, g)=\frac{x^{\gamma}}{\mathrm{LT}(f)} f-\frac{x^{\gamma}}{\mathrm{LT}(g)} g
$$

where $\gamma=\operatorname{LCM}(\operatorname{LE}(f), \mathrm{LE}(g))$.
In other words if the leading term of f is x^{α} (we may as well take it to be monic) and the leading term of g is x^{β}, then $\frac{x^{\gamma}}{\operatorname{LT}(f)} f$ and $\frac{x^{\gamma}}{\operatorname{LT}(g)} g$ both have leading term x^{γ}, which is the smallest monomial divisible by both $\mathrm{LT}(f)$ and $\mathrm{LT}(g)$. The S-poly results from taking the smallest multiples of f and g that will give cancellation of leading terms. Thus $\operatorname{LM}(S(f, g))<$ $\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))$. Of course if $f, g \in I$ then $S(f, g) \in I$.

Let $F=\left\{f_{1}, \ldots, f_{s}\right\}$ and let $I=\langle F\rangle$ be the ideal generated by F. We would like to have (1) a test to see if F is a Groebner basis for I and (2) an algorithm to compute a Groebner basis for I if F is not one.

The algorithm is essentially this: for various $f_{1}, f_{2} \in F$ compute $S\left(f_{1}, f_{2}\right)$ then divide the result by F and get a remainder r with no terms divisible by leading terms of polynomials in F. Since $S\left(f_{1}, f_{2}\right) \in I$ and we divided by $F \subseteq I$ we must have $r \in I$. In particular $\mathrm{LT}(r)$ is not divisible by $\mathrm{LT}(f)$ for all $f \in F$. If $r \neq 0$, we add r to our set F and repeat the process: choose two elements of $F \cup\{r\}$, compute their S-poly, divide by $F \cup\{r\}$ to get a remainder, if it is nonzero throw it into our set of polynomials and continue.

Note: \bar{h}^{F} means the remainder when h is divided by F where F is an ordered set of polynomials, $F=f_{1}, \ldots, f_{t}$. The symbol $h \rightarrow_{F} r$ means that $h=\sum a_{i} f_{i}+r$ and $\mathrm{LE}(f) \geq \mathrm{LE}\left(a_{i} f_{i}\right)$ for all i with $a_{i} \neq 0$. We'll discuss this in class.

Theorem 3.3 (S-poly). Let $G=\left\{g_{1}, \ldots, g_{t}\right\}$ be a generating set for I. G is a Groebner basis for I iff ${\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0$ for all i, j.

Futhermore the algorithm described above terminates with a Groebner basis for I after a finite number of steps.

These results take some work to prove. We will use them now, and I will prove later after covering some of the general theory of rings and modules.

