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Throughout this document any ring is a commutative ring with identity.
Any time we use k it is a field.

The theory of modules over a ring is a generalization of the theory of
vector spaces over a field. Many of the terms and results for vector spaces
extend quite easily to modules, but there are some issues that require careful
formulation.

The theory of modules is also a generalization of the theory of abelian
groups. In fact, every abelian group is a Z-module (and conversely).

1 Definition and key properties of modules

Definition 1.1. A module M over a ring R is an abelian group with an R-
action (aka R-multiplication). For each r ∈ R and m ∈M there is a unique
element rm = mr of M . This R-action satisfies the following properties.
For r, r′ ∈ R and m,m′ ∈M ,

• 1m = m

• r(r′m) = (rr′)m

• (r + r′)m = rm+ r′m

• r(m+m′) = rm+ rm′

When R is a field, an R-module is simply a vector space over R.
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When there is clearly a single ring under consideration we may simply
say that M is a module, with the understanding that it is over this ring.

The most fundamental examples are the following three.

Example 1.2. The Cartesian product R × R × · · · × R is an abelian group
using coordinate wise addition. If there are n copies of R, we will this as Rn.
We make Rn into an R-module by introducing the R-action r(r1, . . . , rn) =
(rr1, rr2, . . . , rrn). Check that this satisfies the properties of modules.

Example 1.3. An ideal I of R is an R-module using the multiplication in
R as the R-action. Since an ideal absorbs products we have ra ∈ I. The
properties that R-action must satisfy are easy to verify. They follow from
the properties of multiplication in R.

Example 1.4. For I an ideal in R, the quotient ring R/I is an R- module.
The R-action that we use is this: For r ∈ R and a + I ∈ R/I, define
r(a+ I) = ra+ I. Verify this satisfies the required properties.

Notice that the latter two examples are trivial when R is a field, since
the only ideals in a field are the 0 and the whole field.

Definition 1.5. A module M is cyclic when it is generated by a single
element. That is, M = Ra for some a ∈M .

When R is a field, M is cyclic just means that M is a one-dimensional
vector space.

For arbitrary R, an ideal is cyclic as an R-module just means that the
ideal is principal.

For arbitrary R and any ideal I in R, the quotient ring R/I is cyclic,
generated by 1 + I. Verify!

Thus, we may think of “cyclic” as a more general notion than principal;
it is applicable to all modules, not just ideals.

If we have several modules, their Cartesian product has a natural module
structure. The proof is routine and left to you.

Proposition 1.6. Let M1,M2, . . . ,Mt be modules. Then M1×M2×· · ·×Mt

with component-wise multiplication by R is also a module over R.

Definition 1.7. The Cartesian product with the module structure in the
proposition is usually called the direct sum of the Mi and it is written
M1 ⊕M2 ⊕ · · · ⊕Mt. It is also called the direct product of the Mi.

There are some basic properties of modules that should be checked: see
Ash 4.1.2. (For example 0Rm = 0M for any m ∈M .)

There are three other examples in Ash that I want to briefly mention,
but we will not use them a lot.
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Example 1.8. The polynomial ring R[x] over R is an R-module. In fact,
R[x] is said to be “free” with an infinite basis 1, x, x2, . . . . Every element of
R[x] can be written is a unique way as a finite sum of these basis elements.

Example 1.9. Let Mn(R) be the ring of n×n matrices over R. Then M(R)
is a free R-module when we allow R to act by multiplication on each compo-
nent of the matrix. The module M(R) is really just Rn

2
with components

arranged in a square. It has a basis Eij for i, j ∈ {1, . . . , n} where Eij is the
matrix which is 1R in position i, j and 0R otherwise.

Example 1.10. If ϕ : R −→ S is a homomorphism of rings, then S is an
R-module. The R-action is defined via ϕ, the action of r on s is defined to
be ϕ(r)s. You can check that this satisfies the required properties for S to
be an R-module. When an R-module also has the structure of a ring it is
called an algebra over R.

The previous two examples, R[x] and M(R) are actually R-algebras.
Extending this example a bit, if N is an S-module then we can treat it

as an R module via ϕ. The action of r ∈ R on n ∈ N is ϕ(r)n.

2 Homomorphisms

Naturally, the first things we want to consider are structure preserving func-
tions and subsets of a module which are modules themselves.

Definition 2.1. A function ϕ : M → N is a homomorphism of R-modules
when ϕ(m + m′) = ϕ(m) + ϕ(m′) and ϕ(rm) = rϕ(m) for m,m′ ∈ M and
r ∈ R. The first condition says that ϕ is a homomorphism of abelian groups,
and the second that ϕ respects R-action. We say ϕ is an isomorphism when
it is also a bijection.

Proposition 2.2. If ϕ : M −→ N is a bijective homomorphism of R-
modules (that is, an isomorphism) then the inverse function ϕ−1 is also a
homomorphism (and therefore an isomorphism).

Proof. We need to check that ϕ−1(n+n′) = ϕ−1(n) +ϕ−1(n′) for all n, n′ ∈
N and that ϕ−1(rn) = rϕ−1(n). There are unique m,m′ such that ϕ(m) = n
and ϕ(m′) = n′ Since ϕ(ϕ−1(n) +ϕ−1(n′)) = ϕ(m+m′) = ϕ(m) +ϕ(m′) =
n + n′ we can apply ϕ−1 (which is a function!) to get ϕ−1(n) + ϕ−1(n′) =
ϕ−1(n+ n′).

Similarly, ϕ(rϕ−1(n)) = rϕ(ϕ−1(n)) = rn. Now apply ϕ−1.

Example 2.3. For I an ideal of R, the inclusion map I −→ R is a module
homomorphism.
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The quotient map R −→ R/I is also a module homomorphism.

Example 2.4. If M = ⊕ni=1Mi is the direct sum of the modules Mi then
the projection M −→ Mi is a module homomorphism. There is also a
module homomorphism Mi −→ M , it takes mi ∈ Mi to the element of M
which is mi in the ith component and 0 elsewhere. This injection is a clear
generalization of the analogous statement for vector spaces.

Notice that for two rings R, S there is generally no ring homomorphism
from R to R×S since we require that a homomorphism take the multiplica-
tive identity to the multiplicative identity. For example, there is no ring
homomorphism from Z/2 to Z/2× Z/3.

Definition 2.5. Let M be an R-module. A submodule of M is a subset
that is also a module using the R-action on M .

Equivalently, a submodule of M is a subgroup K of M that is closed
under multiplication by elements of R, that is rk ∈ K for all k ∈ K.

The next propositions are easy generalizations of results for abelian
groups. Proofs are left as exercises.

Proposition 2.6. Let ϕ : M −→ N be a homomorphism of modules. Then
ker(ϕ) is a submodule of M and im(ϕ) is a submodule of N .

Example 2.7. If I1, I2, . . . , It are ideals in R, then I1 × I2 × · · · × It is a
submodule of Rt.

Not all submodules of Rt are as simple as the previous example!

Proposition 2.8. If B is a subset of M then the set of all combinations
r1b1 + . . . rnbn for bi ∈ B and arbitrary n ∈ N0 is a submodule of M .

Proof. The four properties that the R-action have to satisfy are automatic,
since M is already an R-module. We have closure under addition: Two
arbitrary elements are (r1b1 + . . . rnbn) and (r′1b

′
1 + . . . r′mb

′
m) for bi and b′i

in B. Their sum is also a finite sum of multiples of elements of B. We also
have closure under multiplication by elements of R: r(r1b1 + . . . rnbn) =
(rr1 + . . . rrnbn) is also a sum of multiples of elements in B.

The next example is a special case of the proposition.

Example 2.9. If I is an ideal in R then the module generated by am for
a ∈ I and m ∈M is a submodule of M . We call it IM .

Definition 2.10. Let M be an R-module and let K be a submodule of M .
For any m ∈M , the set m+K = {m+ k : k ∈ K} is called a coset of K.
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Since M is an abelian group, the set of cosets forms an abelian group,
which is written M/K. Not surprisingly M/K has an R-module structure.

Theorem 2.11. Let M be an R-module and let K be a submodule of M .
The cosets of K partition M . That is, any two cosets are either disjoint or
equal.

The set of cosets has the structure of R-module using the action r(a +
K) = ra+K.

The fundamental theorems for group homomorphisms, and ring homo-
morphisms have analogues for module homomorphisms.

Theorem 2.12 (Factor). Let ϕ : M −→M ′ be a homomorphism of modules
and let K be the kernel. If N is a submodule of K then ϕ factors through
π : M −→ M/N . That is, there is a uniquely defined homomorphism ϕ̃ :
M/N −→M ′ such that ϕ = ϕ̃ ◦ π.

Furthermore, ϕ̃ is surjective iff ϕ is, and ϕ̃ is injective iff N = K.

Theorem 2.13 (1st Isomorphism). If ϕ : M −→ M ′ is surjective then
M ′ ∼= M/ kerϕ.

Example 2.14. The homomorphism ϕa : R −→ R taking 1 to a has image
the ideal 〈a〉. If R is an integral domain then the map is injective, so R is
isomorphic as an R-module, to im(ϕa) = 〈a〉.

Show that in Z/4, the ideal 〈2〉 is cyclic, but not isomorphic to Z/4.

Theorem 2.15 (Correspondence). Let K be a submodule of M . There is a
one-to-one correspondence between submodules of M/K and submodules of
M containing K.

Theorem 2.16 (3rd Isomorphism). Let K be a submodule of N and N a
submodule of K. Then N/K is a submodule of M/K and

M/K

N/K
∼=
M

N

5



3 Generating sets and free modules

The following definitions are natural extensions from the theory of vector
spaces.

Definition 3.1. A subset B = {b1, . . . bt} of module M is a spanning set
when every element of M can be written as a linear combination of the
elements in B. The elements of B are linearly independent when

∑
ribi = 0

iff each ri = 0. When B spans M and the elements of B are linearly
independent, we say B is a basis for M .

A module M is finitely generated when it has a finite spanning set. It is
finite free when it has a finite basis.

We will only consider finitely generated modules.

Example 3.2. The R-module Rn = R ⊕ R ⊕ · · · ⊕ R is finite free. It has a
basis e1, . . . , en where ei is 1 in the ith position and 0 elsewhere. This basis
is called the standard basis. Of course, as with vector spaces, it is not the
only basis.

Example 3.3. Each ideal in Z is principal, and therefore finitely generated.
Any non-zero ideal in Z is also free; for example 〈2〉 has basis 2. The
rings Z/n are generated by 1, but they are not free as Z-modules. The
spanning set {1 + 〈n〉} is not linearly independent, for the element n ∈ Z
and 1 + 〈n〉 ∈ Z/〈n〉, n(1 + 〈n〉) = 0 + 〈n〉 is a linear combination that gives
0 + 〈n〉, although n 6= 0. The same argument shows no other element of
Z/〈n〉 is a basis.

Example 3.4. The Hilbert basis theorem showed that any ideal in k[x1, . . . , xn]
is finitely generated (as an ideal, which is equivalent to saying it is finitely
generated as a module).

Example 3.5. Non-principal ideals in k[x, y] are not free. This needs proof,
but as an example I will show that the ideal 〈x, y〉 does not have x, y as a
basis. There is no common divisor of x and y, other than elements of k, so
〈x, y〉 is not cyclic (i.e. not principal). Note that y(x)− x(y) = 0. Think of
the (x) and (y) as generators of 〈x, y〉 and the y and x as coefficients from
k[x, y]. This shows that x and y are linearly dependent.

A vector space has a well-defined dimension; every basis has the same
cardinality. The situation is more complicated for general modules, but,
fortunately, it is relatively simple for free modules. Let’s just prove it in the
finite case.

Theorem 3.6. If the R-module M is isomorphic to Rt and to Rs, then
s = t. This number is called the rank of M .
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Proof. The trick is to mod out by a maximal ideal I of R to get a vector
space over the field R/I.

Let IM be the submodule of M generated by am for a ∈ I and m ∈M .
We have shown that IM is a submodule of M . I leave it to you to show
that M/IM is a module over R/I with action (r+ I)(m+ IM) = rm+ IM .

Since R/I is a field, M/MI is a vector space over R/I and has a well
defined dimension, t. We will show this dimension is equal to the number
of elements in any basis for M .

Suppose b1, . . . , bt ∈M is a basis for M . Since the bi span M , it is clear
that the bi + IM span M/IM . Consequently dim(M/IM) ≤ t.

Now suppose that some linear combination of the bi + IM is 0 + IM ;∑t
i=1(ri + I)(bi + IM) = 0 + IM . Then

0 + IM =

t∑
i=1

(ri + I)(bi + IM)

=
t∑
i=1

(ribi + IM)

= (
t∑
i=1

ribi) + IM

This shows that
∑t

i=1 ribi ∈ IM . Any element of IM may be written
as a sum

∑t
i=1 aibi for ai ∈ I (verify!). Thus

∑t
i=1 ribi =

∑t
i=1 aibi and

therefore
∑t

i=1(ri − ai)bi = 0. Since the bi are independent, ri − ai = 0 for
all i. Going back to our original linear combination, since each ri = ai ∈ I
all the coefficients in

∑t
i=1(ri + I)(bi + IM) = 0 + IM are actually 0 + I

in R/I. This shows that t ≤ dim(M/IM) and completes the proof that the
number of elements in a basis for M is equal to the dimension of M/IM for
any maximal ideal I.

4 Generators and relations for a module

We will write elements of Rs as row vectors of length s. Any homomorphism
is assumed to be an R-module homomorphism.

Let M be an s×t matrix of elements of R. Then M defines an R-module
homomorphism fromRs toRt using the usual rules for matrix multiplication.
Conversely, suppose ϕ is an R-module homomorphism from Rs to Rt. Let
e1, . . . , es be the standard basis for Rs and f1, . . . , ft be the standard basis
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for Rt. Write ϕ(ei) = mi1f1 +mi2f2 + · · ·+mitft. Form the matrix

M =


m1,1 m1,2 . . . m1,t

m2,1 m2,2 . . . m2,t

. . . . . . . . . . . .
ms,1 ms,2 . . . ms,t


By the properties of R-module homomorphisms, ϕ agrees with matrix mul-
tiplication by M , ϕ(x) = xM for any x ∈ Rs.

Suppose that M is a finitely generated R-module, with spanning set
b1, b2, . . . , bt. Consider the homomorphism Rt −→ M taking the standard
basis element ei to bi. The map is surjective since an arbitrary element of
M , which can be written

∑t
i=1 ribi, is the image of (r1, . . . , rt).

Definition 4.1. A presentation of M , which we may also call a generators
and relations representation of M , is a sequence of two homomorphisms

Rs
ψ−→ Rt

ϕ−→ M such that ϕ is surjective and ker(ϕ) = im(ψ). The
image of ϕ generates M and the kernel of ϕ is the set of relations on those
generators.

Polynomial rings over a field

For the remainder of these notes, we will focus on polynomial rings over a
field.

Example 4.2. Consider the ideal 〈x, y〉 in R = k[x, y]. Then

R2 −→ 〈x, y〉[
x
y

]
is a surjective homomorphism. Recall that I’m writing elements of Rn as
row vectors. So a 2×1 matrix gives a homomorphism from R2 into R. Here
〈x, y〉 is the image.

The kernel of this map is the set of all (f1, f2) ∈ R2 such that f1x+f2y =
0. We will prove later that a polynomial ring in n variables over a field,
k[x1, . . . , xn], is a unique factorization domain. Writing f1x = −f2y and
using unique factorization, we have that x | f2 and y | f1, and the quotients
f2/x and −f1/y must be equal. Consequently, a presentation of 〈x, y〉 is

R1 −→ R2 −→ 〈x, y〉[
y −x

] [
x
y

]
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Note that the homomorphism R1 −→ R2 above is injective. This is not
always the case.

Definition 4.3. Let F = {f1, . . . , ft} be elements of R. Consider the ho-
momorphism

Rt −→ 〈F 〉
ei 7−→ fi

The kernel of this homomorphism is called the syzygy module of F and is
written S(F ).

We would like to identify generators for S(F ) and construct a surjective
homomorphism from Rs for some s to S(F ). This would give a presentation
of 〈F 〉.

Monomial ideals

Let us first treat monomial ideals in R = k[x1, . . . , xn].
Consider the monomial ideal generated by

G = {xα1 , . . . , xαs} (1)

and let

γij = lcm {αi, αj} (2)

Here αi ∈ Nn0 , so each αi is a vector of length n. IVA uses α(i), rather than
αi, but that notation becomes unwieldy in what follows, so I’ve adopted αi.
Just remember that it is an element of Nn0 . Note also that lcm(α, β) might
more properly be called the least common sum, it is the smallest element
γ ∈ Nn0 such that γ−α and γ−β are both in Nn0 . Moreover γi = max(αi, βi).

For the presentation Rs −→ 〈G〉 taking basis vector ei to xαi we have
elements of the syzygy module

S̄ij = xγij−αiei − xγij−αjej (3)

We will show that these generate the syzygy module.
An indexing trick will be useful in what follows. Note that any h ∈ R

may be written as
∑

β∈Nn
0
hβx

β. For any α ∈ N0 we may shift the indices

by α and write h as h =
∑

β∈Nn
0
h′βx

β−α. We simply set h′β = 0 if β 6� α

and h′β = hβ−α if β � α. For example, if h = 1 + 2x + 3y + 5x2 + 4y2 and

9



α = (1, 0) then h′(0,j) = 0 for any j and h′(1,0) = 1, h′(2,0) = 2, h′(1,1) = 3,

h′(3,0) = 5, h′(1,2) = 4.

We will call an element m̄ = (m1, . . . ,ms) in Rs homogenous of degree δ
(with respect to (α1, . . . , αs)) when the entries of m are all monomials and
LE(mix

α
i ) = δ for all nonzero mi. We may also write this as LE(mi)+αi = δ.

Lemma 4.4. Let (α1, . . . , αs) be fixed with αi ∈ Nn0 . Any element of Rs,
where R = k[x1, . . . , xn], may be written in a unique way as a sum of homo-
geneous elements (relative to the αi).

Proof. Let h̄ = (h1, . . . , hs) ∈ Rs. Expand each hi using αi as discussed
above: hi =

∑
β∈N0

hi,βx
β−αi . Then h̄ =

∑
β∈Nn

0
(h1,βx

β−α1 , . . . , hs,βx
β−αs)

expresses h̄ as a sum of homogeneous terms.

Definition 4.5. With the notation of the Lemma, the leading term of h is
the nonzero homogeneous term with the largest degree.

Example 4.6. Consider k[x, y], (so n = 2) and s = 3. Let

h̄ = (1 + x+ y, x+ 2y + 3x2, y + 2x2)

If α1 = α2 = α3 = (0, 0) there is no shifting and we may write h̄ as the sum
of homogeneous elements

(1, 0, 0)

(x, x, 0)

(y, 2y, y)

(0, 3x2, 2x2)

If α1 = (1, 0), and α2 = (0, 1) and α3 = (0, 0) then h̄ is the sum of
homogeneous elements

(1, 0, 0) of multidegree (1, 0)

(x, 0, 2x2) of multidegree (2, 0)

(0, 0, y) of multidegree (0, 1)

(y, x, 0) of multidegree (1, 1)

(0, 3x2, 0) of multidegree (2, 1)

(0, 2y, 0) of multidegree (0, 2)
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Lemma 4.7. For G a set of monomials, any element of S(G) may be written
as a sum of homogeneous elements in S(G).

Proof. Let h̄ = (h1, . . . , hs) ∈ S(G). Write h̄ =
∑

β∈Nn
0
(h1,βx

β−α1 , . . . , hs,βx
β−αs)

as a sum of homogeneous terms, as in the previous lemma. We can see from
the following computation that each of the homogeneous terms is in S(G).

0 =

s∑
i=1

hix
αi

=

s∑
i=1

xαi
∑
β∈Nn

0

hi,βx
β−αi

=
∑
β∈Nn

0

s∑
i=1

hi,βx
β

=
∑
β∈Nn

0

xβ
s∑
i=1

hi,β

Since a polynomial is zero only when each term in its expansion is 0, the final
sum shows that each

∑s
i=1 hi,β = 0. Thus, each term in the homogeneous

expansion of h̄ is in S(G).

Theorem 4.8. For a monomial generating set G, the S̄ij in (3) generate
S(G).

Proof. By the previous lemma, it is enough to show that any homogeneous
element may be written as a sum of the S̄ij . Let m̄ be homogeneous of degree
δ, so m̄ = (c1x

δ−α1 , . . . , csx
δ−αs) with ci ∈ k. We must have δ � αi for any

i for which ci 6= 0. We now argue that if there are two or more nonzero
terms, we can subtract a multiple of some S̄ij , and get another homogeneous
element of S(G) which has fewer nonzero terms. By continuing this process
we eventually get at most one nonzero term. Observe that a vector with
exactly one nonzero term is clearly not in S(G). Thus we end with the 0
vector, and therefore m̄ can be written as a sum of multiples of the S̄ij .

Suppose ci and cj are nonzero. We know δ � αi, αj so δ � γij . Now

cix
δ−γij S̄ij = cix

δ−γij
(
xγij−αiei − xγij−αjej

)
= cix

δ−αiei − cixδ−αjej
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Subtracting from m̄ eliminates the ith term in m̄ and results in a homoge-
neous element of S(G) with one fewer nonzero term.

Example 4.9. Consider k[x, y] and let G = (y2, x2y, x3). The image of the
following homomorphism is 〈G〉.

R3 −→ 〈G〉 y2x2y
x3


A presentation of 〈G〉 is

R3 −→ R3 −→ 〈G〉 x2 −y 0
0 x −y
−x3 0 y2

  y2x2y
x3


In this example the exponents of the elements of G are α1 = (0, 2), α2 =
(2, 1) and α3 = (3, 0). The first row of the syzygy matrix is homogeneous
of degree (2, 2), the second is homogeneous of degree (3, 1) and the third is
homogeneous of degree (3, 2). Notice that we used all the syzygys, although
the final one can be expressed as a combination of the first two. The kernel of
the left hand homomorphism is not trivial. You can see that it is generated
by (x, y, 1). A more efficient representation would use just the first two
syzygys.

Groebner Bases

Let us now work with a monomial ordering < on R = k[x1, . . . , xn]. We
showed above that for a set of multidegrees α1, . . . , αs ∈ Nn0 , we may write
any h̄ ∈ Rs as a sum of homogeneous terms. The leading term of h̄ is the
homogeneous term with the largest multidegree using <.

Example 4.10. Refer back to example 4.6 with h̄ = (1 + x + y, x + 2y +
3x2, y + 2x2). For α1 = α2 = α3 = (0, 0), and the graded lex order with
x > y, the final term (0, 3x2, 2x2) is the leading term of h. Using the lex
order with y > x, the term (y, 2y, y) is the leading term.

Now consider α1 = (1, 0), and α2 = (0, 1) and α3 = (0, 0) The term
(0, 3x3, 0) is the leading term of h in the graded lex order with y > x. The
term, (0, 2y, 0) is the leading term in lex order with y > x.

12



Let G = (g1, . . . , gs) be a Groebner basis for the ideal it generates with
respect to the term order <. We want to relate the generators and relations
representation of 〈G〉 to that for 〈LT (G)〉. Let’s assume that G is a minimal
Groebner basis, so no leading term divides another and the gi are monic.
Let LE(gi) = αi and let γij = lcm(αi, αj).

Since the gi are all monic, the S-polynomial of gi and gj is

S(gi, gj) = xγij−αigi − xγij−αjgj

Since G is a Groebner basis, S(gi, gj)
G−→ 0, and this means that S(gi, gj) =∑

k akgk where ak ∈ R and LE(akgk) ≤ LE(S(gi, gj)) < γij . The latter
inequality comes from the cancellation of the degree γij terms that occurs
in the computation of S(gi, gj) and the first inequatity is from the definition

of
G−→. Rewriting this we get

(xγij−αi − ai)gi + (−xγij−αj − aj)gj −
∑
k 6=i,j

akgk = 0

so
T̄ij = (xγij−αi − ai)ei + (−xγij−αj − aj)ej −

∑
k 6=i,j

akek

is an element of S(G). The leading term of this element is xγij−αiei +
−xγij−αjej : It is equal to the element S̄ij in the presentation of S(LT(G)).

Theorem 4.11. Let G = (g1, . . . , gs) be a Groebner basis for the ideal it
generates. Let S̄1, . . . , S̄r be a homogeneous basis for S(LT(G)). There exist
T̄1, . . . T̄r ∈ S(G) with LT(T̄j) = S̄j and these Tj generate S(G).

Proof. We may write any h̄ ∈ Rs as a sum of homogeneous elements relative
to (α1, . . . , αs) as we did in Lemma 4.4. Thus, h̄ =

∑
β∈Nn

0
(h1,βx

β−α1 , . . . , hs,βx
β−αs).

Suppose that h̄ ∈ S(G) and let δ = maxi {LE(hi) + αi}. Let m̄ be the
“leading term” of h̄, that is the vector consisting of the homogeneous terms
of degree δ in h̄. Then m̄ = (m1, . . . ,ms) is homogeneous and each mi is
either 0 or of degree δ − αi.

We know that
∑s

i=1 higi = 0, so in particular the term in xδ is 0. This
term is

∑s
i=1mi LM(gi), and recall LM(gi) = xαi . Thus we have that m̄ ∈

S(LT(G)). Since the S̄ij generate S(LT(G)) we have m̄ =
∑

i 6=j nijS̄ij for
monomials nij .

Now consider h̄−
∑

i,j nij T̄ij . It is still in S(G). The homogeneous part
of degree δ is 0, because the leading term of h is m̄ and the leading term of∑

i 6=,j nij T̄ij is
∑

i 6=j nijS̄ij , which by construction is also m̄.
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Continuing this process recursively we may at each step subtract some
combination of the T̄ij , lowering the leading term at each time. This process
must eventually terminate leaving us with the 0 element of S(G). Thus h̄ is
a combination of the T̄ij .

Example 4.12. Consider k[x, y] with glex and x > y. Let G = (y2−x, x2y−
x, x3 − y3).

A presentation of 〈LT(G)〉 was given in Example 4.9. Let us extend this
to a presentation of 〈G〉.

We have

S(g1, g2) = x2(y2 − x)− y(x2y − x)

= −x3 + xy

= −y(y2 − x)− (x3 − y3)
S(g2, g3) = x(x2y − x)− y(x3 − y3)

= y4 − x2

= (y2 + x)(y2 − x)

A similar computation for S(g1, g3) may be done. From S(g1, g2) we get
T12 = (x2−y, y,−1) ∈ S(G) and from S(g2, g3) we get T23 = (y2+x, x,−y) ∈
S(G). Notic that LT(T12) = S12 and LT(T23) = S23 (using the homogeneity
defined by α1 = (0, 2), α2 = (2, 1), α3 = (3, 0)). We get the following
representation of the syzygy module S(G)

R3 −→ R2 −→ 〈G〉 x2 + y −y 1
y2 + x −x y
−x3 + y3 0 y2 − x

  y2 − xx2y − x
x3 − y3


As in the previous example, the last syzygy is redundant, a more efficient
representation would use just the first two syzygys.
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